JPS63119988A - Electric resistance welding method for galvanized steel sheet - Google Patents

Electric resistance welding method for galvanized steel sheet

Info

Publication number
JPS63119988A
JPS63119988A JP61265810A JP26581086A JPS63119988A JP S63119988 A JPS63119988 A JP S63119988A JP 61265810 A JP61265810 A JP 61265810A JP 26581086 A JP26581086 A JP 26581086A JP S63119988 A JPS63119988 A JP S63119988A
Authority
JP
Japan
Prior art keywords
resistance
welding
steel sheets
galvanized steel
nugget
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61265810A
Other languages
Japanese (ja)
Other versions
JPH0651233B2 (en
Inventor
Sunao Sofue
祖父江 直
Touichi Watanabe
渡辺 統市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP61265810A priority Critical patent/JPH0651233B2/en
Priority to US07/117,913 priority patent/US4922075A/en
Priority to EP87116345A priority patent/EP0266777B1/en
Priority to DE3751825T priority patent/DE3751825T2/en
Priority to KR1019870012569A priority patent/KR900008576B1/en
Publication of JPS63119988A publication Critical patent/JPS63119988A/en
Priority to US07/429,644 priority patent/US5075531A/en
Publication of JPH0651233B2 publication Critical patent/JPH0651233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/34Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/226Non-corrosive coatings; Primers applied before welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Resistance Welding (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Arc Welding In General (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve the corrosion resistance and welding efficiency of steel sheet by sprinkling and spreading or sticking the increasing agent of electric resistance between steel sheets on the joint of the steel sheets in advance and then, performing the electric resistance welding. CONSTITUTION:The resistance increasing agent 4 made of alumina powder, etc., is interposed between the two steel sheets 7 to which galvanized layers 2 are formed on both surfaces of base metals 3 to form a gap 5 on the mating face of the steel sheets 7. When electrodes 1 are pressed against the steel sheets 7 to perform the electric welding, the electric resistance is high on the mating face, so the temp. of the part become higher preferentially than other parts. At this time, the galvanized layers 2 are first molten and then, the base metals 3 are molten thinly to form a nugget. Since the welding is finished with little current or in a short period of time, the welding efficiency is improved by this method. Further, since the dissipating quantity of zinc of the galvanized layers 2 is reduced, the corrosion resistance of the steel sheets of a welded zone is improved.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は抵抗溶接に関するものであり、特に亜鉛めっき
鋼板の抵抗溶接性の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to resistance welding, and particularly to improving the resistance weldability of galvanized steel sheets.

(従来の技術) 鋼板の少なくとも一面に亜鉛を主体とするめっきが施さ
れた亜鉛めっき鋼板は、自動車や洗濯機のボディ用材料
等として広く使用されている。この亜鉛めっき鋼板はス
ポット溶接、プロジェクション溶接、シーム溶接等の電
気抵抗溶接によって接合されるのが普通であるが、めっ
き層を有しない通常の鋼板に比較して亜鉛めっき鋼板は
抵抗溶接性が劣る。これは、亜鉛の電気抵抗が比較的小
さく、しかも柔らかくて、互いに接合されるべき亜鉛め
っき鋼板同士が押しつけられたときのなじみ性が良いた
め、合わせ面の接触電気抵抗が小さくなって十分な発熱
が得られないからである。そのため、例えば亜鉛めっき
鋼板のスポット溶接では通常の鋼板に比較して溶接電流
が25〜50%、溶接時間が50〜100%それぞれ大
きく設定されるのが普通であり、従って消費電力が大き
くなる。しかも溶接により形成されるナゲツトの大きさ
が一定せず、溶接強度が不安定となるとともに、電極と
鋼板との接触面における発熱が多(なって電極の損耗が
激しく、また電極に付着した亜鉛を除く作業を頻繁に行
わなければならず、生産性が悪くコストが増大すること
を避は得ない。
(Prior Art) Galvanized steel sheets, in which at least one surface of a steel sheet is plated mainly with zinc, are widely used as materials for the bodies of automobiles and washing machines. These galvanized steel sheets are usually joined by electric resistance welding such as spot welding, projection welding, and seam welding, but galvanized steel sheets have inferior resistance welding properties compared to ordinary steel sheets that do not have a plating layer. . This is because zinc has a relatively low electrical resistance and is soft, so it fits well when the galvanized steel sheets to be joined are pressed together, so the contact electrical resistance of the mating surfaces is small and sufficient heat is generated. This is because it cannot be obtained. Therefore, for example, when spot welding galvanized steel sheets, the welding current and welding time are usually set 25 to 50% larger and the welding time 50 to 100% larger than those for normal steel sheets, resulting in large power consumption. Moreover, the size of the nugget formed by welding is not constant, making the welding strength unstable, and the contact surface between the electrode and the steel plate generates a lot of heat (which causes severe wear and tear on the electrode, and the zinc adhering to the electrode This will inevitably lead to poor productivity and increased costs.

亜鉛めっき鋼板の耐蝕性は主として亜鉛の犠牲腐食作用
によるものであるため、耐蝕性を高める上ではめっき層
を厚くすることが望ましいのであるが、この場合には、
上記の傾向が助長されて一層抵抗溶接性が悪くなる。
Since the corrosion resistance of galvanized steel sheets is mainly due to the sacrificial corrosion effect of zinc, it is desirable to increase the thickness of the plating layer in order to increase the corrosion resistance.
The above tendency is exacerbated and the resistance weldability becomes even worse.

