JPS63119802A - Polyolefin-based porous hollow yarn membrane partially imparted with hydrophilicity - Google Patents

Polyolefin-based porous hollow yarn membrane partially imparted with hydrophilicity

Info

Publication number
JPS63119802A
JPS63119802A JP26472886A JP26472886A JPS63119802A JP S63119802 A JPS63119802 A JP S63119802A JP 26472886 A JP26472886 A JP 26472886A JP 26472886 A JP26472886 A JP 26472886A JP S63119802 A JPS63119802 A JP S63119802A
Authority
JP
Japan
Prior art keywords
water
hollow fiber
membrane
porous hollow
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26472886A
Other languages
Japanese (ja)
Inventor
Hisayoshi Yamamori
山森 久嘉
Michio Inoue
井上 通生
Hisao Tanaka
久雄 田中
Kazuto Kawashima
川島 一人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP26472886A priority Critical patent/JPS63119802A/en
Publication of JPS63119802A publication Critical patent/JPS63119802A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the title membrane having excellent permeability to air bubbles and capable of easily filtering water contg. air bubbles by using polyolefin-based porous hollow yarn having a hydrophilic part and a hydrophobic part in the axial direction of the yarn and having a specified value for water flux/(air flux)<2>. CONSTITUTION:A polyethylene porous hollow yarn membrane, etc., are brought into contact with the outer peripheral part of a notched roller 5 and traveled, and a hydrophilicity imparting agent 2 difficultly soluble in water such as the melt of propylene glycol monostearate is deposited on the porous hollow yarn membrane. Since the hydrophilicity imparting agent is not deposited on the porous membrane corresponding to the notches 6 of the roller 5, a hollow yarn membrane having a hydrophobic part 11 and a hydrophilic part 12 in the axial direction of the yarn is obtained. The polyolefin-based porous hollow yarn membrane partially deposited with the hydrophilicity imparting agent has water permeability over the whole surface and air permeability while being wetted with water.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は部分親水化されたポリオレフィン系多孔質中空
糸膜に関し、詳しくはポリオレフィン系多孔質中空糸膜
の糸軸方向に対して親水性部分と疎水性部分とが共存し
ているポリオレフィン系多孔質中空糸膜に関する。この
ような中空糸膜は例えば食品工業、医療、飲料水等の各
種水処理用分離膜としての適性を有している。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a partially hydrophilized polyolefin porous hollow fiber membrane, and more specifically, the present invention relates to a partially hydrophilized polyolefin porous hollow fiber membrane. The present invention relates to a polyolefin porous hollow fiber membrane in which a hydrophobic portion and a hydrophobic portion coexist. Such hollow fiber membranes are suitable, for example, as separation membranes for various water treatments in the food industry, medicine, drinking water, and the like.

(従来の技術) ポリオレフィン系多孔質中空糸膜はセルロースアセテー
ト等地の素材からなるものに比べ耐水性、耐薬品性、耐
細菌性に優れるという特徴を有しており、さらに溶融紡
糸・延伸法により多孔質化したものは溶液紡糸法、抽出
法等地の方法による中空糸膜に比べ溶剤や抽出残等の添
加物等の不純物を含まず、強伸度特性に優れ取扱いが容
易であるという特徴を有しているため飲料水用浄水器、
病院用無菌木製造装置等各種本処理用分離膜として広く
用いられている。
(Conventional technology) Polyolefin porous hollow fiber membranes have superior water resistance, chemical resistance, and bacterial resistance compared to those made of base materials such as cellulose acetate, and they also have excellent water resistance, chemical resistance, and bacterial resistance. Compared to hollow fiber membranes made by other methods such as solution spinning and extraction, membranes made porous by this method do not contain impurities such as additives such as solvents and extraction residues, and have superior strength and elongation properties and are easier to handle. Water purifier for drinking water because it has the characteristics,
It is widely used as a separation membrane for various main treatments such as sterile wood production equipment for hospitals.

