JPS63121114A - Magnetic recording disk and its manufacture - Google Patents

Magnetic recording disk and its manufacture

Info

Publication number
JPS63121114A
JPS63121114A JP26552486A JP26552486A JPS63121114A JP S63121114 A JPS63121114 A JP S63121114A JP 26552486 A JP26552486 A JP 26552486A JP 26552486 A JP26552486 A JP 26552486A JP S63121114 A JPS63121114 A JP S63121114A
Authority
JP
Japan
Prior art keywords
film
magnetic
circumferential direction
substrate
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26552486A
Other languages
Japanese (ja)
Inventor
Toru Nagaoka
徹 長岡
Nobuyuki Yoshino
信行 吉野
Toshiaki Sakamoto
坂元 俊朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP26552486A priority Critical patent/JPS63121114A/en
Publication of JPS63121114A publication Critical patent/JPS63121114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To increase an angular shape ratio in a circumferential direction and an anti-magnetic force angular shape ratio in the circumferential direction, by forming a precise groove on the surface of a substrate in the circumferential direction, and stipulating atmosphere and the temperature of the substrate in a specific range at the time of adhering a chromic film on the surface of the substrate by sputtering. CONSTITUTION:The chromic film, a cobalt alloy magnetic film, and a protecting film are laminated on a non-magnetic substrate consisting of a disk in which the precise groove is formed. And the chromic film is adhered by sputtering heating the non-magnetic substrate at 100-250 deg.C in inactive gas with pressure of 0.3-30mTorr, and following that, the cobalt alloy magnetic film is adhered by sputtering, and the protecting film is adhered on it. In such a way, it is possible to increase the angular shape ratio in the circumferential direction and the anti-magnetic force angular shape ratio in the circumferential direction of a magnetic recording disk.

Description

【発明の詳細な説明】 (鉱業上の利用分野) 本発明は磁気記録円盤、とくにスパッタリングによりコ
バルト合金磁性膜を被着させた磁気記録円盤およびその
製造法に圓するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Mining Application) The present invention relates to a magnetic recording disk, particularly a magnetic recording disk having a cobalt alloy magnetic film deposited by sputtering, and a method for manufacturing the same.

(従来の技術) 記録密度の高い合金磁性薄膜を有する磁気記録媒体の研
究−発が近年大いに推進されているが、その中で非磁性
基体上に蒸着法やスパッタリングによりり64M1kを
被着させた後、その表面にコバルト合金膜を被着させて
なる磁気記録媒体がある。
(Prior art) Research into magnetic recording media having alloy magnetic thin films with high recording density has been greatly promoted in recent years, and in this research, 64M1k was deposited on a non-magnetic substrate by vapor deposition or sputtering. There is also a magnetic recording medium in which a cobalt alloy film is deposited on the surface of the magnetic recording medium.

(文献例−−−Jean P、 Lazzari 、 
1. Melnick 。
(Literature examples---Jean P, Lazzari,
1. Melnick.

and Dennis Randet @’rhin 
!evaporated Fllmswith Hlg
h Coercive Force ” IfCEB 
、 Tranaac−tions on Magnet
ics 、 vol、 Mag −3* /165 。
and Dennis Randet @'rhin
! evaporatedFllmswith Hlg
h Coercive Force” IfCEB
, Tranac-tions on Magnet
ics, vol, Mag-3*/165.

1967、PP205)#磁気記録媒体は面内方向で高
い保磁力を示すので、面内記録型として利用される。
1967, PP205) #Since magnetic recording media exhibit high coercive force in the in-plane direction, they are used as in-plane recording types.