そのため、自動車ボディ用材料について言えば、路面に
融雪剤が撒かれる北米や北欧向けを除いては、耐蝕性を
犠牲にしてでも亜鉛の付着量が少ない電気亜鉛めっき鋼
板等が多く用いられているのが実情であり、また、比較
的薄いめっき層で良好な耐蝕性が得られるように改善さ
れた、合金化亜鉛めっき鋼板、亜鉛系合金めっき鋼板、
多層亜鉛めっき鋼板等が使用されている。
For this reason, when it comes to materials for automobile bodies, electrogalvanized steel sheets, etc., which have a small amount of zinc deposited even at the expense of corrosion resistance, are often used, except in North America and Northern Europe, where snow melting agents are sprinkled on the road surface. In addition, alloyed galvanized steel sheets, zinc-based alloy coated steel sheets, which have been improved so that good corrosion resistance can be obtained with relatively thin plating layers.
Multilayer galvanized steel sheets are used.

(発明が解決しようとする問題点) 上記のように、めっき層が比較的薄い亜鉛めっき鋼板は
一般に抵抗溶接性が優れているのであるが、めっき層を
有しない裸鋼板に比較すれば未だ悪く、改善が望まれて
いるのが現状であり、特に優れた耐蝕性を要求される北
米や北欧向けの自動車のボディ用鋼板において耐蝕性に
優れた亜鉛の付着量の多い亜鉛めっき鋼板の抵抗溶接性
の改善が強く求められている。本発明は、この亜鉛めっ
き鋼板の抵抗溶接性を改善するために為されたものであ
る。
(Problems to be Solved by the Invention) As mentioned above, galvanized steel sheets with relatively thin plating layers generally have excellent resistance weldability, but they are still poor when compared to bare steel sheets without a plating layer. The current situation is that improvements are desired, especially resistance welding of galvanized steel sheets with a large amount of zinc coating, which has excellent corrosion resistance and is used in automobile body steel sheets for North America and Northern Europe, which require excellent corrosion resistance. There is a strong need for sexual improvement. The present invention was made to improve the resistance weldability of this galvanized steel sheet.

発明の構成 (問題点を解決するための手段) 本発明は鋼板の少なくとも一面に亜鉛を主体とするめっ
き層が形成された亜鉛めっき鋼板において、亜鉛層を板
間にして電気抵抗溶接を行う場合、板間に間隙を確保し
板間抵抗を増大するための物質あるいは電気の不良導体
物質をあらかじめ板間の接合部位に数件、塗布あるいは
貼付などして行う抵抗溶接法である。
Structure of the Invention (Means for Solving Problems) The present invention relates to a galvanized steel sheet in which a plating layer mainly composed of zinc is formed on at least one surface of the steel sheet, and when electric resistance welding is performed with the zinc layer between the sheets. This is a resistance welding method in which a substance to secure a gap between the plates and increase the resistance between the plates, or a poor electrical conductor substance, is applied or pasted to the joining area between the plates in advance.

板間にあって隙間を確保し板間抵抗を増大するための物
質すなわち抵抗増大剤としては、それ自体が電気の不良
導体であるものが望ましく、例えばセラミックス粉末等
は好適である。しかしながら電気の良導体を用いる場合
もよく隙間を確保して板間抵抗の増大を計ることは可能
であるので電気の良導体についても、これを除外するも
のではない。
The substance that is present between the plates to ensure a gap and increase the resistance between the plates, that is, the resistance increaser, is preferably a substance that itself is a poor conductor of electricity, and for example, ceramic powder or the like is suitable. However, even when using a good electrical conductor, it is possible to increase the resistance between the plates by ensuring a gap, so this is not excluded even when using a good electrical conductor.

本発明は、全ての亜鉛めっき鋼板に通用することが可能
である。すなわち、通常の両面あるいは片面亜鉛めっき
鋼板はもとより、亜鉛めっき層をFe−Zn合金化処理
して塗料との密着性、抵抗溶接性を改善した合金化亜鉛
めっき鋼板、亜鉛めっき鋼板の耐蝕性向上を目的として
合金元素を添加したZn−Ni、Zn−Co−Cr、Z
n−A1−3n系等の合金めっき鋼板、耐蝕性の向上の
みならず、溶接性やプレス成形性などを改善したZ n
 / M n系、Z n / N i系などの多層亜鉛
めっき鋼板等に本発明を適用することが可能なのである
The present invention can be applied to all galvanized steel sheets. In other words, not only normal double-sided or single-sided galvanized steel sheets, but also alloyed galvanized steel sheets in which the galvanized layer is treated with Fe-Zn alloying to improve adhesion to paint and resistance weldability, and improved corrosion resistance of galvanized steel sheets. Zn-Ni, Zn-Co-Cr, Z
Alloy plated steel sheets such as n-A1-3n series, Z n which not only has improved corrosion resistance but also has improved weldability and press formability.
The present invention can be applied to multilayer galvanized steel sheets such as Zn/Mn series and Zn/Ni series.

発明の効果 本発明に係る抵抗溶接法は互いに接合すべき2枚の亜鉛
めっき鋼板の合わせ面に抵抗増大剤を介在して行うもの
であり、これによって接合部位の電気抵抗が増大するた
め、低電流及び短い時間で溶接することができる。従っ
て電極と鋼板との接触面における温度上昇が少なく、電
極の消耗が低減して安定した溶接作業を行うことが可能
となる。
Effects of the Invention The resistance welding method according to the present invention is performed by interposing a resistance increaser on the mating surfaces of two galvanized steel plates to be joined to each other. Can be welded with current and short time. Therefore, there is little temperature rise at the contact surface between the electrode and the steel plate, and wear and tear on the electrode is reduced, making it possible to perform stable welding work.

同じ理由でスポット溶接部表面に生ずる圧痕部における
亜鉛層の消失が少なく、防錆性能の低下を回避し得る。
For the same reason, there is less loss of the zinc layer in the indented part that occurs on the surface of the spot weld, and a decrease in rust prevention performance can be avoided.