しかし、ポリオレフィン系中空糸膜は元来疎水性であり
、そのままでは通常の圧力では水を透過せしめることが
できず、水濾過に用いるには何等かの手段により親水化
する必要がある。現在量も一般的に用いられている親水
化方法はポリオレフィン系多孔質中空糸膜の微細多孔質
部にエチルアルコール等の表面張力の低い水溶性液体を
充填した後、この液体を水で置換する方法である。この
方法の場合は微細孔内部に充填された水が一旦離脱する
と、その親木性は消失してしまい、再度上記のよ、うな
親水化処理を施す必要が生じる。従って親水化処理後の
多孔質中空糸膜の取扱いが難しいという問題点があった
0本発明者等はこのような問題点を解決するものとして
特願昭59−23484号においてプロピレングリコー
ルモノステアレートのエチルアルコール溶液中にポリオ
レフィン多孔質中空糸膜を浸漬した後、エチルアルコー
ルを蒸発除去せしめ、熱処理する恒久的親木化方法を提
案した。
However, polyolefin hollow fiber membranes are originally hydrophobic and cannot allow water to pass through them as they are under normal pressure, and must be made hydrophilic by some means before being used for water filtration. The hydrophilization method that is currently commonly used is to fill the microporous part of a polyolefin porous hollow fiber membrane with a water-soluble liquid with low surface tension, such as ethyl alcohol, and then replace this liquid with water. It's a method. In the case of this method, once the water filled inside the micropores leaves, its wood-philicity disappears, and it becomes necessary to perform the hydrophilic treatment as described above again. Therefore, there was a problem that it was difficult to handle the porous hollow fiber membrane after the hydrophilic treatment.The present inventors proposed propylene glycol monostearate in Japanese Patent Application No. 59-23484 as a solution to this problem. We proposed a permanent wood parenting method in which a polyolefin porous hollow fiber membrane is immersed in an ethyl alcohol solution, the ethyl alcohol is removed by evaporation, and the membrane is heat treated.

(発明が解決しようとする問題点) この方法で処理された膜はプロピレングリコールが水に
難溶性であり、水濡れ性に優れるので恒久的に親水化さ
れ、透水性に優れるものであるが、水処理において処理
される水中に気泡が混入すると、このような膜は空気を
透過し難く、膜の上流側に気泡が溜り、気泡が溜る分だ
け水源適用の実質的な膜面積が低下するという問題が生
じる。このような現象を避けるために空気抜き機構を設
けねばならず、機構的に煩雑な対策が必要となる。
(Problems to be Solved by the Invention) The membrane treated by this method has propylene glycol that is poorly soluble in water and has excellent water wettability, so it is permanently made hydrophilic and has excellent water permeability. When air bubbles get mixed into the water being treated during water treatment, it is difficult for air to permeate through such membranes, and the air bubbles accumulate on the upstream side of the membrane, reducing the actual membrane area for water source applications by the amount of air bubbles accumulated. A problem arises. In order to avoid such a phenomenon, an air venting mechanism must be provided, which requires mechanically complicated measures.

さらに空気抜き機構を設けても、通常は上方に設けられ
る空気抜き機構近傍に到達した気泡は系外に排除される
ものの、微小な気泡として膜面に付着した空気は除去さ
れず、やはり実質的な膜面積低下につながるものである
Furthermore, even if an air bleed mechanism is provided, air bubbles that reach the vicinity of the air bleed mechanism, which is usually installed above, are removed from the system, but air that adheres to the membrane surface as minute bubbles is not removed, and the actual membrane remains. This leads to a decrease in area.

このような状況から本発明者等は上記のような問題がな
く、気泡が混入した水でも容易に濾過できる膜につき鋭
意検討した結果本発明に到達した。
Under these circumstances, the inventors of the present invention have conducted intensive studies to develop a membrane that does not have the above-mentioned problems and can easily filter water mixed with air bubbles, and as a result has arrived at the present invention.

(問題点を解決するための手段) 即ち、本発明の要旨は糸軸方向に対して親水性部分と疎
水性部分とが共存しており、水フラックス/(空気フラ
ックス)2がo、5xto−8以上であり、2.0X1
0−’以下であるポリオレフィン系多孔質中空糸膜にあ
る。
(Means for solving the problem) That is, the gist of the present invention is that a hydrophilic part and a hydrophobic part coexist in the yarn axis direction, and water flux/(air flux)2 is o, 5xto- 8 or more, 2.0X1
0-' or less.

以下に本発明を図面を用いて説明する。第1図は本発明
の中空糸膜の親水性部分と疎水性部分の分布の1例を示
す模式図であり、第2図は本発明の中空糸膜を得るため
の加工装置の1例を示す模式図である。
The present invention will be explained below using the drawings. FIG. 1 is a schematic diagram showing an example of the distribution of the hydrophilic portion and hydrophobic portion of the hollow fiber membrane of the present invention, and FIG. 2 is a schematic diagram showing an example of the processing equipment for obtaining the hollow fiber membrane of the present invention. FIG.

本発明において用いられる多孔質中空糸膜の素材として
は耐水性、耐薬品性等の点からポリエチレンやポリプロ
ピレン等のポリオレフィンが用いられ、溶融紡糸・延伸
法により多孔質化した中空糸膜が好ましく用いられる。
As the material for the porous hollow fiber membrane used in the present invention, polyolefins such as polyethylene and polypropylene are used from the viewpoint of water resistance and chemical resistance, and hollow fiber membranes made porous by melt spinning and stretching are preferably used. It will be done.

