JPS63120868A - Wind power hydraulic rotary body - Google Patents

Wind power hydraulic rotary body

Info

Publication number
JPS63120868A
JPS63120868A JP61263919A JP26391986A JPS63120868A JP S63120868 A JPS63120868 A JP S63120868A JP 61263919 A JP61263919 A JP 61263919A JP 26391986 A JP26391986 A JP 26391986A JP S63120868 A JPS63120868 A JP S63120868A
Authority
JP
Japan
Prior art keywords
blades
pressure
rotary shaft
vertical
wind power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61263919A
Other languages
Japanese (ja)
Inventor
Kazuo Nishijima
一男 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61263919A priority Critical patent/JPS63120868A/en
Publication of JPS63120868A publication Critical patent/JPS63120868A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/218Rotors for wind turbines with vertical axis with horizontally hinged vanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To reduce production of starting torque, by a method wherein plural pairs of collecting bladess, where phase angles positioned facing each other radially from the surrounding of a vertical shaft are held approximately at right angles, are disposed so as to vary an angle of elevation. CONSTITUTION:Plural collecting blades 6 are mounted radially from the surrounding of the upper part of a vertical rotary shaft 5 rotatably supported to a support frame 2, the anchors 1' of which are buried in a ground G for erection, through a radial bearing 3 and a thrust bearing 4 to form a wind power/hydraulic rotary body, and a generator 7 is mounted to the lower end of the vertical rotary shaft to form a wind power generating device 5. Plural pair of the collecting blades 6 are disposed in a manner that phase angle facing each other are held approximately at 90 deg.. Shafts 8 on which the blades are mounted are mounted to both ends of a sleeve boss 10, extended at right angles with the rotary shaft 5 and rotatably positioned, and the rotation range of the rotary shaft 5 is limited through a swing pin 11 engaged with the groove of a swing arm 12.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、風車や水車のごとく、空気や水等の流体の圧
力を受けて回転する風水六回転体に関し、詳しくは、ど
の方向からの流体流れに対しても一定方向に回転する垂
直回転軸型の風水六回転体に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a feng shui hexarotator that rotates under the pressure of fluid such as air or water, such as a windmill or a water turbine. This relates to a vertical rotating shaft type hexagonal Feng Shui body that rotates in a constant direction even with respect to the flow.

〔従来技術〕[Prior art]

従来、風車または水車のごとく、流体の圧力を受けて回
転する風水六回転体の例としては、垂直回転軸の周囲に
複数のブレードを有するパドル型の風車があるが、この
場合、ブレードの風上に向うときの抵抗が大きすぎて効
率が10%以下に低下するという問題があった。
Conventionally, an example of a feng shui hexagonal body that rotates under the pressure of fluid, such as a windmill or waterwheel, is a paddle-type windmill that has a plurality of blades around a vertical axis of rotation. There was a problem in that the resistance when moving upward was too large and the efficiency decreased to 10% or less.

また、垂直回転軸の周りに2個の半円筒形ブレードを有
するサボニウス型風車は、起動トルクが小さく、大きな
回転トルクが得られるという長所があるのに対し、効率
は15%が限度であり、更に、垂直回転軸の周囲に複数
の特殊翼型ブレードを有するダリウス型風車の場合は、
効率は35%程度まで上昇可能であるが、大きな起動ト
ルクを必要とするので低風速では起動困難であるという
問題があった。
In addition, the Savonius type wind turbine, which has two semi-cylindrical blades around a vertical rotation axis, has the advantage of having a small starting torque and a large rotating torque, but its efficiency is limited to 15%. Furthermore, in the case of a Darrieus-type wind turbine that has multiple special airfoil-shaped blades around a vertical rotation axis,
Although the efficiency can be increased to about 35%, there is a problem in that it requires a large starting torque and is difficult to start at low wind speeds.