また、発熱は接合すべき2枚の合わせ面の限られた部分
に集中して起こるためナゲツト厚さが小さくなり、溶接
に伴うへこみや変形の発生が少なくなり、母材の熱影響
部も小さくなるため、溶接部の強度が大きくなる。同じ
理由で合わせ面以外の部位にナゲツトが形成され難くな
る。比較的薄い板と厚い板とをスポット溶接する場合に
は、厚い板の厚さ方向の中間部にナゲツトが形成され、
目的とする合わせ面に形成されないことがあるのである
が、抵抗増大剤によって合わせ面の電気抵抗が増大する
結果、このような事態の発生を良好に回避し得ることに
なるのである。
In addition, since heat generation is concentrated in a limited area of the mating surfaces of the two sheets to be joined, the nugget thickness is reduced, fewer dents and deformations occur during welding, and the heat-affected zone of the base metal is also smaller. Therefore, the strength of the welded part increases. For the same reason, nuggets are less likely to be formed in areas other than the mating surfaces. When spot welding a relatively thin plate and a thick plate, a nugget is formed in the middle part of the thick plate in the thickness direction.
Although there are cases where the intended mating surfaces are not formed, the resistance increaser increases the electrical resistance of the mating surfaces, so that such a situation can be effectively avoided.

前記電流の低減によって消費電力が少なくて済む効果が
得られることは勿論であるが、溶接時間も短縮されて溶
接作業の効率が向上し、さらに散りや爆飛の発生を回避
しつつ適正なナゲツトを形成し得る適正電流値範囲が広
くなり溶接条件の管理が容易となって、不良発生率が低
下する効果も得られる。
The reduction in current not only reduces power consumption, but also shortens welding time, improves welding efficiency, and allows for proper nuggets while avoiding splinters and explosions. The range of appropriate current values that can form a wide welding condition makes it easier to manage welding conditions, resulting in a lower failure rate.

(実施例■) 板jE0.8+uの軟鋼板の両面にドブ演法によってそ
れぞれ1d当り60gの亜鉛めっき層が形成された溶融
亜鉛めっき鋼板2枚を重ねてスポット溶接を行う場合、
合わせ面のナゲツトが形成されるべき部位に平均粒径3
00j1mのアルミナ(A lz Os )粉末6個を
ほぼ均等に散布し、下記の条件でスポット溶接試験を行
った。
(Example ■) When spot welding is carried out by stacking two hot-dip galvanized steel plates in which a galvanized layer of 60 g per d is formed on both sides of a mild steel plate of plate jE0.8+u by the Dobb method,
The average grain size is 3 in the area where nuggets are to be formed on the mating surfaces.
Six pieces of alumina (AlzOs) powder of 0.0jlm were spread almost evenly and a spot welding test was conducted under the following conditions.

使用電極直径 :16mm(先端直径61−)加圧力 
: 220Kg 溶接電流設定値:  11.OKA 実験は、アルミナ粉末を用いた場合(試料No。
Electrode diameter used: 16mm (tip diameter 61-) Pressure force
: 220Kg Welding current setting value: 11. The OKA experiment was conducted using alumina powder (sample no.

1.2)と、用いない場合(試料No、  3.4.5
.6.7)について行った。実験結果を第1図に、実験
条件は表1に示す。
1.2) and when not used (sample No. 3.4.5
.. 6.7). The experimental results are shown in FIG. 1, and the experimental conditions are shown in Table 1.

$−116fffit澄値 11にへ 第1図において横軸は、通電時間を溶接電流のサイクル
数で表したものであり、縦軸は上段においては溶接中に
おける電極間の電気抵抗値を、下段においては得られた
ナゲツト(融合部)の直径を示した。
In Figure 1, the horizontal axis represents the energization time in terms of the number of cycles of welding current, and the vertical axis represents the electrical resistance between the electrodes during welding in the upper row, and the electric resistance value between the electrodes during welding in the lower row. indicates the diameter of the obtained nugget (fusion part).

通電はアルミナを用いた場合は、適正なナゲツトの得ら
れる3サイクルまで行い、アルミナを用いない場合は、
適正なナゲツトの得られるまで延長して行った。本実験
ではアルミナを用いない場合、通電時間が5〜6サイク
ルで適正なナゲツトが得られたが、7サイクル目には敗
りが発生しナゲツトは不良となった。
If alumina is used, energization is carried out for three cycles until a suitable nugget is obtained; if alumina is not used,
The test was extended until a suitable nugget was obtained. In this experiment, when alumina was not used, proper nuggets were obtained after 5 to 6 cycles of current application, but failure occurred in the 7th cycle and the nuggets were defective.

なお、動抵抗値については、アルミナを用いた場合は各
試料について3サイクルまでの変化を、アルミナを用い
ない場合は6サイクルまで通電した試料No、  6に
ついてのみ図中に示した。試料隘3.4.5.7、の動
抵抗曲線はNo、  6のそれと類似した傾向を示した
ので記入を省略した。
Regarding the dynamic resistance value, the figure shows only the change in the dynamic resistance value for each sample up to 3 cycles when alumina was used, and only for sample No. 6, which was energized up to 6 cycles when no alumina was used. The dynamic resistance curves of sample No. 3.4.5.7 showed similar trends to those of No. 6, so they were omitted.

なお、溶接中の電流値は、特に溶接の初期において、設
定電流値と若干異なり、また個々の試料間においても差
がみられたので、設定電流値と共に各サイクル毎の電流
値をすべての試料について示した。
The current value during welding was slightly different from the set current value, especially at the beginning of welding, and there were also differences between individual samples, so the current value for each cycle was calculated for all samples together with the set current value. The following was shown.