本発明の多孔質中空糸膜は糸軸方向に対して親木性部分
(12)と疎水性部分(11)とが共存している必要が
あり、ここで親水性部分とは親水化処理により、親水性
となった部分を意味し、実質的に恒久的に親水性となっ
ているものが好ましい。このような親水化処理としては
プロピレングリコールモノステアレート、プロピレング
リコールモノベヘネート等の水に難溶性であって親水性
を示す化合物を膜の微細孔表面に付着させることにより
得られる。この糸軸方向に対して親水性部分と疎水性部
分とが共存しているとは、例えば糸軸方向に一定の長さ
をとった場合に、どの部分をとっても親水性部分と疎水
性部分とが存在する状態をいい、その長さはこの中空糸
を用いて構成する濾過器の形状により依存し、−概に決
められるものではないが、通常糸軸方向に2cm程度、
より好ましくは1cmの長さをとった時にどの部分をと
っても親水性部分と疎水性部分とが存在していることが
好ましい。このような分布状態であると中空糸全体にわ
たって親水性部分と疎水性部分とが実質的にほぼ均等に
分布しているため、先に述べた従来技術における問題点
が解消される。
The porous hollow fiber membrane of the present invention must have a woody part (12) and a hydrophobic part (11) coexisting in the fiber axis direction, and the hydrophilic part is defined by the hydrophilic treatment. , means a portion that has become hydrophilic, and those that are substantially permanently hydrophilic are preferred. Such hydrophilic treatment can be obtained by attaching a hydrophilic compound that is sparingly soluble in water, such as propylene glycol monostearate or propylene glycol monobehenate, to the surface of the micropores of the membrane. The coexistence of hydrophilic portions and hydrophobic portions in the direction of the yarn axis means that, for example, when a certain length is taken in the direction of the yarn axis, there are hydrophilic portions and hydrophobic portions in any portion. The length of the hollow fiber depends on the shape of the filter constructed using the hollow fiber, and although it cannot be determined generally, it is usually about 2 cm in the fiber axis direction.
More preferably, a hydrophilic portion and a hydrophobic portion are present in every portion of the length of 1 cm. In such a distribution state, the hydrophilic portion and the hydrophobic portion are substantially evenly distributed over the entire hollow fiber, so that the problems in the prior art described above are solved.

本発明の多孔質中空糸膜はその膜を乾燥した状態で測定
し、た空気フラックスの値と、水フラックスとの関係が
水フラックス/(空気フラックス)2≧0.6X10−
’である必要がある。この関係式は、ポリオレフィン膜
における水の透過性は親水化の程度の他に膜の微細孔の
大きさ、空孔率等にも左右され、また、基準となる10
0%親水化された状態を客観的に把握するのが困難なた
めと、ポリオレフィン系多孔質膜においてはアルコール
等で一時的に親水化したものの水の透過性即ち水フラッ
クスが乾燥時の空気透過性即ち空気フラックスの自乗と
良い相関性を示すことを経験的に見出したことにより導
かれたものであり、上記関係式を満足することが水浄化
用膜として優れたものとなるために必要なのである。こ
の値が0.6×10−8未満であると、膜が充分親水化
されていないので透水量が不足となり、好ましくない。
The porous hollow fiber membrane of the present invention is measured in a dry state, and the relationship between the air flux value and the water flux is water flux/(air flux)2≧0.6X10-
' must be. This relational expression shows that the water permeability of a polyolefin membrane depends not only on the degree of hydrophilization but also on the size of the membrane's micropores, porosity, etc.
This is because it is difficult to objectively grasp the state of 0% hydrophilicity, and in polyolefin porous membranes, water permeability, that is, water flux, even though it is temporarily made hydrophilic with alcohol etc. This was derived from the empirical finding that there is a good correlation with the square of air flux, and satisfying the above relational expression is necessary for it to be an excellent water purification membrane. be. If this value is less than 0.6 x 10-8, the membrane is not made sufficiently hydrophilic, resulting in insufficient water permeation, which is not preferable.

この値は2.0X10−’以下である必要があり、この
上限をこえると疎水性部分が不足気味となり、気泡の抜
けが充分でなくなる。
This value must be 2.0×10 −′ or less; if this upper limit is exceeded, the hydrophobic portion becomes insufficient and air bubbles cannot be removed sufficiently.

ここで空気フラックスと水フラックスは下記の方法で測
定することができる。
Here, air flux and water flux can be measured by the following method.