また、上記サボニウス型及びダリウス型風車では、それ
ぞれのブレードの垂直方向の高さをある程度高くとる必
要があり、風車をコンパクトに作ることが困難であると
いう問題があった。
Further, in the above-mentioned Savonius type and Darius type wind turbines, it is necessary to increase the vertical height of each blade to some extent, and there is a problem in that it is difficult to make the wind turbine compact.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来の問題点を解消するためになされた
ものであり、効率が高く、起動トルりが小さく、そして
回転トルクがきわめて大きく、かつコンパクトな風水六
回転体を提供することを目的としている。
The present invention was made in order to solve the above-mentioned conventional problems, and an object of the present invention is to provide a compact Feng Shui hexagonal body that has high efficiency, low starting torque, and extremely large rotational torque. It is said that

〔発明の構成〕[Structure of the invention]

上記の目的を達成するための本発明の風水六回転体は、
垂直回転軸の周囲から放射状に、互いに相対する位相角
がほぼ90°に保たれた受圧ブレードを複数対配設する
と共に、各対の受圧ブレードが上記位相角を保持したま
ま、仰角を変換できるよう揺動自在に取付けられている
ことにより構成される。
The Feng Shui hexagonal body of the present invention for achieving the above object is as follows:
A plurality of pairs of pressure-receiving blades are arranged radially around the vertical rotation axis, and the phase angle facing each other is maintained at approximately 90 degrees, and each pair of pressure-receiving blades can change the elevation angle while maintaining the above-mentioned phase angle. It is constructed by being mounted so that it can swing freely.

[実施例〕 以下図面を参照して本発明の詳細な説明するが、第1図
は本発明の実施例1における風水六回転体の要部斜視図
、第2図は第1図の静止状態を示す斜視図、第3図は第
1図の垂直回転軸の要部拡大の側断面図、第4図は第3
図の側面図、第5図は第3図の斜視図、第6図は第1図
の受圧ブレードの平面図、第7図は第1図の風水六回転
体の配置正面図である。
[Example] The present invention will be described in detail below with reference to the drawings. Fig. 1 is a perspective view of the main part of a feng shui hexarotator according to Embodiment 1 of the present invention, and Fig. 2 shows the stationary state of Fig. 1. FIG. 3 is an enlarged side sectional view of the main part of the vertical rotation shaft in FIG. 1, and FIG.
5 is a perspective view of FIG. 3, FIG. 6 is a plan view of the pressure receiving blade of FIG. 1, and FIG. 7 is a front view of the arrangement of the Feng Shui hexagonal body of FIG. 1.

まず、第1図に示す本発明の風水六回転体1は、第7図
に示すごとく、地上Gにアンカー1を埋没した支持台2
にラジアル軸受3及びスラスト軸受4を介して回転自在
に支持された垂直回転軸5の上部の周囲から放射状に複
数の受圧ブレード6を設け、垂直回転軸5の下端に発電
機7を設けた風力発電装置に使用されるものである。
First, the Feng Shui hexagonal body 1 of the present invention shown in FIG.
A plurality of pressure receiving blades 6 are provided radially around the upper part of a vertical rotating shaft 5 which is rotatably supported via a radial bearing 3 and a thrust bearing 4, and a generator 7 is provided at the lower end of the vertical rotating shaft 5. It is used in power generation equipment.

次に、この垂直回転軸5の周囲から放射状に設けられた
受圧ブレード6は、互いに相対する位相角が第1図及び
第2図に示すごとく、はぼ90°に保たれるように、A
、A’及びB、B’の複数対配設されている。
Next, the pressure-receiving blades 6 radially provided around the vertical rotation shaft 5 are arranged so that the phase angles facing each other are maintained at approximately 90° as shown in FIGS. 1 and 2.
, A' and B, B' are arranged.

そこで、第3図に示すごとく、これらの受圧ブレード6
を取り付けた各対の軸8は垂直回転軸5に直角に貫通し
、ラジアル軸受9により回動自在に設けられたスリーブ
ボス10の両端に取り付けられている。
Therefore, as shown in Fig. 3, these pressure receiving blades 6
Each pair of shafts 8 to which the shafts 8 are attached pass through the vertical rotation shaft 5 at right angles, and are attached to both ends of a sleeve boss 10 rotatably provided by a radial bearing 9.