第1図の上段から明らかなように、個々の試料間にはい
くらかの変動がみられるものの、アルミナを用いた場合
は、アルミナを用いない通常の亜鉛めっき鋼板の場合に
比べて、溶接初期の動抵抗値が高く、下段に示されるよ
うにナゲツトは短い通電時間に形成される。すなわち、
通常の亜鉛めっき鋼板では、直径3.5龍のナゲツトを
得るためには5サイクルの、また4、01■のナゲツト
を得るためには6サイクルの通電を必要とするが、アル
ミナを用いた場合、試料No、  1では3サイクルの
通電で直径4.5鶴のナゲツトを、試料No。
As is clear from the top row of Figure 1, although there is some variation between individual samples, when alumina is used, the initial welding time is significantly lower than when using normal galvanized steel sheets without alumina. The dynamic resistance value is high, and as shown in the lower row, nuggets are formed in a short current application time. That is,
With a normal galvanized steel plate, it takes 5 cycles to obtain a nugget with a diameter of 3.5 mm, and 6 cycles to obtain a nugget with a diameter of 4.0 mm, but when alumina is used, In sample No. 1, a nugget with a diameter of 4.5 cranes was produced by 3 cycles of energization.

2では同じ(3サイクルの通電で4.1龍のナゲツトが
形成された。電流値がアルミナを用いる場合も用いない
場合も、はぼ同じであるにかかわらず、溶接時間は約半
分で済むのである。また、アルミナを用いない場合適正
なナゲツト(本実験の場合、直径3.51■以上とした
)が形成されてから散りが起こりナゲツトが不良となる
までに約2サイクルの余裕しかないが、アルミナを用い
ると約4サイクルの余裕があり、本発明によるスポット
溶接法では適正通電時間ないしは、電流範囲が通常の場
合に比べて広い。
The same is true for 2 (a 4.1 dragon nugget was formed with 3 cycles of energization. Even though the current value is approximately the same whether or not alumina is used, the welding time is approximately half that). In addition, when alumina is not used, there is only a margin of about two cycles from the time a proper nugget (in the case of this experiment, the diameter was 3.51 mm or more) is formed until the nugget becomes defective due to expulsion. When alumina is used, there is a margin of about 4 cycles, and in the spot welding method of the present invention, the appropriate current application time or current range is wider than in normal cases.

第1図にみられる本発明の効果は、次の理由によると考
えられる。第2図に示すように、母材3の表裏両面に亜
鉛めっき層2を施したスポット溶接し、ようとする2枚
の鋼板7の間にアルミナ粉末製の抵抗増大剤4が介在さ
れるので、両鋼板7の合わせ面に隙間5が形成される。
The effects of the present invention shown in FIG. 1 are believed to be due to the following reasons. As shown in FIG. 2, a resistance increaser 4 made of alumina powder is interposed between two steel plates 7 to be spot welded with a galvanized layer 2 on both the front and back sides of a base metal 3. , a gap 5 is formed between the mating surfaces of both steel plates 7.

この隙間5のために電極lを鋼板に押圧して溶接する際
、合わせ面での電気抵抗が高くなり、合わせ面での発熱
が激しく起こり、この部分の温度が他に優先して高くな
る。
Because of this gap 5, when the electrode 1 is pressed against the steel plate and welded, the electrical resistance at the mating surfaces becomes high, heat generation occurs intensely at the mating surfaces, and the temperature of this part becomes higher than other parts.

温度が最も高い合わせ面上の、ナゲツトが形成されるべ
き部位では亜鉛めっき層2がまず溶融し、ついで気化し
膨張して外部に排除されるとともに母材3は合わせ面に
沿って薄(溶融し、従って薄いナゲツトが形成される。
The galvanized layer 2 first melts at the part where the nugget is to be formed on the mating surfaces where the temperature is highest, then vaporizes, expands, and is expelled to the outside, and the base material 3 is thinly (melted) along the mating surfaces. Therefore, thin nuggets are formed.

ナゲツトの形成が進むにつれて抵抗値は下がる。As nugget formation progresses, the resistance value decreases.

これに対し、アルミナを用いない場合では2枚の亜鉛め
っき鋼板を重ねた時の板間抵抗は亜鉛同士のなじみが良
いため低い。従って通電初期は発熱量が少なく、ナゲツ
トは形成されない。通電時間が長くなると、母材全体に
よる、いわゆる体積抵抗によって母材の広い範囲にわた
って温度が上昇する。母材の温度が高くなれば、母材の
抵抗値も高くなり、これによる発熱量の増大も加わって
、遂には母材の一部が溶融しナゲツトが形成される。
On the other hand, in the case where alumina is not used, the inter-plate resistance when two galvanized steel plates are stacked is low because the zinc has good compatibility with each other. Therefore, at the initial stage of energization, the amount of heat generated is small and no nuggets are formed. As the current application time increases, the temperature increases over a wide range of the base material due to the so-called volume resistance of the entire base material. As the temperature of the base material increases, the resistance value of the base material also increases, and this increases the amount of heat generated, eventually causing a portion of the base material to melt and form a nugget.

ここで、ナゲツトが形成される時、母材はその広い範囲
にわたって高温となっているため、わずかの電流値の変
動によっても散りが起こり易い状態にあり、また形成さ
れるナゲツトが厚い。第8図及び第9図は、アルミナを
用いた試料No、  1と、用いないNo、  5のナ
ゲツトを比較して示す写真である。ナゲツト径は試料N
o、  1がやや大きいにもかかわらずナゲツトの厚さ
は著しく小さい。ナゲツトが小さいことは、それだけ接
合のためのエネルギーが少なくてよいことを示し、また
加熱範囲が狭いことは、溶接中の変形、残留応力、母材
の変質部が小さくなり、望ましい溶接部といえる。
Here, when the nuggets are formed, the base material is at a high temperature over a wide range, so it is in a state where it is easy to scatter even with a slight change in the current value, and the nuggets that are formed are thick. FIGS. 8 and 9 are photographs showing a comparison of sample No. 1 using alumina and No. 5 nugget not using alumina. Nugget diameter is sample N
Even though o and 1 are somewhat large, the thickness of the nugget is extremely small. A smaller nugget means less energy is required for joining, and a narrower heating range reduces deformation, residual stress, and altered parts of the base metal during welding, making it a desirable weld. .