(発明が解決しようとする間組点) 上記のように、非磁性基体上に被着させたクロム膜を介
し、コバルト合金磁性膜を被Nさせた磁気記録媒体は、
そのクロム膜の厚さを増すにつれて保磁力が増大するか
、その磁気軽易軸の方向は等方向すなわちランダムにな
ってしまう。一般に膜の磁性粒子の向きにより出力、ノ
イズ等は異なリ、磁性粒子の磁気容易軸の方向をそろえ
ることにより、その方向の再生出力、ノイズ特性は向上
することが良く知られている。本発明は、クロム膜上の
コバルト合金磁性膜の円周方向の角形比および円周方向
の抗磁力角形比がとくに大きい磁気記録円盤r提供する
ことを目的とするものである。
(Interset point to be solved by the invention) As described above, a magnetic recording medium in which a cobalt alloy magnetic film is coated with N via a chromium film deposited on a non-magnetic substrate has the following characteristics:
As the thickness of the chromium film increases, either the coercive force increases or the direction of the magnetic easy axis becomes isotropic, that is, random. It is well known that the output, noise, etc. generally vary depending on the orientation of the magnetic particles in the film, and that by aligning the directions of the magnetic easy axes of the magnetic particles, the reproduction output and noise characteristics in that direction can be improved. An object of the present invention is to provide a magnetic recording disk r in which a cobalt alloy magnetic film on a chromium film has a particularly large circumferential squareness ratio and a circumferential coercive force squareness ratio.

(問題点を解決するための手段〉 発明者らは上記目的を達成するために撫々検討を行った
結果、基体の表面に円周方向に緻密な溝を形成するとと
もに、基体の表面にスパッタリングによりクロム膜を被
着させる際にその雰囲気および基体の温度を特定の範囲
に定めることにより円周方向の角型比および円周方向の
抗磁力角形比がいちじるしく大きくなること全見出し本
発明に至った。
(Means for Solving the Problems) In order to achieve the above object, the inventors conducted extensive studies, and found that they formed dense grooves in the circumferential direction on the surface of the base and sputtered the surface of the base. According to the present invention, the squareness ratio in the circumferential direction and the coercive force squareness ratio in the circumferential direction can be significantly increased by setting the atmosphere and the temperature of the substrate within a specific range when depositing a chromium film. Ta.

すなわち、本発明の第1は円周方向に緻密な溝を形成し
た円盤からなる非殊性基体上に、スパッタリングにより
クロム膜、コバルト合金磁性膜および保i!1膜を積層
させた磁気記録円盤でおり、本発明の熟2は円周方向に
緻密な溝を形成した円盤からなる非磁性基体を圧力Q、
3m Torr〜3QmTorrの不活性ガス中で、1
00〜250℃の温度で加熱しながら、スパッタリング
によシフロム111k被着させ、ついでスパッタリング
によりコバルト合金磁性膜を被層させ、その上に保護膜
を被着させることを特徴とする磁気記録円盤の製造法で
める。
That is, the first aspect of the present invention is to form a chromium film, a cobalt alloy magnetic film, and an i! This is a magnetic recording disk in which one film is laminated.
In an inert gas of 3 m Torr to 3 Q m Torr, 1
A magnetic recording disk characterized in that SiFROM 111k is deposited by sputtering while heating at a temperature of 00 to 250°C, then a cobalt alloy magnetic film is deposited by sputtering, and a protective film is deposited thereon. Determined by manufacturing method.

以下、本発明の詳細な説明する。本発明において非磁性
基体とはアルミニウム合金などの非磁性金属、ボリカー
ポネー)、ABB樹脂などの耐熱性樹脂、ガラスなどの
材料を円盤に加工したものである。
The present invention will be explained in detail below. In the present invention, the non-magnetic substrate is a material processed into a disc from a material such as non-magnetic metal such as aluminum alloy, polycarbonate), heat-resistant resin such as ABB resin, or glass.