空気フラックス 乾燥した中空糸膜をU字状に束ね、中空糸膜の端を気密
に固定したU字型モジュール(0字部に沿った膜有効長
10cm、固定部長5cm、中空糸束の中空糸本数16
本)の中空開口部から0.5kg/crr?の圧力で2
0℃の空気を導入した時の多孔質膜部を透過してくる空
気流量を中空糸内径基準の膜面積で除した値CJIL位
=lハr、rn” 、0.5kg/crn” )を空気
フラックスとする。
Air flux-dried hollow fiber membranes are bundled in a U-shape, and the ends of the hollow fiber membranes are airtightly fixed in a U-shaped module (effective membrane length along the 0-shaped part: 10 cm, fixed length: 5 cm, hollow fibers in the hollow fiber bundle) Number 16
0.5kg/crr from the hollow opening of the book)? 2 at the pressure of
The value obtained by dividing the flow rate of air passing through the porous membrane section by the membrane area based on the inner diameter of the hollow fiber when air at 0°C is introduced is calculated as follows: Air flux.

木二二二2区 中空糸膜をU字状に束ね、中空糸膜の端を液密に固定し
たU字型モジュール(0字1部に沿った膜有効長18c
m、固定部長1cm、中空糸外径表示有効膜面積0.6
rn”)の中空糸外表面側から0.1kg/crn’の
圧力で20℃の水を導入して濾過せしめた時の多孔質膜
部を透過してくる水流量を中空糸外径基準の膜面積で除
した値(単位:JZ/hr、+m’。
U-shaped module in which hollow fiber membranes are bundled in a U-shape and the ends of the hollow fiber membranes are liquid-tightly fixed (membrane effective length 18c along the 0-1 part)
m, fixed length 1cm, hollow fiber outer diameter display effective membrane area 0.6
When water at 20°C is introduced from the outer surface of the hollow fiber at a pressure of 0.1 kg/crn' and filtered, the flow rate of water passing through the porous membrane is calculated based on the outer diameter of the hollow fiber. Value divided by membrane area (unit: JZ/hr, +m'.

0.5kg/c rr?)を水フラックスとする。0.5kg/crr? ) is the water flux.

本発明の多孔質中空糸膜は親木化処理されていないポリ
オレフィン多孔質中空糸膜を例えば第2図に示すような
装置で処理することにより得ることが出来る。
The porous hollow fiber membrane of the present invention can be obtained by treating a polyolefin porous hollow fiber membrane that has not been subjected to wood-carrying treatment using, for example, an apparatus as shown in FIG.

水難溶性の親水化剤例えばプロピレングリコールモノス
テアレートやプロピレングリコールモノベヘネートの溶
融物(2)を各々回転するローラー(3)及び切り欠き
ローラー(5)を介して切り欠きローラー(5)外周部
に接触しながら走行するポリオレフィン系多孔質中空糸
膜に付着せしめるが、切り欠きローラーに切り欠き部(
6)が設けられているため、この部分に相当する多孔質
中空糸膜には親水化剤が付着しないので、第1図に示す
ような疎水性部分(11)と親水性部分(12)が糸軸
方向に共存する中空糸膜が得られる。第2図においては
簡略表示のため切り欠き部は4つしか示していないが、
所望の親木性部分、疎水性部分のピッチ、切り欠きロー
ラーの径のかねあいで切り欠き部の数は定められるもの
である。
A melt (2) of a poorly water-soluble hydrophilic agent such as propylene glycol monostearate or propylene glycol monobehenate is passed through the rotating roller (3) and the notched roller (5) to the outer periphery of the notched roller (5). It adheres to the polyolefin porous hollow fiber membrane that runs while contacting the notch roller.
6), the hydrophilic agent does not adhere to the porous hollow fiber membrane corresponding to this part, so the hydrophobic part (11) and hydrophilic part (12) as shown in Figure 1 are Hollow fiber membranes that coexist in the fiber axis direction are obtained. In Fig. 2, only four notches are shown for the sake of simplicity, but
The number of notches is determined based on the desired pitch of the wood-friendly portions, the pitch of the hydrophobic portions, and the diameter of the notch roller.

上記親木化剤の多孔質中空糸膜に対する付着量は5〜3
0重量%であることが好ましく、15〜25重量%であ
ることがより好ましい。この付着量の調節はローラー(
3)に接する絞りローラー(4)によって行なわれる。
The amount of the above-mentioned wood-loving agent attached to the porous hollow fiber membrane is 5 to 3
It is preferably 0% by weight, more preferably 15 to 25% by weight. This amount of adhesion can be adjusted using a roller (
3) by means of a squeezing roller (4) in contact with.