なお、用いたアルミナはナゲツト中に残留することが考
えられる。しかしながらアルミナの粒径は小さく、かつ
量的に少ないので問題はない。
Note that the alumina used may remain in the nugget. However, since the particle size of alumina is small and the amount is small, there is no problem.

一方、電極1とめっき鋼板7の接触面での電気抵抗及び
熱伝導度は通常のスポット溶接方法による場合と、本発
明による板間に抵抗増大剤4を介在して行う場合とで変
わりはないのであるが、後者においては少ない電流で、
あるいは間じ電流であれば短い時間に溶接が完了するの
で、結果として電極lと接触するめっき層2の温度は通
常の方法に比べて低くなる。第2図に破線で示す抵抗増
大剤4を用いた場合の板間における温度分布は、実線で
示す用いない場合のそれよりも高いが、前述したように
溶接時間が短い本発明は、全体としてめっき層2の温度
が低くなる。従って電極1と接触した部分での亜鉛めっ
き鋼板7の亜鉛消失量が少なく耐蝕性が向上するうえ、
電極の消耗が低減する。
On the other hand, the electrical resistance and thermal conductivity at the contact surface between the electrode 1 and the plated steel plate 7 are the same when using the normal spot welding method and when using the resistance increaser 4 interposed between the plates according to the present invention. However, in the latter case, with a small current,
Alternatively, if the current is constant, welding will be completed in a short time, and as a result, the temperature of the plating layer 2 in contact with the electrode 1 will be lower than in the normal method. The temperature distribution between the plates when the resistance increaser 4 is used, as shown by the broken line in FIG. 2, is higher than that when it is not used, as shown by the solid line. The temperature of the plating layer 2 becomes lower. Therefore, the amount of zinc lost from the galvanized steel sheet 7 in the area in contact with the electrode 1 is reduced, and the corrosion resistance is improved.
Reduces electrode wear.

(実施例■) 亜鉛めっき鋼板のスポット溶接においてその板間抵抗増
大の目的でメンディングテープを用いて行った実験結果
を第3図に実験条件は表2に示した。
(Example ■) The results of an experiment conducted using mending tape for the purpose of increasing the inter-plate resistance in spot welding of galvanized steel sheets are shown in FIG. 3, and the experimental conditions are shown in Table 2.

表−2設定電流値 10.5KA 実験で用いた亜鉛めっき鋼板、電極、加圧力は実施例■
で述べたものと同じである。設定電流値は10.5KA
である。第4.5図に示すようにスポット溶接しようと
する亜鉛めっき鋼板7の1枚に対し、メンディングテー
プ6を貼付し、この面を合わせ面としてスポット溶接を
行った。溶接しようとする2枚の鋼板間では、テープが
411I×4貫1角に切り抜かれた処で最大0.1mm
の隙間が保たれている(テープの厚さは0.1mm)。
Table-2 Setting current value 10.5KA The galvanized steel plate, electrode, and pressing force used in the experiment are as follows.
This is the same as described above. Setting current value is 10.5KA
It is. As shown in Fig. 4.5, mending tape 6 was applied to one of the galvanized steel plates 7 to be spot welded, and spot welding was performed using this surface as the mating surface. Between two steel plates to be welded, the tape should be 0.1mm maximum at the 411I x 4 piece cut out corner.
(The thickness of the tape is 0.1 mm).

電極1のセンターが切り抜かれた部分のセンターに合致
するように試料を位置してスポット溶接を行った。試験
はテープ6を鋼板7に貼付した場合(試料No、  8
.9)とテープ6を用いない普通の場合(試料No、1
0.11.12.13.14)について行った。
The sample was positioned so that the center of the electrode 1 coincided with the center of the cutout, and spot welding was performed. The test was conducted when tape 6 was attached to steel plate 7 (sample No. 8
.. 9) and the normal case without using tape 6 (sample No. 1)
0.11.12.13.14).

電極間動抵抗については、テープを用いた場合はすべて
の試料について、用いない場合は代表例として試料No
、10についてのみ記入した。
Regarding the interelectrode dynamic resistance, if tape is used, all samples are tested, and if tape is not used, sample No.
, 10 only.

実験結果は、アルミナを用いた実施例■の場合と同様の
傾向であった。すなわちテープを用いて板間の抵抗を増
大した場合は、溶接初期の動抵抗が高く、通電時間3サ
イクルで3.5Hのナゲツト径のスポット溶接が得られ
た。一方テープを用いない場合は、通電時間が3あるい
は4サイクルでは形成されず、5サイクルでは2つの試
料のうち1つは3 mmのナゲツト径のものが得られた
が、他の1つはナゲツトが形成されなかった。なお、テ
ープを用いた試料No、  8の3サイクル通電によっ
て形成されたナゲツトを第10図に写真で示す。
The experimental results showed the same tendency as in Example ① using alumina. That is, when the resistance between the plates was increased using tape, the dynamic resistance at the initial stage of welding was high, and spot welding with a nugget diameter of 3.5H was obtained in 3 cycles of current application. On the other hand, when the tape was not used, no nugget was formed after 3 or 4 cycles of current application, and at 5 cycles, one of the two samples had a nugget diameter of 3 mm, but the other one had a nugget diameter. was not formed. Incidentally, a nugget formed by 3-cycle energization of sample No. 8 using a tape is shown as a photograph in FIG.

アルミナを用いた場合と同様にナゲツトの厚さは著しく
小さい。
As with alumina, the nugget thickness is significantly smaller.

(実施例■) 抵抗増大剤として市販の食塩粒を用いて行った実験結果
を第6図に、実験条件を表3に示す。
(Example ■) The results of an experiment conducted using commercially available salt grains as a resistance increaser are shown in FIG. 6, and the experimental conditions are shown in Table 3.