非磁性基体に形成する円周方向に緻密な溝とは円盤の表
面に一心円の溝を刻んだものであり、溝の深さは0.0
2〜0.3.μ諷ていとが好ましく、溝の暢は溝の深さ
と同程度が好ましい。溝の深さが0.02−より浅いと
円周方向の角型比が向上しない。また0應−より深いと
出力が低下し8/N比が悪化する。溝と溝の間隔はとく
に限定はないが、1寓μIP越えると円周方向の角型比
の向上度合が低下する。
The dense circumferential groove formed on the non-magnetic substrate is a concentric groove carved on the surface of a disk, and the depth of the groove is 0.0.
2-0.3. It is preferable to use ``μ'', and the groove length is preferably about the same as the depth of the groove. If the depth of the groove is less than 0.02, the squareness ratio in the circumferential direction will not improve. Further, if the depth is deeper than 0 -, the output decreases and the 8/N ratio deteriorates. There is no particular limitation on the distance between the grooves, but if it exceeds 1 μIP, the degree of improvement in the squareness ratio in the circumferential direction decreases.

このような#It−刻むに拡円盤をその軸を中心に回転
させながら研反用のテープを押しらてれはよい。研反用
テープの品種、押しあてる圧力および時間によシ溝の深
さ、幅および溝と溝の間隔を調節することができる。
In order to engrave like this, the polishing tape can be pressed while rotating the expanding disk around its axis. The depth and width of the grooves and the spacing between grooves can be adjusted depending on the type of abrasive tape, pressing pressure and time.

つぎにスパッタリングによりクロム膜を被着させる。ス
パッタリングは圧力0−3 m Torr (ミリトー
ル請10−3 )−ル)〜3 Q m Torrのアル
♂ン、ヘリウムなど不活性ガス中で行なわなければなら
ない。圧力がQ、3 m Torr未満では放電が不安
定になり裏腹速度が低下する。また、圧力が3 Q m
 Torr k越えると円周方向の角型比および円周方
向の抗磁力角形比のいずれも低下する。
Next, a chromium film is deposited by sputtering. Sputtering must be carried out in an inert gas such as argon or helium at a pressure of 0-3 m Torr (10-3 mTorr) to 3 Q m Torr. If the pressure is less than Q, 3 m Torr, the discharge becomes unstable and the speed decreases. Also, the pressure is 3 Q m
When Torr k is exceeded, both the circumferential squareness ratio and the circumferential coercive force squareness ratio decrease.

まな、スパッタリング時の基体の温度は100℃〜25
0℃の範囲内でなければならない、 100℃未満ある
いは250℃を越えると円周方向の角型比および円周方
向の抗磁力角形比のいずれも向上しない。
The temperature of the substrate during sputtering is 100°C to 25°C.
It must be within the range of 0°C; if it is less than 100°C or exceeds 250°C, neither the circumferential squareness ratio nor the circumferential coercive force squareness ratio will improve.

クロム膜の厚さは物に限定はないが通常は3000X程
度でよい。
The thickness of the chromium film is not particularly limited, but it is usually about 3000X.

ついでスパッタリングによpコバルト合金磁性膜を被着
させる。コバルト合金磁性膜のコバルト合金はコバルト
・ニッケル合金、コバルト・ニッケル・クロム合金など
であゐ。それらの合金の組成および磁性膜の厚さは特に
限定はなく、磁気記録媒体の希望する磁気特性に応じて
任意に定めることができる。コバルト合金磁性膜の被層
条件はとくに限定はないが、通常はクロム膜の被層時と
同じ圧力の不活性ガス中で、かつ同じ基体温度で行なえ
はよい。
Then, a p-cobalt alloy magnetic film is deposited by sputtering. Cobalt alloys of cobalt alloy magnetic films include cobalt-nickel alloys, cobalt-nickel-chromium alloys, etc. The composition of these alloys and the thickness of the magnetic film are not particularly limited and can be arbitrarily determined depending on the desired magnetic properties of the magnetic recording medium. There are no particular limitations on the coating conditions for the cobalt alloy magnetic film, but it is usually best to carry out the coating in an inert gas at the same pressure and at the same substrate temperature as when coating the chromium film.

つぎ艮コバルト合金磁性膜の上に保護膜を被着させる。Next, a protective film is deposited on the cobalt alloy magnetic film.

