JPS63120869A - Wind power hydraulic rotary body - Google Patents

Wind power hydraulic rotary body

Info

Publication number
JPS63120869A
JPS63120869A JP61263920A JP26392086A JPS63120869A JP S63120869 A JPS63120869 A JP S63120869A JP 61263920 A JP61263920 A JP 61263920A JP 26392086 A JP26392086 A JP 26392086A JP S63120869 A JPS63120869 A JP S63120869A
Authority
JP
Japan
Prior art keywords
shaft
blade
vertical
pressure
surroundings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61263920A
Other languages
Japanese (ja)
Inventor
Kazuo Nishijima
一男 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61263920A priority Critical patent/JPS63120869A/en
Publication of JPS63120869A publication Critical patent/JPS63120869A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To improve efficiency and to reduce production of starting torque, by a method wherein plural collecting blades are situated radially from the surroundings of a vertical rotary shaft so that an angle of elevation is variable within an approximately right angled working range in a plane extending in parallel to a rotary shaft and at right angles with a blade shaft. CONSTITUTION:Plural collecting blades 6 are arranged radially in the surroundings of the upper part of a vertical shaft rotatably supported to a support frame 2, the anchors 1 of which are buried in a ground G, through a radial bearing 3 and a thrust bearing 4 to form a wind power hydraulic rotary body. A generator 7 is mounted to the lower end of the vertical shaft 5 to form a wind air power generating device. The vertical shafts on each of which to mount each blade 6 are rotatably mounted to plural mounting bosses 10 protruded radially from the surroundings of the rotary shaft 5 and at right angle with the vertical shaft 5 by means of a radial bearing 9A and a thrust bearing 9B. The rotation range of each shaft 8 is regulated through a swing pin 11 secured to the shaft 5 and engaged with the groove of a flewing arm 12 secured to the rotary shaft 5.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、風車や水車のごとく、空気や水等の流体の圧
力を受けて回転する風水力面転体に関し、詳しくは、ど
の方向からの流体流れに対しても一定方向に回転する垂
直回転軸型の風水力面転体に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a wind-hydro surface rolling body that rotates under the pressure of a fluid such as air or water, such as a windmill or a waterwheel. This relates to a vertical rotating axis type feng-shui surface rolling body that rotates in a constant direction even with respect to fluid flow.

C従来技術〕 従来、風車または水車のごとく、流体の圧力を受けて回
転する風水力面転体の例としては、垂直回転軸の周囲に
複数のブレードを有するパドル型の風車があるが、この
場合、ブレードの風上に向うときの抵抗が大きすぎて効
率が10%以下に低下するという問題があった。
C. Prior Art] Conventionally, as an example of a wind-hydraulic surface rolling body that rotates under the pressure of a fluid, such as a windmill or a water turbine, there is a paddle-type windmill that has a plurality of blades around a vertical rotation axis. In this case, there was a problem in that the resistance when the blade moved upwind was too large, reducing the efficiency to less than 10%.

また、垂直回転軸の周りに2個の半円筒形ブレードを有
するサボニウス型風車は、起動トルクが小さく、大きな
回転トルクが得られるという長所があるのに対し、効率
は15%が限度であり、更に、垂直回転軸の周囲に複数
の特殊翼型ブレードを有するダリウス型風車の場合は、
効率は35%程度まで上昇可能であるが、大きな起動ト
ルクを必要とするので低風速では起動困難であるという
問題があった。
In addition, the Savonius type wind turbine, which has two semi-cylindrical blades around a vertical rotation axis, has the advantage of having a small starting torque and a large rotating torque, but its efficiency is limited to 15%. Furthermore, in the case of a Darrieus-type wind turbine that has multiple special airfoil-shaped blades around a vertical rotation axis,
Although the efficiency can be increased to about 35%, there is a problem in that it requires a large starting torque and is difficult to start at low wind speeds.