表−3設定電流値 12KA 用いた亜鉛めっき鋼板、電橋、加圧力は実施例Iで述べ
た通りである。設定電流値は12.OKAである。
Table 3 Setting current value 12KA The galvanized steel plate, electric bridge, and pressing force used were as described in Example I. The set current value is 12. It's OK.

平均直径約250μmの食塩粒6個を板間の接合部つま
りナゲツトの形成される部位にほぼ均等に配置してスポ
ット溶接を行った(試料No、15.16)。なお、こ
の実験では、亜鉛めっき鋼板の接合部に食塩を配置した
のち、スプレーのりにて食塩を亜鉛めっき鋼板に固着し
たものについてもスポット溶接実験を行った(試料No
、17)。
Spot welding was performed by placing six salt grains having an average diameter of about 250 μm approximately evenly at the joint between the plates, that is, at the area where the nugget was to be formed (sample No. 15.16). In addition, in this experiment, spot welding experiments were also carried out on the joints of galvanized steel plates after placing salt on them, and then fixing the salt to the galvanized steel plates with spray glue (sample No.
, 17).

一方、食塩を用いない場合については、実施例■、■の
場合と同様の試験を行った(試料No。
On the other hand, in the case where no salt was used, the same test as in Examples ① and ② was conducted (Sample No.

18.19.20)。18.19.20).

板間抵抗増大の目的で食塩を用いた場合も、実施例I、
■でみられたと同様の効果がみられる。
Even when salt is used for the purpose of increasing interplate resistance, Example I,
The same effect as seen in ■ is seen.

すなわち、初期動抵抗値が高く、3サイクルの通電で直
径4 mmのナゲツトが得られた。また、スプレーのり
を使って食塩を鋼板に固着して行った場合も、のりを用
いず食塩を単独に用いた場合と同様の効果がみられ、3
サイクルの通電で3.5Rのナゲツト径が得られた。こ
の結果は、粉末材料を散布して行う場合、例えば、接合
面が水平でなく傾いている場合、あるいは、風が吹いて
いるような場合でも、のりを用いて抵抗増大剤を鋼板に
固着して行うことにより、本発明は同等支承なく適用で
きるものであることを示している。第1O図は食塩を用
いた試料No、  8のナゲツトの写真を示した。この
場合もナゲツトは薄い、なお、食塩は腐蝕性物質である
が、溶接中にほとんど蒸発し、またナゲツト周辺に残っ
たとしても洗い流す等して悪影響は少ないと思われる。
That is, the initial dynamic resistance value was high, and a nugget with a diameter of 4 mm was obtained after 3 cycles of energization. Also, when the salt was fixed to the steel plate using spray glue, the same effect was observed as when using salt alone without using glue, and 3
A nugget diameter of 3.5R was obtained by energizing the cycle. This result shows that the resistance increaser can be fixed to the steel plate using glue even when the powder material is spread, for example when the joint surface is not horizontal but tilted, or when the wind is blowing. This shows that the present invention can be applied without equivalence. Figure 10 shows a photograph of sample No. 8 nuggets using common salt. In this case as well, the nugget is thin.Although common salt is a corrosive substance, most of it evaporates during welding, and even if it remains around the nugget, it is thought to have little negative impact as it can be washed away.

一方、食塩を用いない場合は、3サイクルの通電ではナ
ゲツトは形成されず、4サイクル目に直径1鰭の小さな
ナゲツトが形成されたが、5サイクル目には散りが起こ
った。現場作業では、種々の理由から設定電流値は若干
高めに設定される場合が多いが、このような設定電流値
の高い場合、抵抗増大剤を用いない普通の溶接方法では
適正通電時間範囲が狭いため、適正なナゲツトが得られ
にくいことを示している。
On the other hand, when no salt was used, no nuggets were formed after three cycles of energization, and small nuggets with a diameter of one fin were formed in the fourth cycle, but dispersal occurred in the fifth cycle. In field work, the set current value is often set slightly high for various reasons, but when the set current value is high, the appropriate energization time range is narrow with normal welding methods that do not use resistance increasers. This indicates that it is difficult to obtain an appropriate nugget.

(実施例■) 板間の接合部位にあらかじめ約15μの塗膜(通常のペ
イント)を塗布して行った実験結果を第7図、実験条件
を表4に示す。
(Example ■) The experimental results were shown in FIG. 7, and the experimental conditions are shown in Table 4, in which a coating film (ordinary paint) of about 15 μm was applied in advance to the joining area between the plates.

表−4設定電流値 11KA 用いた亜鉛めっき鋼板、電極、加圧力は実施例■で述べ
た通りである。設定電流値は11.OKAである。
Table 4 Setting current value 11 KA The galvanized steel plate, electrode, and pressing force used were as described in Example ①. The set current value is 11. It's OK.