また、このスリーブボス10には、第3図、第4図及び
第5図に示すごとく、揺動ピン11が固設されており、
この揺動ピン11は垂直回転軸5に固設された揺動アー
ム12に設けられた溝によってほぼ90°の範囲内で揺
動するように規制されている。
Further, as shown in FIGS. 3, 4, and 5, a swing pin 11 is fixed to the sleeve boss 10.
This swing pin 11 is restricted to swing within a range of approximately 90° by a groove provided in a swing arm 12 fixed to the vertical rotation shaft 5.

即ち、上記の揺動ピン11と揺動アーム12とによって
各対の受圧ブレード6は前記90゜の位相角を保持した
ままの状態で、はぼ90゛の範囲内で揺動自在になって
いる。
That is, the swing pin 11 and swing arm 12 allow each pair of pressure receiving blades 6 to swing freely within a range of approximately 90° while maintaining the phase angle of 90°. There is.

上記の構成からなる風水六回転体においては、第1図及
び第7図のごとく各受圧ブレード6は風Wの受圧状態で
は垂直回転軸5に平行に、避圧状態では垂直回転軸5に
直角の姿勢を保つことになり、また各受圧及び避圧状態
のブレードの対をなす反対側のブレードは互いに位相角
を90°に保っているので相対的にそれぞれ避圧及び受
圧状態をとることになる。静止状態では第2図に示すご
とく垂直回転軸5に対して下向きに45°の角度をなす
ことになる。
In the Feng Shui hexagonal body constructed as described above, as shown in FIGS. 1 and 7, each pressure-receiving blade 6 is parallel to the vertical rotation axis 5 in the pressure receiving state of the wind W, and perpendicular to the vertical rotation axis 5 in the pressure-reducing state. In addition, since the blades on the opposite side of each blade in the pressure receiving and pressure relief states maintain a phase angle of 90°, they will relatively assume the pressure relief and pressure receiving states, respectively. Become. In the stationary state, it forms an angle of 45° downward with respect to the vertical rotation axis 5, as shown in FIG.

なお、この実施例1では、第6図に示すごとく、受圧ブ
レード6をブレード軸8の両側にaとbとに分けて配置
すると、ブレード重量の影響が軽減され、避圧側の受圧
ブレード6が低速の流体にも鋭く反応して、垂直回転軸
5に直角な水平状態の流圧抵抗ゼロになり易く、その結
果、低速の流体に対しても容易に回転することができる
が、この場合の受圧ブレード6の配分比a / bは0
.8程度が限度である。
In this embodiment 1, as shown in FIG. 6, by arranging the pressure receiving blades 6 on both sides of the blade shaft 8 in sections a and b, the influence of the blade weight is reduced, and the pressure receiving blade 6 on the escape pressure side is It reacts sharply even to low-speed fluids, and tends to have zero flow pressure resistance in the horizontal state perpendicular to the vertical rotation axis 5. As a result, it can easily rotate against low-speed fluids, but in this case. The distribution ratio a/b of the pressure receiving blade 6 is 0
.. The upper limit is about 8.

この場合、ブレードのb側はa側に較べて面積が大きく
且つ重量も大であるので、避圧状態ではb側が流体流れ
の後方に、a側が前方に位置する。また受圧状態ではb
側が下方に、a側が上方に位置する。
In this case, the b side of the blade has a larger area and weight than the a side, so in the vacuum state, the b side is located at the rear of the fluid flow, and the a side is located at the front. Also, in the pressure receiving state, b
The side is located at the bottom, and the side a is located at the top.