保護膜の種類、被着方法はとくに限定はなく、シリカ、
カーボンなどの材料をスパッタリング、蒸着等の方法で
被着させれによい。
There are no particular restrictions on the type of protective film or the method of application; silica,
Materials such as carbon may be deposited by sputtering, vapor deposition, or other methods.

(実施例〉 次に本発明を実施例により具体的に説明する。(Example> Next, the present invention will be specifically explained using examples.

実施例1〜18 まず、直径95n、厚さ1.30のアルミニウム合金(
W番5086)からなる円盤の表面をスビ−ドファム・
ラッピングマシンによシ鏡面研摩したのち、N1−Pメ
ッキを施した。つぎに、円盤を軸を中心に回転速度20
回転/分で回転させながら研反用のテープ(日本ミクロ
コーティング株式会社展、品gw*−3000,)t−
圧力的1ゆA−で30秒間押し当てることによって円盤
の表面に緻密な溝を形成させた。円盤の表面および破断
面を電子顕微鏡で調べた結果、溝の深さは0.05μへ
溝の幅は0.05μ罵、溝と溝の間隔は0.5μ隅であ
った。
Examples 1 to 18 First, aluminum alloy (
The surface of the disk made of W No. 5086)
After mirror polishing using a lapping machine, N1-P plating was applied. Next, rotate the disk around the axis at a speed of 20
Grinding tape (Japan Micro Coating Co., Ltd. exhibition, product gw*-3000,) t- while rotating at a rotation/min.
Dense grooves were formed on the surface of the disc by pressing it with a pressure of 1 YA- for 30 seconds. As a result of examining the surface and fracture surface of the disk using an electron microscope, the depth of the grooves was 0.05μ, the width of the grooves was 0.05μ, and the distance between the grooves was 0.5μ at the corner.

前記溝入り基体をスパッタリング装置に入れ、アルプン
ガス圧および基体温度を表1のとおシに設定し、まずク
ロムをターデッドとしてスパッタリング食性ない、基体
上に厚さ3000又のクロム′at−被着させた。なお
、ターデッドと基体との距離は60wg、クロムの析出
速度は一500λ/分であつ九。
The grooved substrate was placed in a sputtering device, the alponic gas pressure and the substrate temperature were set as shown in Table 1, and chromium was first deposited on the substrate to a thickness of 3000 mm by sputtering as tarded chromium. . The distance between the tarded and the substrate was 60 wg, and the chromium deposition rate was 1,500 λ/min.

つぎに、ターピット′に表1に示す種類のコバルト合金
磁性体に取替え、ガス圧力および基体温度はクロム展の
被着時と同一にして、表1に示す膜厚のコバルト合金磁
性膜を被着させた。なお、コバルト合金磁性体の組成は
Co Niの場合扛Coが80原子嘩、N1が20原子
俤でめシ、Co Ni Crの場合はCoが62.5原
子−1Niが307R子チ、Crが7.5原子−でめっ
た。また、コバルト合金磁性体の析出速度は500又/
分で6つ次。
Next, the tarpit' was replaced with a cobalt alloy magnetic material of the type shown in Table 1, and a cobalt alloy magnetic film with the film thickness shown in Table 1 was deposited at the same gas pressure and substrate temperature as when depositing chromium. I let it happen. In addition, the composition of the cobalt alloy magnetic material is 80 atoms of Co, 20 atoms of N1 in the case of CoNi, 62.5 atoms of Co-1307R atoms of Ni, and 307R atoms of Cr in the case of CoNiCr. 7.5 atoms were met. In addition, the precipitation rate of cobalt alloy magnetic material is 500 or /
6 next in minutes.

ついで、コバルト合金磁性体の上にスパッタリング法に
より厚さ300大のカーボン保極膜を被着させた。
Next, a carbon retention film having a thickness of 300 mm was deposited on the cobalt alloy magnetic material by sputtering.