板間にペイントを塗布した場合も3サイクルの通電によ
って約3.80のナゲツトが形成された。
Even when paint was applied between the plates, about 3.80 nuggets were formed after three cycles of energization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例■の実験結果を、第2図は実施例■の接
合部の概念図を、第3図は実施例Hの実験結果を、第4
図は実施例■の接合部の概念図を、第5図は第4図の平
面図を、第6図は実施例■の実験結果を、第7図は、実
施例■の実験結果をそれぞれ図示しており、第8図は試
料No、  1の接合部断面写真を、第9図は試料No
、  5の接合部断面写真を、第10図は試料No、 
 8の接合部断面写真を、第11図は試料No、17の
接合部断面写真をそれぞれ示す。 1・・・電極     2・・・亜鉛層4・・・抵抗増
大剤  5・・・隙間 6・・・メンディングテープ 特許出願人   株式会社豊田自動織ta製作所通電時
間(−) 通電時間(〜) 01.284567 通電時間(〜) 通電時間(〜) vI面の浄書(内容に変更なし) 手続補正書く方式〉 昭和62年 2月26日 謝辞長官 黒田明雄殿 2、!銚 亜鉛めっき鋼板の1亥1駐心割刻去 3、補正をする者 事件との関係: 特許出願人 住所  愛知県刈谷市豊田町2丁目1番地氏名 321
獣蛯皿自鵠慝悄 住所 〒500  岐阜市端詰町2番装置 0582 
(65) −1810(懺)ファックス専用 0582
 (66)−1339昭和62年01月07日  (昭
和62年01月27日発送)6、補正の対象 明細書の発明の詳細な説明の欄、図面のWJRLな説明
の欄及び図面 7、補正の内容 (1)明細書第12頁第16行〜第17行に記載の「写
真である」を削除します。 (2)同第17頁第9行に記載の「写真で」を削除しま
す。 (3)同第20頁第7行に記載の「の写真」を削除しま
す。 (4)同第22頁第12行〜第15行に記載の「接合部
・・・写真を」を、次のように補正します。 「接合部路体断面を、第9図は資料随5の接合部路体断
面を、第10図は資料磁8の接合部路体断面を、第11
図は資料患17の接合部路体断面をします。
Figure 1 shows the experimental results of Example 2, Figure 2 shows a conceptual diagram of the joint part of Example 2, Figure 3 shows the experimental results of Example H, and Figure 4 shows the experimental results of Example H.
The figure shows a conceptual diagram of the joint of Example 2, Figure 5 shows the plan view of Figure 4, Figure 6 shows the experimental results of Example 2, and Figure 7 shows the experimental results of Example 2. Figure 8 is a cross-sectional photograph of the joint of sample No. 1, and Figure 9 is a photograph of the joint section of sample No. 1.
, Figure 10 shows the cross-sectional photographs of the joints of samples No. 5 and 5.
FIG. 11 shows a cross-sectional photograph of the joint of sample No. 8 and FIG. 11 shows a cross-sectional photograph of the joint of sample No. 17. 1... Electrode 2... Zinc layer 4... Resistance increaser 5... Gap 6... Mending tape Patent applicant Toyota Industries Co., Ltd. TA Seisakusho Energization time (-) Energization time (~) 01.284567 Energizing time (~) Energizing time (~) Engraving of vI side (no change in content) Procedural amendment writing method> February 26, 1988 Acknowledgment Secretary Akio Kuroda 2,! Relationship with the case of the person making the amendment: 1.1 of galvanized steel plate, 1.1, 2.1, 2.1, 2.1, Toyota-cho, Kariya City, Aichi Prefecture. Name: 321.
Address: 0582 No. 2 Hatazume-cho, Gifu City, 500 Japan
(65) -1810 (Kin) Fax only 0582
(66)-1339 January 7, 1988 (Shipped on January 27, 1988) 6. Detailed description of the invention in the specification subject to amendment, WJRL description of drawings and drawing 7, Amendment Contents (1) "It is a photograph" written in lines 16 to 17 of page 12 of the statement will be deleted. (2) ``With a photograph'' written in line 9 of page 17 will be deleted. (3) The "photo" listed in line 7 on page 20 will be deleted. (4) "Joint part...photo" written in lines 12 to 15 of page 22 will be corrected as follows. 9 shows the cross section of the joint road body in Material No. 5, FIG. 10 shows the cross section of the joint road body in Material No. 8,
The figure shows a cross-section of the joint road body of document patient 17.

Claims (1)

【特許請求の範囲】 1、鋼板の少なくとも一面に亜鉛を主体とするめっき層
が形成された亜鉛めっき鋼板において、亜鉛層を板間に
して電気抵抗溶接を行う場合、板間抵抗を増大するため
の物質をあらかじめ板間の接合部位に散布、塗布あるい
は貼付して行う亜鉛めっき鋼板の電気抵抗溶接法。 2、前記板間抵抗を増大する物質が板間に間隙を確保す
る物質である特許請求の範囲第1項記載の亜鉛めっき鋼
板の電気抵抗溶接法。
[Claims] 1. When electrical resistance welding is performed with a zinc layer between the sheets in a galvanized steel sheet in which a plating layer mainly composed of zinc is formed on at least one surface of the steel sheet, the resistance between the sheets is increased. An electric resistance welding method for galvanized steel sheets in which a substance is sprayed, applied, or pasted on the joining area between the sheets in advance. 2. The electric resistance welding method for galvanized steel sheets according to claim 1, wherein the substance that increases the inter-plate resistance is a substance that ensures a gap between the plates.
JP61265810A 1986-07-11 1986-11-07 Electric resistance welding of zinc plated steel sheet Expired - Lifetime JPH0651233B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61265810A JPH0651233B2 (en) 1986-11-07 1986-11-07 Electric resistance welding of zinc plated steel sheet
US07/117,913 US4922075A (en) 1986-07-11 1987-11-03 Electric resistance welding for zinc plated steel plate
EP87116345A EP0266777B1 (en) 1986-11-07 1987-11-05 Electric resistance welding for zinc plated steel plate
DE3751825T DE3751825T2 (en) 1986-11-07 1987-11-05 Electrical resistance welding of galvanized steel sheets
KR1019870012569A KR900008576B1 (en) 1986-07-11 1987-11-07 Electronic resistance walding for zinc plated steel plate
US07/429,644 US5075531A (en) 1986-11-07 1989-10-31 Electric resistant welding for zinc plated steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265810A JPH0651233B2 (en) 1986-11-07 1986-11-07 Electric resistance welding of zinc plated steel sheet

Publications (2)

Publication Number Publication Date
JPS63119988A true JPS63119988A (en) 1988-05-24
JPH0651233B2 JPH0651233B2 (en) 1994-07-06

Family

ID=17422364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265810A Expired - Lifetime JPH0651233B2 (en) 1986-07-11 1986-11-07 Electric resistance welding of zinc plated steel sheet