また、上記サボニウス型及びダリウス型風車では、それ
ぞれのブレードの垂直方向の高さをある程度高くとる必
要があり、風車をコンパクトに作ることが困難であると
いう問題があった。
Further, in the above-mentioned Savonius type and Darius type wind turbines, it is necessary to increase the vertical height of each blade to some extent, and there is a problem in that it is difficult to make the wind turbine compact.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来の問題点を解消するためになされた
ものであり、効率が高く、起動トルりが小さく、そして
回転トルクがきわめて大きく、かつコンパクトな風水六
回転体を提供することを目的としている。
The present invention was made in order to solve the above-mentioned conventional problems, and an object of the present invention is to provide a compact Feng Shui hexagonal body that has high efficiency, low starting torque, and extremely large rotational torque. It is said that

〔発明の構成〕[Structure of the invention]

上記の目的を達成するための本発明の風水六回転体は、
垂直回転軸の周囲から放射状に、複数の受圧ブレードを
配設すると共に、各受圧ブレードが回転軸に平行且つブ
レード軸に直交する平面内をほぼ90°の作動範囲内で
仰角を変換できるようそれぞれ揺動自在に取付けられて
いることにより構成される。
The Feng Shui hexagonal body of the present invention for achieving the above object is as follows:
A plurality of pressure-receiving blades are arranged radially around the vertical rotation axis, and each pressure-receiving blade can change the elevation angle within an operating range of approximately 90° in a plane parallel to the rotation axis and orthogonal to the blade axis. It is constructed by being attached so that it can swing freely.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明するが、第1図
は本発明の実施例1における風水六回転体の要部斜視図
、第2図は第1図の静止状態を示す全体斜視図、第3図
は第1図の垂直回転軸の要部拡大の側断面図、第4図は
第3図の側面図、第5図は第3図の斜視図、第6図は第
1図の受圧ブレードの平面図である。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a perspective view of a main part of a feng shui hexarotator according to Embodiment 1 of the present invention, and FIG. 2 is an overall perspective view showing the stationary state of FIG. 1. Figure 3 is an enlarged side sectional view of the main part of the vertical rotation shaft in Figure 1, Figure 4 is a side view of Figure 3, Figure 5 is a perspective view of Figure 3, and Figure 6 is the FIG. 3 is a plan view of the pressure receiving blade shown in FIG.

まず、第1図に示す本発明の風水六回転体1は、第2図
に示すごとく、地上Gにアンカー1を埋没した支持台2
にラジアル軸受3及びスラスト軸受4を介して回転自在
に支持された垂直回転軸5の上部の周囲から放射状に複
数の受圧ブレード6を設け、垂直回転軸5の下端に発電
機7を設けた風力発電装置に使用されるものである。
First, the Feng Shui hexagonal body 1 of the present invention shown in FIG.
A plurality of pressure receiving blades 6 are provided radially around the upper part of a vertical rotating shaft 5 which is rotatably supported via a radial bearing 3 and a thrust bearing 4, and a generator 7 is provided at the lower end of the vertical rotating shaft 5. It is used in power generation equipment.

次に、この垂直回転軸5の周囲から放射状に設けられた
各受圧ブレード6は、第1図に示すごと(はぼ90°の
作動範囲内でブレード軸の周りにそれぞれ揺動自在に取
付けられている。
Next, the pressure receiving blades 6 provided radially around the vertical rotating shaft 5 are each mounted so as to be swingable around the blade axis within an operating range of approximately 90°, as shown in FIG. ing.

即ち、第3図に示すごとく、これらの受圧ブレード6を
取り付けた各ブレード軸8は、垂直回転軸5の周囲から
放射状にしかも垂直回転軸5に直角に複数本突出して設
けられた取付ボスlOに、ラジアル軸受9A及びスラス
ト軸受9Bにより回動自在に取り付けられている。
That is, as shown in FIG. 3, each blade shaft 8 to which these pressure-receiving blades 6 are attached has a plurality of mounting bosses lO provided radially from the periphery of the vertical rotation shaft 5 and projecting at right angles to the vertical rotation shaft 5. It is rotatably mounted on the radial bearing 9A and thrust bearing 9B.