このようにして部分的に親水化剤を付着せしめたポリオ
レフィン系多孔質中空糸膜はその全面にわたって水の透
過性と、水に濡れた状態での空気の透過性を有するが、
より親木性と疎水性のバランスがとれ、水透過性の優れ
た部分親木化中空糸膜を得るためには上記のようにして
親木化剤が付着した中空糸膜をその親木化剤の融点(プ
ロピレングリコールモノステアレートの融点:43〜4
8℃、プロピレングリコールモノベヘネートの融点:5
5〜63℃)以上の温度、例えば60〜70tで1〜4
時間熱処理をすることが好ましい。
The polyolefin porous hollow fiber membrane to which the hydrophilic agent is partially attached in this way has water permeability over its entire surface and air permeability when wet with water.
In order to obtain a partially lignophilized hollow fiber membrane with a better balance between lignophilicity and hydrophobicity and excellent water permeability, the hollow fiber membrane to which the lignophilic agent has been attached is made lignophilic as described above. Melting point of the agent (melting point of propylene glycol monostearate: 43-4
8℃, melting point of propylene glycol monobehenate: 5
1 to 4 at a temperature of 5 to 63℃) or higher, e.g. 60 to 70t
It is preferable to perform a heat treatment for a period of time.

(実施例) 以下に実施例を用いて本発明をさらに説明する。(Example) The present invention will be further explained below using Examples.

実施例1 内径270μm1膜厚55μm、空孔率70%及び内径
270μm、膜厚55μm、空孔率65%で、実質的に
水中の細菌を阻止し得る、延伸法により多孔質化された
ポリエチレン多孔質中空糸膜を各々切り欠きローラー(
5)の周方向の凸部中4mm、凹部中1■である第2図
に示す加工装置を用い、70℃に加熱溶融したプロピレ
ングリコールモノステアレートを付着せしめ、次いで7
0℃で4時間加熱処理を施した( A ’)、(B)。
Example 1 Polyethylene pores made porous by a stretching method with an inner diameter of 270 μm, a film thickness of 55 μm, a porosity of 70%, and an inner diameter of 270 μm, a film thickness of 55 μm, and a porosity of 65%, which can substantially inhibit bacteria in water. Each quality hollow fiber membrane is cut out with a roller (
5) Propylene glycol monostearate heated and melted at 70° C. was applied using the processing equipment shown in FIG.
Heat treatment was performed at 0°C for 4 hours (A'), (B).

これらの中空糸の一部をとり、エチルアルコールを溶媒
とするソックスレー抽出法によって親水化剤の付着量を
測定したところ、各々中空糸に対してAでは18.0重
量%、Bでは16.5重量%の付着量であった。また、
別途これらの中空糸膜を染料ローダミンBの0.5%水
溶液中に常温で約5分間浸漬攪拌した後、風乾したとこ
ろ、プロピレングリコールモノステアレートが付着した
部分のみが着色したが、糸軸方向に対し、親木性部分の
長さ約411I111疎水性部分の長さ約11の第1図
に示したような多孔質中空糸膜が得られていることがわ
かった。
When some of these hollow fibers were taken and the adhesion amount of the hydrophilic agent was measured by the Soxhlet extraction method using ethyl alcohol as a solvent, it was found that A was 18.0% by weight and B was 16.5% by weight. The adhesion amount was % by weight. Also,
Separately, these hollow fiber membranes were immersed in a 0.5% aqueous solution of the dye Rhodamine B for about 5 minutes at room temperature, stirred, and then air-dried. Only the parts to which propylene glycol monostearate had adhered were colored, but the direction of the fiber axis was On the other hand, it was found that a porous hollow fiber membrane as shown in FIG. 1 was obtained in which the length of the woody part was about 411 I111 and the length of the hydrophobic part was about 11.

これらの中空糸膜の空気フラックス及び水フラックスを
測定したところ第1表に示すような値となった。
When the air flux and water flux of these hollow fiber membranes were measured, the values were as shown in Table 1.