Country Status (5)

Country Link
US (2) US4922075A (en)
EP (1) EP0266777B1 (en)
JP (1) JPH0651233B2 (en)
KR (1) KR900008576B1 (en)
DE (1) DE3751825T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059954A (en) * 2014-09-19 2016-04-25 新日鐵住金株式会社 Resistance spot welding method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783794A (en) * 1993-11-15 1998-07-21 Nippon Steel Corporation Method and material for resistance welding steel-base metal sheet to aluminum-base metal sheet
JP3354321B2 (en) 1994-11-08 2002-12-09 統市 渡辺 Automatic spot welding method for galvanized steel sheet
US6234375B1 (en) 1995-06-16 2001-05-22 Dana Corporation Molecular bonding of vehicle frame components using magnetic impulse welding techniques
WO1997000595A1 (en) * 1995-06-16 1997-01-03 Dana Corporation Preparation of vehicle frame components for molecular bonding using magnetic impulse welding techniques
US6812439B1 (en) * 1995-06-16 2004-11-02 Dana Corporation Molecular bonding of vehicle frame components using magnetic impulse welding techniques
US6104012A (en) * 1995-06-16 2000-08-15 Dana Corporation Molecular bonding of vehicle frame components using magnetic impulse welding techniques
US7141754B2 (en) * 2004-02-05 2006-11-28 Edison Welding Institute, Inc. Method for repairing defects in a conductive substrate using welding
US7126076B2 (en) * 2004-02-05 2006-10-24 Edison Welding Institute, Inc. Method for repairing defects in a metallic substrate using welding
US20100243614A1 (en) * 2009-03-30 2010-09-30 United Technologies Corporation Method of repairing holes using conductive heat resistance welding
DE102009020280A1 (en) * 2009-05-07 2010-11-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Resistance pressure welding method for materially connecting sheet metal parts flatly lying on each other and compressed between electrodes during welding, comprises developing heat need for welding by electrical resistor in welding zone
JP6043379B2 (en) * 2015-02-25 2016-12-14 富士重工業株式会社 Welding auxiliary member and spot welding method using the welding auxiliary member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923091A (en) * 1972-06-28 1974-03-01
JPS4945211A (en) * 1972-07-21 1974-04-30

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2452805A (en) * 1944-10-14 1948-11-02 Presstite Engineering Company Composition of matter for sealing spot-welded joints
US2506728A (en) * 1945-03-16 1950-05-09 Carrier Corp Joint
US2726308A (en) * 1952-02-13 1955-12-06 Cinamon Lionel Welding method
US3102190A (en) * 1960-07-12 1963-08-27 Strasbourg Forges Method of welding galvanized steel
US3135854A (en) * 1962-12-28 1964-06-02 Budd Co Method for resistance welding galvanized materials
US3300854A (en) * 1964-05-14 1967-01-31 Mcdonnell Aircraft Method of making refractory metal structures with an oxidation resistant coating
CH449803A (en) * 1967-05-23 1968-01-15 Hoeffleur Albert Process for welding copper parts by resistance welding and means for carrying out the process
US4195215A (en) * 1974-09-20 1980-03-25 Clarke Robert W Weldable sealant forms
US4079163A (en) * 1974-11-29 1978-03-14 Nippon Steel Corporation Weldable coated steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923091A (en) * 1972-06-28 1974-03-01
JPS4945211A (en) * 1972-07-21 1974-04-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059954A (en) * 2014-09-19 2016-04-25 新日鐵住金株式会社 Resistance spot welding method

Also Published As

Publication number Publication date
KR880005995A (en) 1988-07-21
US4922075A (en) 1990-05-01
EP0266777B1 (en) 1996-06-05
KR900008576B1 (en) 1990-11-26
DE3751825T2 (en) 1996-11-21
DE3751825D1 (en) 1996-07-11
US5075531A (en) 1991-12-24
EP0266777A2 (en) 1988-05-11
JPH0651233B2 (en) 1994-07-06
EP0266777A3 (en) 1990-03-14

Similar Documents

Publication Publication Date Title
KR100997607B1 (en) Method for joining members of different kinds
JPS63119988A (en) Electric resistance welding method for galvanized steel sheet
US11524358B2 (en) Mechanical performance of al-steel weld joints
JPH04251676A (en) Method for resistance welding steel and aluminum material
JP2012152789A (en) Method for joining dissimilar metal plates by overlapping and electric resistance brazing, and brazing joint formed by the same
JPS6063394A (en) Galvanized steel sheet with superior weldability
JPH0655277A (en) Joining method for steel material and aluminum-base material
JPH0639558A (en) Resistance welding method of aluminum and steel
JPH02231134A (en) Resin composite type damping steel sheet
JP3139325B2 (en) Zn-Ni alloy plated steel sheet with excellent laser weldability
JP2754898B2 (en) Spot welding of Al-Fe based dissimilar metals
JPH05318140A (en) Electrode for resistance spot welding
JP4962907B2 (en) Dissimilar metal joining method and joining structure
JP3212136B2 (en) Can body having a welding can body
JP2009072812A (en) Joining method for ferrous material and aluminum material, and iron-aluminum joined member
JPH089104B2 (en) Resistance welding method for steel sheet
JPS6311698A (en) Powder-incorporated zinc plated steel sheet
WO2006105658A1 (en) Laser welding of galvanized steel
JPH089105B2 (en) Resistance welding method for steel sheet
JPH053828B2 (en)
JPH0585269B2 (en)
US3147089A (en) Alloy brazing composition and method of brazing
JPH09262694A (en) Backing method of tapered joint part in one side submerged arc welding
Gould et al. Weldability and electrode wear characteristics of hot-dip galvanized steel with and without a ferrophos containing primer
EP1507624B1 (en) Method of welding aluminium alloy strip products

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term