また、このブレード軸8には、第3図、第4図及び第5
図に示すごとく、揺動ビン11が固設されており、この
揺動ピア11は垂直回転軸5に固設された揺動アーム1
2に設けられた溝によってほぼ90°の範囲内で揺動す
るように規制されている。
In addition, this blade shaft 8 is also provided with
As shown in the figure, a swinging bin 11 is fixedly installed, and this swinging pier 11 is connected to a swinging arm 1 fixed to a vertical rotating shaft 5.
The groove provided in 2 restricts the swinging within a range of approximately 90°.

上記の構成からなる風水六回転体においては、第1図及
び第2図のごとく各受圧ブレード6は、風Wの受圧状態
では、垂直回転軸5に平行に、避圧状態では垂直回転軸
5に直角の姿勢を保つことになり、また受圧と避圧との
中間状態では流れに対して抵抗の少ない中間姿勢となり
、更に静止状態では第2図に示すごとく各受圧ブレード
6は垂直回転軸5に対して平行の向きとなる。
In the Feng Shui six-rotator having the above configuration, as shown in FIGS. 1 and 2, each pressure-receiving blade 6 is parallel to the vertical rotation axis 5 in the pressure receiving state of the wind W, and is parallel to the vertical rotation axis 5 in the pressure-reducing state. In addition, in an intermediate state between receiving pressure and avoiding pressure, it takes an intermediate attitude with little resistance to the flow, and furthermore, in a stationary state, each pressure receiving blade 6 is rotated around the vertical rotation axis 5 as shown in FIG. The direction is parallel to.

なお、この実施例1では、第6図に示すごとく、受圧ブ
レード6をブレード軸8の両側にaとbとに分けて配置
すると、ブレード重量の影響が軽減され、避圧側の受圧
ブレード6が低速の流体にも鋭く反応して、垂直回転軸
5に直角な水平状態の流圧抵抗ゼロになり易く、その結
果、低速の流体に対しても容易に回転することができる
が、この場合の受圧ブレード6の配分比a / bは0
.8程度が■度である。
In this embodiment 1, as shown in FIG. 6, by arranging the pressure receiving blades 6 on both sides of the blade shaft 8 in sections a and b, the influence of the blade weight is reduced, and the pressure receiving blade 6 on the escape pressure side is It reacts sharply even to low-speed fluids, and tends to have zero flow pressure resistance in the horizontal state perpendicular to the vertical rotation axis 5. As a result, it can easily rotate against low-speed fluids, but in this case. The distribution ratio a/b of the pressure receiving blade 6 is 0
.. About 8 degrees is ■ degree.

この場合、ブレードのb側はa側に較べて面積が大きく
且つ重量も大であるので、避圧状態ではb側が流体流れ
の後方に、a側が前方に位置する。また受圧状態ではb
側が下方に、a側が上方に位置する。
In this case, the b side of the blade has a larger area and weight than the a side, so in the vacuum state, the b side is located at the rear of the fluid flow, and the a side is located at the front. Also, in the pressure receiving state, b
The side is located at the bottom, and the side a is located at the top.

次に、第7図から第13図までに示す実施例2の風水六
回転体は、第13図のごとく、水底Bに設けたベース1
3と地上Gにカンチレバー状に設けたコラム14とラジ
アル軸受15及びラジアル・スラスト軸受16を介して
回転自在に設けた垂直回転軸5の周囲から放射状に設け
た受圧ブレード6を水面W、L下に配置し、水流Fによ
り回転させる水車として使用した例を示しており、第1
図に示した実施例1とほぼ同様の構成及び機能を有する
ものであり、それぞれ同じ部品は同じ部品番号で示して
いる。
Next, the Feng Shui hexagonal body of Example 2 shown in FIGS.
3 and pressure receiving blades 6 installed radially from the periphery of a vertical rotating shaft 5 rotatably provided via a cantilever-shaped column 14, a radial bearing 15, and a radial thrust bearing 16 on the ground G below the water surface W, L. This example shows an example in which the water wheel is placed in the water wheel and rotated by the water flow F.
It has almost the same configuration and function as the first embodiment shown in the figures, and the same parts are indicated by the same part numbers.