第1表 空気フラックス(Fl)水フラックス(F2)  F2
 / (Fl ) ’A    26X10’    
 670      0.99X10−8B    1
7xlO’     350      1.21xl
O=これらの中空糸膜を用いて有効膜面積0.6rr?
のU字型モジュールで中空糸端固定部分を上にし、中空
糸膜外表面から中空糸中空部へ向けて濾過する浄水器を
作成し、水道蛇口につないで水道水を濾過したところ、
上記(A)、(B)のいずれの中空糸膜を用いたものも
被処理水中の気泡の抜は具合は良好であり、浄水器に空
気抜き口を設けずとも容器内に空気がたまることはなか
った。また、これらのいずれの濾過水中にも生菌は認め
られなかった。又、水道水のかわりに0.1μmの標準
粒子を0.001%含有する懸濁水を濾過したところ、
標準粒子の除去率は(A)より(B)の方が高かりた。
Table 1 Air flux (Fl) Water flux (F2) F2
/ (Fl) 'A 26X10'
670 0.99X10-8B 1
7xlO' 350 1.21xl
O=effective membrane area 0.6rr using these hollow fiber membranes?
I created a water purifier using a U-shaped module with the hollow fiber end fixed part facing up, which filters from the outer surface of the hollow fiber membrane toward the hollow fiber hollow part, and connected it to a water faucet to filter tap water.
Both of the hollow fiber membranes (A) and (B) above are effective at removing air bubbles from the water being treated, and even if the water purifier is not equipped with an air vent, air will not accumulate in the container. There wasn't. Furthermore, no living bacteria were observed in any of these filtered waters. Also, when suspended water containing 0.001% of 0.1 μm standard particles was filtered instead of tap water,
The removal rate of standard particles was higher in (B) than in (A).

実施例2 実施例1の部分親水化された中空糸Aを得るために用い
たと同様の中空糸を用い、実施例1で用いたと同様な親
水化剤付着装置2セットを用い、中空糸膜円周方向にお
いて互いに180°異なる位置で中空糸に各々の切り欠
きローラーが接触するようにした以外は実施例1と同様
にして部分親水化された中空糸を得た。この中空糸への
親水化剤の付着量は25%であり、糸軸方向の親水性部
分と疎水性部分の長さは各々約4■と約11であった。
Example 2 Using the same hollow fiber as that used to obtain the partially hydrophilized hollow fiber A of Example 1, and using two sets of hydrophilic agent adhering devices similar to those used in Example 1, a hollow fiber membrane circle was prepared. Partially hydrophilized hollow fibers were obtained in the same manner as in Example 1, except that the notch rollers were brought into contact with the hollow fibers at positions 180° different from each other in the circumferential direction. The amount of the hydrophilic agent attached to this hollow fiber was 25%, and the lengths of the hydrophilic portion and the hydrophobic portion in the fiber axis direction were about 4 square inches and about 11 inches, respectively.

この中空糸膜の空気フラックス(Fl)は25X10’
、水フラックス(F、)はt oo。
The air flux (Fl) of this hollow fiber membrane is 25X10'
, water flux (F,) is too.

テアリ、F2 / (Fl )’ (D値+t1.6X
10−’であった。この中空糸膜を用いて実施例1と同
様の浄水器を作成し、水道蛇口につないで水道水を濾過
したところ、被処理水中の気泡の抜は具合は良好、であ
り、浄水器に空気抜き口を設けずとも容器内に空気がた
まることはなかった。
Tear, F2 / (Fl)' (D value + t1.6X
It was 10-'. A water purifier similar to Example 1 was made using this hollow fiber membrane, and when it was connected to a tap and filtered tap water, air bubbles in the water to be treated were removed well, and air was removed from the water purifier. Even without the opening, air did not accumulate inside the container.

比較例1 実施例1におけるAを得るために用いたと同様のポリエ
チレン多孔質中空糸膜を用い、切り欠きローラーとして
周方向の凸部の巾1mm、凹部の巾4m111である切
り欠きローラーを用いた以外は実施例1と同様にして7
0℃に加熱溶融したプロピレングリコールモノステアレ
ートを付着せしめ、次いで70℃で4時間加熱処理を施
した。
Comparative Example 1 A polyethylene porous hollow fiber membrane similar to that used to obtain A in Example 1 was used, and a notched roller having a circumferential convex width of 1 mm and a concave width of 4 m111 was used as the notched roller. 7 in the same manner as in Example 1 except for
Propylene glycol monostearate heated and melted at 0°C was attached, and then heat-treated at 70°C for 4 hours.

この中空糸も実施例1と同様の染色処理を行なったとこ
ろ中空糸膜全体にわたって、親木性部分と疎水性部分が
共存しており、糸軸方向に対し、親水性部分の長さ約l
ll1ffl、疎水性部分の長さ約411+であること
が確認されたが、空気フラックス(Fl )は28X1
0’、水フラックス(F2)は100であり、F2/(
Fl)2の値は0.13xto”aであった。又ソック
スレー抽出法で調べたところプロピレングリコールモノ
ステアレートの付着量は対中空糸膜5.2%であった。
When this hollow fiber was also dyed in the same manner as in Example 1, it was found that a woody part and a hydrophobic part coexisted over the entire hollow fiber membrane, and the length of the hydrophilic part was about l in the fiber axis direction.
ll1ffl, the length of the hydrophobic part was confirmed to be approximately 411+, but the air flux (Fl) was 28X1
0', water flux (F2) is 100, F2/(
The value of Fl)2 was 0.13xto''a. Also, when examined by Soxhlet extraction method, the amount of propylene glycol monostearate attached to the hollow fiber membrane was 5.2%.