得られた磁気記録円盤から105mX10n+の試験片
を作成し、円周方向の角形比および円周方向の抗磁力角
形比を測定し九。$1J定値は表1に示すとおシである
。なお、角形比の測定は珈研電子社製の振動試料形出力
計(形式BHV −55) 11−用い、外部磁界10
にエルステッドで行なった。
A test piece of 105m x 10n+ was prepared from the obtained magnetic recording disk, and the circumferential squareness ratio and the circumferential coercive force squareness ratio were measured. The fixed value of $1J is shown in Table 1. The squareness ratio was measured using a vibrating sample type output meter (model BHV-55) manufactured by Kaken Denshi Co., Ltd., with an external magnetic field of 10
held in Ørsted.

比較例1〜18 基体上に溝を形成しなかった(比較例3〜12および比
較例15% 16]、クロム膜被着時のアルプンガス圧
力k 30 rn Torr f越える圧力とした(比
較例13.14)、ま九はクロム膜被着時の基体温度t
−100℃未満(比較例1.2)もしくは250℃を越
える温度にした(比較例17.18J0その他の方法・
条件は表2に示すとお夕実施例1〜18と同一にして磁
気記録円盤を製造し、各実施例と同じ条件で円周方向の
角形比および円周方向の抗磁力角形比を測定した。測定
値は表2に示すとおりである。
Comparative Examples 1 to 18 No grooves were formed on the substrate (Comparative Examples 3 to 12 and Comparative Example 15% 16), and the pressure exceeded the alponic gas pressure k 30 rn Torr f at the time of chromium film deposition (Comparative Example 13). 14), ma9 is the substrate temperature t when the chromium film is deposited.
The temperature was lower than -100℃ (Comparative Example 1.2) or higher than 250℃ (Comparative Example 17.18J0 Other methods
The conditions are shown in Table 2. Magnetic recording disks were manufactured under the same conditions as in Examples 1 to 18, and the circumferential squareness ratio and the circumferential coercive force squareness ratio were measured under the same conditions as in each Example. The measured values are shown in Table 2.

第1図〜#l&4@は上記各実施例および各比較例の結
果をグラフ化したものである。
FIGS. 1 to #1 & 4@ are graphs of the results of each of the above-mentioned Examples and Comparative Examples.