そこで、この実施例2では揺動ピン11及び揺動アーム
12を取付ボス10の上方に設け、実施例1とは反対方
向になっているが、機能的にはどちら方向でも良く、ま
た、この実施例2では、受圧ブレード6を第12図のご
とくブレード軸8の片側にのみ設けたものであるが、こ
の受圧ブレード6も第6図の実施例1と同様にaとbと
に分けて配置したものを使用しても良い。
Therefore, in this second embodiment, the swing pin 11 and the swing arm 12 are provided above the mounting boss 10 in the opposite direction to the first embodiment, but functionally they can be placed in either direction. In the second embodiment, the pressure receiving blade 6 is provided only on one side of the blade shaft 8 as shown in FIG. 12, but the pressure receiving blade 6 is also divided into a and b as in the first embodiment shown in FIG. You may use what you have placed.

なお、以上に説明した実施例1及び実施例2の風水六回
転体においては、その垂直回転軸5は左回転とし、受圧
ブレード6の作動角を90゜に設定した場合、垂直回転
軸5に平行の受圧状態から時計回りに90°受圧ブレー
ド6を変換させて、垂直回転軸5に直角の避圧状態とな
る条件では揺動ピン11と受圧ブレード6との位相角は
図示せるごとく45°となっている。
In addition, in the Feng Shui six-rotator of Examples 1 and 2 described above, the vertical rotation axis 5 rotates to the left, and when the operating angle of the pressure receiving blade 6 is set to 90 degrees, the vertical rotation axis 5 rotates to the left. When the pressure-receiving blade 6 is turned clockwise by 90° from the parallel pressure-receiving state and the pressure-receiving state is perpendicular to the vertical rotation axis 5, the phase angle between the swing pin 11 and the pressure-receiving blade 6 is 45° as shown in the figure. It becomes.

〔発明の効果〕〔Effect of the invention〕

以上に説明したごとく、本発明の風水六回転体では、垂
直回転軸の周りに複数の受圧ブレードを設け、その受圧
ブレードが受圧状態では流体の流れ方向に対してほぼ直
角、即ち垂直回転軸に対して平行の姿勢を保ちながら流
れと反対の位置まで回転し、次いで流れに逆行して回転
する時は受圧ブレードがほぼ90°位相を変えて流体の
流れに対してほぼ平行の姿勢、即ち垂直回転軸に対して
直角を保持して流れと順方向の位置まで回転するので、
その結果、流れに逆行する区間では受圧ブレードの流体
抵抗をゼロに等しく小さくすることができ、この受圧ブ
レードの90°の位相変換は180°回転毎に交互に自
動的に行なわれることになる。
As explained above, in the Feng Shui hexagonal body of the present invention, a plurality of pressure receiving blades are provided around the vertical rotation axis, and when the pressure receiving blades are in the pressure receiving state, they are approximately perpendicular to the fluid flow direction, that is, aligned with the vertical rotation axis. The pressure receiving blade rotates to a position opposite to the flow while maintaining a parallel attitude to the fluid flow, and then when rotating against the flow, the pressure receiving blade changes the phase by approximately 90 degrees and takes a position almost parallel to the fluid flow, that is, perpendicular. It rotates to a position in the forward direction of the flow while maintaining a right angle to the axis of rotation.
As a result, the fluid resistance of the pressure receiving blade can be reduced to zero in the section running against the flow, and the 90° phase shift of the pressure receiving blade is automatically performed alternately every 180° rotation.

従って、本発明の風水六回転体は、その効率が非常に高
く、起動トルクが小さく、かつまたきわめて大きな回転
トルクが得られると共に、その高さなども低くでき、ま
た流れに向うブレードの抵抗を減少するための流れを遮
る遮蔽板等も必要としないので、それだけコンパクトに
形成することができるという利点がある。
Therefore, the feng shui hexarotator of the present invention has very high efficiency, low starting torque, and extremely large rotational torque, and its height can be reduced, and the resistance of the blades toward the flow can be reduced. Since there is no need for a shielding plate or the like to block the flow for reduction, there is an advantage that it can be formed more compactly.