この中空糸膜を用いて実施例1で作成したと同様の浄水
器を作成し、水道蛇口につないで水道水を濾過したとこ
ろ、被処理水中の気泡のぬけは良好で浄水器内に空気が
たまるようなことはなかったが、単位時間当りの濾過水
量が充分には得られなかった。
A water purifier similar to that made in Example 1 was made using this hollow fiber membrane, and when it was connected to a tap and filtered tap water, the air bubbles in the water to be treated were removed well. Although there was no accumulation of water, a sufficient amount of filtered water per unit time could not be obtained.

比較例2 実施例1におけるAを得るために用いたと同様のポリエ
チレン多孔質中空糸膜をプロとレンゲリコールモノステ
アレート5%のエタノール溶液に5分間浸漬した後取り
出し、60℃で8時間乾燥熱処理を施して親水化された
中空糸膜を得た。この中空糸に対し実施例1と同様の染
色処理を行なったところ中空糸膜が均一に染色され、全
体が親水化されていることがわかった。この中空糸への
親水化剤の付着量は35.2%であり、空気フラックス
(Fl )は22X10’、水フラックス(F2)は1
100であり、F2/(Fl)2の値は2.20X10
−”であった、この中空糸を用いて実施例1と同様の浄
水器を作成し、同様に水道水を濾過したところ通水初期
の水量は多かったが、中空糸膜から気泡が抜けずに浄水
器内に溜フて、このため濾過水量が減少してしまい、満
足すべき濾過水量にはならなかった。
Comparative Example 2 A polyethylene porous hollow fiber membrane similar to that used to obtain A in Example 1 was immersed in an ethanol solution of 5% Pro and rangelicol monostearate for 5 minutes, taken out, and subjected to dry heat treatment at 60°C for 8 hours. A hollow fiber membrane made hydrophilic was obtained. When this hollow fiber was subjected to the same dyeing treatment as in Example 1, it was found that the hollow fiber membrane was uniformly dyed and the entire membrane was made hydrophilic. The amount of hydrophilic agent attached to this hollow fiber was 35.2%, the air flux (Fl) was 22X10', and the water flux (F2) was 1
100, and the value of F2/(Fl)2 is 2.20X10
A water purifier similar to Example 1 was created using this hollow fiber, and tap water was filtered in the same way. Although the amount of water was large at the beginning of water flow, air bubbles did not come out from the hollow fiber membrane. The amount of water accumulated in the water purifier decreased, and the amount of filtrated water was not satisfactory.

(発明の効果) 以上述べたように本発明の部分親水化されたポリオレフ
ィン系多孔質中空糸膜はポリオレフィンという耐水性、
耐薬品性に優れた素材を用いていながら水透過性に優れ
、特に水濾過時の気泡抜は性に優れるため、浄水器内に
空気がたまることなく、中空糸膜面全体にわたってほぼ
均一に疎水性部分と親水性部分が共存しており、しかも
、F2/(Fl)2の値を0.6X10−8以上、2.
0XIO−’以下に調節しているため水透過性と気泡抜
は性のバランスがとれており浄水器用膜として優れたも
のであり有用性が高い。
(Effects of the Invention) As described above, the partially hydrophilized polyolefin porous hollow fiber membrane of the present invention has the water resistance of polyolefin.
Although it uses a material with excellent chemical resistance, it has excellent water permeability, and is particularly effective at removing air bubbles during water filtration, so there is no air trapped inside the water purifier, and the entire hollow fiber membrane surface is almost uniformly hydrophobic. The hydrophilic part and the hydrophilic part coexist, and the value of F2/(Fl)2 is 0.6X10-8 or more, 2.
Since it is adjusted to 0XIO-' or less, water permeability and air bubble removal are well balanced, making it an excellent membrane for water purifiers and highly useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の中空糸膜の親水性部分と疎水性部分の
分布の1例を示す模式図であり、第2図は本発明の中空
糸膜を得るための加工装置の1例を示す模式図である。 図において、 1:ポリオレフィン系多孔質中空糸膜、11:疎水性部
分、12:親水性部分、2:親水化剤溶融物、3:ロー
ラー、 4:絞りローラー、5:切り欠きローラー、6:切り欠
き部分 を示す。
FIG. 1 is a schematic diagram showing an example of the distribution of the hydrophilic portion and hydrophobic portion of the hollow fiber membrane of the present invention, and FIG. 2 is a schematic diagram showing an example of the processing equipment for obtaining the hollow fiber membrane of the present invention. FIG. In the figure, 1: Polyolefin porous hollow fiber membrane, 11: Hydrophobic part, 12: Hydrophilic part, 2: Hydrophilic agent melt, 3: Roller, 4: Squeezing roller, 5: Notch roller, 6: The cutout is shown.