(発明の効果ン 表1、表2および石1図〜第4図により明らかなように
、円周方向に緻密な溝を形成した円盤からなる非磁性基
体を圧力Q、5 m Torr 〜30 mTorrの
不活性ガス中で100℃〜250℃の温度で加熱しなが
ら、スパッタリングによシフロム膜W*着させた磁気記
録円盤は円周方向の角形比および円周方向の抗磁力角形
比が大きい。
(Effects of the invention) As is clear from Tables 1 and 2 and Figures 1 to 4, a non-magnetic substrate consisting of a disk with dense grooves formed in the circumferential direction was subjected to a pressure Q of 5 mTorr to 30 mTorr. The magnetic recording disk on which the SYFROM film W* is deposited by sputtering while heating at a temperature of 100 DEG C. to 250 DEG C. in an inert gas has a large squareness ratio in the circumferential direction and a large coercive force squareness ratio in the circumferential direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は各実施例および各比較例の結果tグラ
フ化したものである。 第1図・・・アルプンガス圧力と円周方向の角形比の関
係を示す。 8に2図・・・アルプンガス圧力と円周方向の抗磁力角
形比の関係を示す。 第6図・・・基体温度と円周方向の角形比の関係を示す
。 第4図・・・基体温度と円周方向の抗磁力角形比の関係
を示す。 なお、第1図および第2図の横軸は対数スケールである
、 特許出願人 電気化学工業株式会社 第1@ ([To狩り 第2図 スハ1)7ソン7”?の7 /V ml”ンガス圧力(
mTorr) 第3図 7.R”z7iングfの茎体壜7’i (”C)第4図
FIGS. 1 to 4 are t-graphs of the results of each example and each comparative example. Figure 1 shows the relationship between alponic gas pressure and circumferential squareness ratio. Figure 8 shows the relationship between alponic gas pressure and coercive force squareness ratio in the circumferential direction. Fig. 6 shows the relationship between substrate temperature and circumferential squareness ratio. Fig. 4 shows the relationship between substrate temperature and coercive force squareness ratio in the circumferential direction. The horizontal axes in Figures 1 and 2 are on a logarithmic scale. Patent applicant: Denki Kagaku Kogyo Co., Ltd. gas pressure (
mTorr) Figure 37. Stem body bottle 7'i of R''z7ingf (''C) Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)円周方向に緻密な溝を形成した円盤からなる非磁
性基体上に、スパッタリングによりクロム膜、コバルト
合金磁性膜および保護膜を積層させた磁気記録円盤。
(1) A magnetic recording disk in which a chromium film, a cobalt alloy magnetic film, and a protective film are laminated by sputtering on a non-magnetic substrate consisting of a disk in which dense grooves are formed in the circumferential direction.
(2)円周方向に緻密な溝を形成した円盤からなる非磁
性基体を圧力0.3mTorr〜30mTorrの不活
性ガス中で、100〜250℃の温度で加熱しながら、
スパッタリングによりクロム膜を被着させ、ついでスパ
ッタリングによりコバルト合金磁性膜を被着させ、その
上に保護膜を被着させることを特徴とする磁気記録円盤
の製造法。
(2) While heating a non-magnetic substrate consisting of a disk with dense grooves formed in the circumferential direction in an inert gas at a pressure of 0.3 mTorr to 30 mTorr at a temperature of 100 to 250°C,
A method for manufacturing a magnetic recording disk, which comprises depositing a chromium film by sputtering, then depositing a cobalt alloy magnetic film by sputtering, and depositing a protective film thereon.
JP26552486A 1986-11-10 1986-11-10 Magnetic recording disk and its manufacture Pending JPS63121114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26552486A JPS63121114A (en) 1986-11-10 1986-11-10 Magnetic recording disk and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26552486A JPS63121114A (en) 1986-11-10 1986-11-10 Magnetic recording disk and its manufacture

Publications (1)

Publication Number Publication Date
JPS63121114A true JPS63121114A (en) 1988-05-25

Family

ID=17418338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26552486A Pending JPS63121114A (en) 1986-11-10 1986-11-10 Magnetic recording disk and its manufacture

Country Status (1)

Country Link
JP (1) JPS63121114A (en)

Similar Documents

Publication Publication Date Title
US5063120A (en) Thin film magentic media
KR100418640B1 (en) Magnetic recording medium and its manufacturing method
JP3481252B2 (en) Magnetic recording medium and method of manufacturing the same
JP3423907B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording device
JP2697227B2 (en) Magnetic recording medium and method of manufacturing the same
EP0330356B1 (en) A thin film magnetic medium and method of producing same
JPS63121114A (en) Magnetic recording disk and its manufacture
JPS58128023A (en) Magnetic recording medium and its manufacture
JPH04205916A (en) Magnetic recording medium
JPS6379968A (en) Production of magnetic recording medium
JPH029016A (en) Thin film magnetic disk
JPH0268716A (en) Production of magnetic disk medium
JPS62236116A (en) Magnetic recording medium
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPH04137217A (en) Magnetic disk having excellent magnetic characteristic and production thereof
JPS6342027A (en) Production of magnetic recording medium
JPS6379234A (en) Production of magnetic recording medium
JPH02154322A (en) Production of magnetic recording medium
JPS6356609B2 (en)
JPH11306541A (en) Magnetic recording medium
JPS62120627A (en) Magnetic recording medium
JPH0554173B2 (en)
JPH05234069A (en) Thin film-magnetic disk
JPH03125322A (en) Magnetic recording medium
JPS6315654B2 (en)