次に、第8図から第13図までに示す実施例2の風水六
回転体は、第9図のごとく、水底Bに設けたベース13
と地上Gにカンチレバー状に設けたコラム14とにラジ
アル軸受15及びラジアル・スラスト軸受16を介して
回転自在に設けた垂直回転軸5の周囲から放射状に設け
た受圧ブレード6を水面W、L下に配置し、水流Fによ
り回転させる水車として使用した例をおり、第1図に示
した実施例1とほぼ同様の構成及び機能を有するもので
あり、それぞれ同じ部品は同じ部品番号で示している。
Next, the Feng Shui hexagonal body of Example 2 shown in FIGS.
Pressure-receiving blades 6 are installed radially from the periphery of a vertical rotating shaft 5, which is rotatably provided on a column 14 provided in a cantilever shape on the ground G, via a radial bearing 15 and a radial thrust bearing 16, under the water surface W, L. This is an example in which it is used as a water wheel, which is placed in a water wheel and rotated by water flow F, and has almost the same configuration and function as Example 1 shown in Fig. 1, and the same parts are indicated by the same part numbers. .

そこで、この実施例2では揺動ピン11及び揺動アーム
12をスリーブボス10の上方に設け、実施例1とは反
対方向になっているが、機能的にはどちら方向でも良く
、また、この実施例2では、受圧ブレード6を第13図
のごとくブレード軸8の片側にのみ設けたものであるが
、この受圧ブレード6も第6図の実施例1と同様にaと
bとに分けて配置したものを使用しても良い。
Therefore, in this second embodiment, the swing pin 11 and the swing arm 12 are provided above the sleeve boss 10, and the direction is opposite to that of the first embodiment, but functionally they may be in either direction. In the second embodiment, the pressure receiving blade 6 is provided only on one side of the blade shaft 8 as shown in FIG. 13, but the pressure receiving blade 6 is also divided into a and b as in the first embodiment shown in FIG. You may use what you have placed.

なお、以上に説明した実施例1及び実施例2の風水六回
転体においては、その垂直回転軸5は左回転とし、受圧
ブレード6の作動角を90゜に設定した場合、垂直回転
軸5に平行の受圧状態から時計回りに90”受圧ブレー
ド6を変換させて、垂直回転軸5に直角の避圧状態とな
る条件では揺動ピン11と受圧ブレード6との位相角は
図示せるごとく45°となっている。
In addition, in the feng shui hexarotator of Examples 1 and 2 described above, the vertical rotation axis 5 rotates to the left, and when the operating angle of the pressure receiving blade 6 is set to 90 degrees, the vertical rotation axis 5 rotates to the left. When the pressure-receiving blade 6 is changed clockwise from the parallel pressure-receiving state by 90" and the pressure-receiving state is perpendicular to the vertical rotation axis 5, the phase angle between the swing pin 11 and the pressure-receiving blade 6 is 45 degrees as shown in the figure. It becomes.

〔発明の効果〕〔Effect of the invention〕

以上に説明したごとく、本発明の風水六回転体では、垂
直回転軸の周りに複数対の受圧ブレードを設け、その受
圧ブレードが受圧状態では流体の流れ方向に対してほぼ
直角、叩ち垂直回転軸に対して平行の姿勢を保ちながら
流れと反対の位置まで回転し、次いで流れに逆行して回
転する時は受圧ブレードがほぼ90°位相を変えて流体
の流れに対してほぼ平行の姿勢、即ち垂直回転軸に対し
て直角を保持して流れと順方向の位置まで回転するので
、その結果、流れに逆行する区間では受圧ブレードの流
体抵抗をゼロに等しく小さくすることができ、この受圧
ブレードの90°の位相変換は180°回転毎に交互に
自動的に行なわれることになる。
As explained above, in the feng shui hexarotator of the present invention, a plurality of pairs of pressure receiving blades are provided around the vertical rotation axis, and when the pressure receiving blades are in the pressure receiving state, the blades rotate vertically at almost right angles to the fluid flow direction. It rotates to a position opposite to the flow while maintaining a posture parallel to the axis, and then when rotating against the flow, the pressure-receiving blade changes its phase by approximately 90 degrees and takes a position almost parallel to the fluid flow. In other words, since it rotates to a position in the forward direction of the flow while maintaining a right angle to the vertical axis of rotation, the fluid resistance of the pressure receiving blade can be reduced to zero in the section that goes against the flow, and this pressure receiving blade The 90° phase shift of is automatically performed alternately every 180° rotation.