Claims (1)

【特許請求の範囲】 1)糸軸方向に対して親水性部分と疎水性部分とが共存
しており、水フラックス/(空気フラックス)^2が0
.6×10^−^8以上であり、かつ、2.0×10^
−^8以下であるポリオレフィン系多孔質中空糸膜。 2)親水性部分がプロピレングリコールモノステアレー
トで親水化されたものである特許請求の範囲第1項記載
のポリオレフィン系多孔質中空糸膜。 3)親水性部分がプロピレングリコールモノベヘネート
で親水化されたものである特許請求の範囲第1項記載の
ポリオレフィン系多孔質中空糸膜。
[Claims] 1) A hydrophilic portion and a hydrophobic portion coexist in the fiber axis direction, and water flux/(air flux)^2 is 0.
.. 6×10^-^8 or more, and 2.0×10^
A polyolefin porous hollow fiber membrane having a molecular weight of -^8 or less. 2) The polyolefin porous hollow fiber membrane according to claim 1, wherein the hydrophilic portion is made hydrophilic with propylene glycol monostearate. 3) The polyolefin porous hollow fiber membrane according to claim 1, wherein the hydrophilic portion is made hydrophilic with propylene glycol monobehenate.
JP26472886A 1986-11-06 1986-11-06 Polyolefin-based porous hollow yarn membrane partially imparted with hydrophilicity Pending JPS63119802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26472886A JPS63119802A (en) 1986-11-06 1986-11-06 Polyolefin-based porous hollow yarn membrane partially imparted with hydrophilicity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26472886A JPS63119802A (en) 1986-11-06 1986-11-06 Polyolefin-based porous hollow yarn membrane partially imparted with hydrophilicity

Publications (1)

Publication Number Publication Date
JPS63119802A true JPS63119802A (en) 1988-05-24

Family

ID=17407349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26472886A Pending JPS63119802A (en) 1986-11-06 1986-11-06 Polyolefin-based porous hollow yarn membrane partially imparted with hydrophilicity

Country Status (1)

Country Link
JP (1) JPS63119802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421734A2 (en) * 1989-10-02 1991-04-10 Chisso Corporation Conjugate fibres and products formed from them
JP2011000509A (en) * 2009-06-16 2011-01-06 Asahi Kasei Medical Co Ltd Hollow fiber filtration membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421734A2 (en) * 1989-10-02 1991-04-10 Chisso Corporation Conjugate fibres and products formed from them
JP2011000509A (en) * 2009-06-16 2011-01-06 Asahi Kasei Medical Co Ltd Hollow fiber filtration membrane

Similar Documents

Publication Publication Date Title
CA2732641C (en) Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
JP5433921B2 (en) Polymer porous hollow fiber membrane
US10188991B2 (en) Permselective asymmetric membranes
WO2007125943A1 (en) Polymeric porous hollow fiber membrane
JP5933557B2 (en) High flux hollow fiber ultrafiltration membrane and method for its preparation
JP7157790B2 (en) Porous membrane, porous membrane module, method for producing porous membrane, method for producing clarified liquid and method for producing beer
EP3216515A1 (en) Hollow fiber filtration membrane
WO2015125852A1 (en) Hollow fiber membrane module for cleaning platelet suspension
US7517581B2 (en) Semipermeable hydrophilic membrane
JP2008284471A (en) Polymeric porous hollow fiber membrane
KR101790174B1 (en) A PVA coated hollow fiber mambrane and a preparation method thereof
CN115315306A (en) Hydrophilic membrane
JPS63119802A (en) Polyolefin-based porous hollow yarn membrane partially imparted with hydrophilicity
WO2017164019A1 (en) Hollow fiber membrane
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JPH09117643A (en) Hollow fiber membrane module
WO2019172077A1 (en) Hollow-fiber membrane and method for producing hollow-fiber membrane
JP6707880B2 (en) Hollow fiber membrane and hollow fiber membrane module
JP4164730B2 (en) Selective separation membrane
JP2004121922A (en) Hollow fiber membrane
JP7490867B1 (en) Hollow fiber membrane module
JP5423326B2 (en) Method for producing hollow fiber membrane
GB2075416A (en) Reverse osmosis composite hollow fiber membrane
US20220081815A1 (en) A fabric impregnated with organosilane for purification of liquids
JPH11262639A (en) Hollow fiber membrane module