なお、本発明の風水六回転体は、垂直回転軸の周囲から
放射状に設けられた受圧ブレードが、それぞれ単独に揺
動するようになっているので、受圧ブレードは偶数であ
る必要がなく、奇数であってもかまわないので最も適切
な数の受圧ブレードを選定でき、しかも垂直回転軸の同
じ高さ位置に多数の取付ボスを放射状に設けて、そのそ
れぞれに受圧ブレードを設けることができるのでその風
水六回転体の高さを低くおさえることができ、それだけ
よりコンパクト化をはかりうるという利点がある。
In addition, in the feng shui six-rotator of the present invention, the pressure receiving blades provided radially around the vertical rotation axis are designed to swing independently, so the pressure receiving blades do not need to be an even number, but an odd number. The most appropriate number of pressure-receiving blades can be selected, and since a large number of mounting bosses can be provided radially at the same height of the vertical rotation axis, and a pressure-receiving blade can be installed on each of them, the most appropriate number of pressure-receiving blades can be selected. There is an advantage that the height of the Feng Shui hexagonal body can be kept low and that it can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における風水六回転体の要部
斜視図、第2図は第1図の静止状態を示す全体斜視図、
第3図は第1図の垂直回転軸の要部拡大の側断面図、第
4図は第3図の側面図、第5図は第3図の斜視図、第6
図は第1図の受圧ブレードの平面図、第7図は本発明の
実施例2における風水六回転体の要部斜視図、第8図は
第7図の静止の状態を示す斜視図、第9図は第7図の垂
直回転軸の要部拡大の側断面図、第10図は第9図の側
面図、第11図は第9図の斜視図、第12図は第7図の
受圧ブレードの平面図、第13図は第7図の風水六回転
体の全体配置正面図である。 5・・・垂直回転軸、6・・・受圧ブレード、8・・・
ブレード軸、10・・・取付ボス、11・・・揺動ピン
、12・・・揺動アーム。
FIG. 1 is a perspective view of the main parts of a feng shui hexarotator according to Embodiment 1 of the present invention, FIG. 2 is an overall perspective view showing the stationary state of FIG. 1,
3 is an enlarged side sectional view of the main part of the vertical rotation shaft in FIG. 1, FIG. 4 is a side view of FIG. 3, FIG. 5 is a perspective view of FIG. 3, and FIG.
The figure is a plan view of the pressure-receiving blade shown in Fig. 1, Fig. 7 is a perspective view of essential parts of the Feng Shui hexagonal body in Embodiment 2 of the present invention, Fig. 8 is a perspective view showing the stationary state of Fig. 7, Figure 9 is an enlarged side sectional view of the main part of the vertical rotation shaft in Figure 7, Figure 10 is a side view of Figure 9, Figure 11 is a perspective view of Figure 9, and Figure 12 is the pressure receiving diagram in Figure 7. A plan view of the blade, and FIG. 13 is a front view of the overall arrangement of the Feng Shui hexagonal body of FIG. 7. 5... Vertical rotation axis, 6... Pressure receiving blade, 8...
Blade shaft, 10... Mounting boss, 11... Swing pin, 12... Swing arm.

Claims (1)

【特許請求の範囲】[Claims] 垂直回転軸の周囲から放射状に、複数の受圧ブレードを
配設すると共に、各受圧ブレードが回転軸に平行且つブ
レード軸に直交する平面内をほぼ90°の作動範囲内で
仰角を変換できるようそれぞれ揺動自在に取付けられて
いる風水力回転体。
A plurality of pressure-receiving blades are arranged radially around the vertical rotation axis, and each pressure-receiving blade can change the elevation angle within an operating range of approximately 90° in a plane parallel to the rotation axis and orthogonal to the blade axis. A feng shui rotating body that is installed so that it can swing freely.
JP61263920A 1986-11-07 1986-11-07 Wind power hydraulic rotary body Pending JPS63120869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61263920A JPS63120869A (en) 1986-11-07 1986-11-07 Wind power hydraulic rotary body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61263920A JPS63120869A (en) 1986-11-07 1986-11-07 Wind power hydraulic rotary body

Publications (1)

Publication Number Publication Date
JPS63120869A true JPS63120869A (en) 1988-05-25

Family

ID=17396105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61263920A Pending JPS63120869A (en) 1986-11-07 1986-11-07 Wind power hydraulic rotary body

Country Status (1)