従って、本発明の風水六回転体は、その効率が非常に高
く、起動トルクが小さく、かつまたきわめて大きな回転
トルクが得られると共に、その高さなども低くでき、ま
た流れに向うブレードの抵抗を減少するための流れを遮
る遮蔽板等も必要としないので、それだけコンパクトに
形成することができるという利点がある。
Therefore, the feng shui hexarotator of the present invention has very high efficiency, low starting torque, and extremely large rotational torque, and its height can be reduced, and the resistance of the blades toward the flow can be reduced. Since there is no need for a shielding plate or the like to block the flow for reduction, there is an advantage that it can be formed more compactly.

なお、本発明の風水六回転体は、垂直回転軸の周囲から
放射状に設けられた受圧ブレードを相対する位相角をほ
ぼ90”に保たれた複数対配置しており、各対ごとにそ
れらの受圧ブレードが揺動するようになっているので、
受圧ブレードの回転に伴う遠心力によりブレード軸にス
ラストがかかる恐れがな(、その分だけ機械的ロスが少
なく効率をより高めることができると共に、ブレード軸
にスラストベアリングを用いる必要がなく、それだけ構
造が簡単になるという利点がある。
The feng shui hexarotator of the present invention has a plurality of pairs of pressure-receiving blades radially provided around the vertical rotation axis, with the opposing phase angle maintained at approximately 90", and each pair has a Since the pressure receiving blade is designed to swing,
There is no risk of thrust being applied to the blade shaft due to the centrifugal force that accompanies the rotation of the pressure-receiving blade (as a result, there is less mechanical loss and efficiency can be further increased, and there is no need to use a thrust bearing on the blade shaft, which improves the structure. It has the advantage of being easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における風水六回転体の要部
斜視図、第2図は第1図の静止状態を示す斜視図、第3
図は第1図の垂直回転軸の要部拡大の側断面図、第4図
は第3図の側面図、第5図は第3図の斜視図、第6図は
第1図の受圧ブレードの平面図、第7図は第1図の風水
六回転体の配置正面図、第8図は本発明の実施例2にお
ける風水六回転体の要部斜視図、第9図は第8図の静止
の状態を示す全体斜視図、第10図は第8図の垂直回転
軸の要部拡大の側断面図、第11図は第10図の側面図
、第12図は第10図の斜視図、第13図は第8図の受
圧ブレードの平面図である。 5・・・垂直回転軸、6・・・受圧ブレード、8・・・
ブレード軸、10・・・スリーブボス、11・・・揺動
ピン、12・・・揺動アーム。
FIG. 1 is a perspective view of essential parts of a feng shui six-rotator according to Embodiment 1 of the present invention, FIG. 2 is a perspective view showing the stationary state of FIG. 1, and FIG.
The figure is an enlarged side sectional view of the main part of the vertical rotation shaft in Figure 1, Figure 4 is a side view of Figure 3, Figure 5 is a perspective view of Figure 3, and Figure 6 is the pressure receiving blade in Figure 1. FIG. 7 is a front view of the arrangement of the Feng Shui hexa-rotator shown in FIG. 10 is an enlarged side sectional view of the main part of the vertical rotation shaft in FIG. 8, FIG. 11 is a side view of FIG. 10, and FIG. 12 is a perspective view of FIG. 10. , FIG. 13 is a plan view of the pressure receiving blade of FIG. 8. 5... Vertical rotation axis, 6... Pressure receiving blade, 8...
Blade shaft, 10... Sleeve boss, 11... Swing pin, 12... Swing arm.

Claims (1)

【特許請求の範囲】[Claims] 垂直回転軸の周囲から放射状に、互いに相対する位相角
がほぼ90°に保たれた受圧ブレードを複数対配設する
と共に、各対の受圧ブレードが上記位相角を保持したま
ま、仰角を変換できるよう揺動自在に取付けられている
風水力回転体。
A plurality of pairs of pressure-receiving blades are arranged radially around the vertical rotation axis, and the phase angle facing each other is maintained at approximately 90 degrees, and each pair of pressure-receiving blades can change the elevation angle while maintaining the above-mentioned phase angle. A feng shui rotating body that is installed so that it can swing freely.
JP61263919A 1986-11-07 1986-11-07 Wind power hydraulic rotary body Pending JPS63120868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61263919A JPS63120868A (en) 1986-11-07 1986-11-07 Wind power hydraulic rotary body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61263919A JPS63120868A (en) 1986-11-07 1986-11-07 Wind power hydraulic rotary body

Publications (1)

Publication Number Publication Date
JPS63120868A true JPS63120868A (en) 1988-05-25

Family

ID=17396090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61263919A Pending JPS63120868A (en) 1986-11-07 1986-11-07 Wind power hydraulic rotary body

Country Status (1)

Country Link
JP (1) JPS63120868A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342131C (en) * 2004-07-16 2007-10-10 邱垂南 Track wind sail power generation method and device thereof
JP2009518566A (en) * 2005-12-05 2009-05-07 フィルホ、フラヴィオ フランシスコ デュルセッティ Air converter
CN102748206A (en) * 2012-07-25 2012-10-24 焦兆平 CNJT adjustable speed safe intelligent high-power vertical axis windmill sail
CN102900598A (en) * 2012-10-26 2013-01-30 廖宝书 Universal windmill
JP2014114726A (en) * 2012-12-07 2014-06-26 Sekisui Chem Co Ltd Horizontal wind power generator
CN110529334A (en) * 2019-08-07 2019-12-03 安徽德宇风电设备有限公司 A kind of vertical axis adjusting clamp-close type wind-driven generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342131C (en) * 2004-07-16 2007-10-10 邱垂南 Track wind sail power generation method and device thereof
JP2009518566A (en) * 2005-12-05 2009-05-07 フィルホ、フラヴィオ フランシスコ デュルセッティ Air converter
CN102748206A (en) * 2012-07-25 2012-10-24 焦兆平 CNJT adjustable speed safe intelligent high-power vertical axis windmill sail
CN102900598A (en) * 2012-10-26 2013-01-30 廖宝书 Universal windmill
JP2014114726A (en) * 2012-12-07 2014-06-26 Sekisui Chem Co Ltd Horizontal wind power generator
CN110529334A (en) * 2019-08-07 2019-12-03 安徽德宇风电设备有限公司 A kind of vertical axis adjusting clamp-close type wind-driven generator

Similar Documents

Publication Publication Date Title
JP5466649B2 (en) Turbine engine with cross-flow hydro turbine to reduce total lift
US7040859B2 (en) Wind turbine
JP5807963B2 (en) Windmill equipment
US20020015639A1 (en) Horizontal axis wind turbine
CN101694205A (en) Control method of wind collecting-type vertical-shaft fan and wind generating set thereof
SE448489B (en) WIND TURBINE
CN108612623A (en) A kind of floating type offshore vertical axis wind powered generator system of blade
JPS63120869A (en) Wind power hydraulic rotary body
JPS63120868A (en) Wind power hydraulic rotary body
GB2119025A (en) Use of wind power
JP2005090332A (en) Darrieus wind turbine
KR20110005920A (en) Wind power apparatus
JP2005188468A (en) Multi-stage blade type vertical shaft wind mill
CN111237130B (en) Self-adaptive double-rotation-direction wind power generation device
JPS5872677A (en) Electric generator with float system dalius type hydraulic turbine
EP3120016B1 (en) Crossflow axes rotary mechanical devices with dynamic increased swept area
KR20110004803A (en) Wind power apparatus
KR101034924B1 (en) Rotation apparatus for wind power generator having inclined two rotation axes
US4432695A (en) Wind motor
JPH06159223A (en) Windmill device and vertical shaft windmill used for windmill device
EP0168465A1 (en) A wind rotor member
WO1992016744A1 (en) Hydraulic power device
SE455115B (en) WIND TURBINE
KR102474643B1 (en) Vertical-axis wind turbine of enhanced efficiency
RU2151322C1 (en) Windmill