Country Link
JP (1) JPS63120869A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099987B2 (en) 2003-01-21 2006-08-29 Curitel Communications, Inc. Mobile terminal having a switching function
CN102943741A (en) * 2011-08-14 2013-02-27 北京银万特科技有限公司 Anti-reverse vertical axis fluid energy device with lateral-torque vanes
CN102943742A (en) * 2011-08-14 2013-02-27 北京银万特科技有限公司 Lateral torque blade perpendicular shaft fluid energy cushioning device
CN102996332A (en) * 2011-08-14 2013-03-27 北京银万特科技有限公司 Offset variable-angle vertical axis wind energy device
CN103016263A (en) * 2011-08-14 2013-04-03 北京银万特科技有限公司 Bilateral moment blade vertical axial fluid energy device
JP5347048B1 (en) * 2012-06-19 2013-11-20 親男 橋本 Power generation equipment using water energy
CN104454324A (en) * 2014-11-18 2015-03-25 重庆理工大学 Vertical axis automatic Kaplan type wave energy collector and collection method
US10309368B2 (en) 2013-10-22 2019-06-04 Chikao Hashimoto Power generation apparatus utilizing water current energy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099987B2 (en) 2003-01-21 2006-08-29 Curitel Communications, Inc. Mobile terminal having a switching function
CN102943741A (en) * 2011-08-14 2013-02-27 北京银万特科技有限公司 Anti-reverse vertical axis fluid energy device with lateral-torque vanes
CN102943742A (en) * 2011-08-14 2013-02-27 北京银万特科技有限公司 Lateral torque blade perpendicular shaft fluid energy cushioning device
CN102996332A (en) * 2011-08-14 2013-03-27 北京银万特科技有限公司 Offset variable-angle vertical axis wind energy device
CN103016263A (en) * 2011-08-14 2013-04-03 北京银万特科技有限公司 Bilateral moment blade vertical axial fluid energy device
JP5347048B1 (en) * 2012-06-19 2013-11-20 親男 橋本 Power generation equipment using water energy
US10309368B2 (en) 2013-10-22 2019-06-04 Chikao Hashimoto Power generation apparatus utilizing water current energy
CN104454324A (en) * 2014-11-18 2015-03-25 重庆理工大学 Vertical axis automatic Kaplan type wave energy collector and collection method
CN104454324B (en) * 2014-11-18 2016-08-17 重庆理工大学 Vertical axis automatic Kaplan type wave energy collection device and acquisition method

Similar Documents

Publication Publication Date Title
JP3080992B2 (en) Multi-unit rotating blade system integrated wind turbine
KR20110057301A (en) Tilting blade for vertical wind power generation
US20020015639A1 (en) Horizontal axis wind turbine
CN103899489A (en) Vertical axis wind and tide complementation generator
JP5807963B2 (en) Windmill equipment
JPS63120869A (en) Wind power hydraulic rotary body
KR101837943B1 (en) Turbine apparatus for generator
JP4625259B2 (en) Vertical axis windmill
CN108612623A (en) A kind of floating type offshore vertical axis wind powered generator system of blade
JP4080176B2 (en) Wind power generator
JPS63120868A (en) Wind power hydraulic rotary body
CN204226104U (en) Small-sized hybrid vertical axis wind energy collecting device
KR20110005920A (en) Wind power apparatus
KR20120115196A (en) Wind power generator with vertical rotor
KR101034924B1 (en) Rotation apparatus for wind power generator having inclined two rotation axes
US4125343A (en) Planetary blade turbine
JPH06159223A (en) Windmill device and vertical shaft windmill used for windmill device
GB2386160A (en) Variable geometry magnus effect turbine
CN216665808U (en) Rotating device for synchronously adjusting blade angle
CN221032940U (en) Three-unit combined power generation device of vertical axis wind turbine
CN219317088U (en) Foldable blade device applied to vertical axis tidal current energy water turbine
CN218760222U (en) Lift-drag type tetrahedral wind turbine
CN213450668U (en) Wind driven generator blade capable of improving wind energy utilization rate
CN215830631U (en) Special firm type frock of wind power generation wheel hub
CN109488522B (en) Lift-drag composite vertical axis wind turbine