JPS6311975B2 - - Google Patents

Info

Publication number
JPS6311975B2
JPS6311975B2 JP55146535A JP14653580A JPS6311975B2 JP S6311975 B2 JPS6311975 B2 JP S6311975B2 JP 55146535 A JP55146535 A JP 55146535A JP 14653580 A JP14653580 A JP 14653580A JP S6311975 B2 JPS6311975 B2 JP S6311975B2
Authority
JP
Japan
Prior art keywords
particles
molded
molded product
foamed
foamed particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55146535A
Other languages
Japanese (ja)
Other versions
JPS5770621A (en
Inventor
Shigeya Sato
Tsukasa Yamagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP55146535A priority Critical patent/JPS5770621A/en
Priority to CA000366174A priority patent/CA1147100A/en
Priority to KR1019800004639A priority patent/KR830002656B1/en
Priority to US06/213,643 priority patent/US4366263A/en
Priority to EP80107757A priority patent/EP0032557B1/en
Priority to DE8080107757T priority patent/DE3072109D1/en
Publication of JPS5770621A publication Critical patent/JPS5770621A/en
Publication of JPS6311975B2 publication Critical patent/JPS6311975B2/ja
Priority to HK284/89A priority patent/HK28489A/en
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、微細セル構造をもつ架橋ポリエチレ
ン発泡粒子の多数個がたがいに融着して構成され
た新規な成形体及びその製造方法に関するもので
ある。さらに詳しくいえば、本発明は、非常に優
れた物性を示し、しかも粒子間間隙のほとんど認
められない平滑な光沢ある表面を有する新規な架
橋ポリエチレン発泡成形体及びその製造方法に関
するものである。 これまで、架橋ポリエチレン発泡粒子を型内に
充てんし、これを加熱膨張させ、粒子間の融着を
起させることにより型に一致した成形体を得る方
法は種々提案され、このようにして得られた成形
体は、住居、船舶、自動車などの断熱材、各種物
品の包装、輸送の際の緩衝材、マツト、パツキン
グなどのクツシヨン材、その他装飾品、玩具、浮
き具等広い分野に利用されている。 しかしながら、実際にこれらの用途に適した発
泡体を製造する場合、必ずしも十分に満足できる
特性を備えたものが得られるとは限らないため、
おのずからその需要には制限があるのを免れな
い。 例えば、浮き具とした場合には、使用中に浮力
が著しく低下するという欠点があるし、装飾品、
玩具においては、成形体表面部の粒子間に生じる
多数の間隙のため陰影を生じ、また表面光沢が乏
しいため外観的に商品価値が低下するという欠点
がある。さらに、断熱材とした場合には、経時的
な断熱性能の低下が著しい上に、特に成形体の表
面が約70℃を越える高温雰囲気に曝される場所で
使用する屋根部材などの場合その寸法が4〜7%
も収縮し、各ユニツト間に間隙を生じてその役割
を果し得なくなるという欠点があるし、緩衝材、
クツシヨン材とした場合には、耐熱クリープ性が
不足するため、例えば製品の輸送中にその緩衝性
能が失われ、製品の破損をもたらすという欠点が
ある。 他方、包装、緩衝容器、断熱収納箱を製造する
場合には、型内発泡の不均一、ひけなどが原因と
なり肉厚部と肉薄部が複雑に入り組んだ構造のも
のでは、型に忠実な形状を得ることができない上
に、緩衝特性、断熱特性を欠くという欠点があ
る。 本発明者らは、このような欠点が型内で融着す
る発泡粒子の膨張能の不足に起因することを知
り、先に特定の物性をもつポリエチレン樹脂を基
材とした高膨張性発泡粒子又は特定の物性をもつ
高膨張性ポリエチレン発泡粒子を用いることによ
り、ある程度特性の向上した発泡成形体を得るこ
とに成功したが、その外観上の欠陥に基づく諸欠
点及び目標とする成形体の形状構造に基づいて派
生する諸欠点の改善は、まだ十分満足できるもの
とはいえなかつた。 したがつて、本発明の第一の目的は、表面部を
形成する粒子間に実質的にくぼみが存在せず、平
滑でかつ光沢をもつ外観品位の高い成形体を提供
することであり、第二の目的は、成形体内外部の
粒子間融着に優れていて、経時的な浮力低下を生
じない成形体を提供することであり、第三の目的
は、低密度の状態にあつても緩衝特性に優れ、か
つ耐熱クリープ性に優れた成形体を提供すること
であり、第四の目的は、経日断熱性能の持続性に
優れ、かつ熱経時の寸法安定性に優れた成形体を
提供することであり、第五の目的は、複雑な形
状、寸法に成形した場合においても、その表面が
平滑で、ひやけエツジ部欠損がなく、圧縮強度、
緩衝特性、耐吸水性などの諸特性を備えた多種多
様の成形体を提供することである。 本発明に従えば、これらの目的は、多数の微細
セル構造から成る架橋ポリエチレン発泡粒子が融
着集合して構成された成形体において、 (イ) 該発泡粒子がその内部にあるセル構造の膜厚
に比して約3倍以上大きい表皮部膜厚を有する
こと、 (ロ) 該発泡粒子のセル構造を形成する樹脂の融点
が少なくとも107℃であること、 (ハ) 該成形体の密度(D)が0.025〜0.05g/cm3の範
囲内にあり、かつ成形体を25%圧縮するときの
応力(F)との間で式 1/140(270−6/D)≦F≦1/140(315−6/D) の関係を満たしていること、 (ニ) 該成形体の表面部を形成する粒子間のくぼみ
係数が10以下の値を有すること、 (ホ) 該成形体の経時的寸法変化率が90℃、96時間
において2%未満、耐熱クリープが80℃におい
て35%未満の値を示すこと、 を特徴とする表面に粒子間間隙を実質的に有しな
いポリエチレン発泡成形体により達成することが
できる。 本発明の成形体の素材として用いるポリエチレ
ン樹脂は、エチレンのホモポリマーが好ましい
が、その本質的特性がそこなわれない範囲におい
てエチレンと他のモノマーとのコポリマーでもよ
いし、またエチレンのモノポリマーと他のポリマ
ーとのブレンドであつてもよい。この素材を先ず
粒径0.5〜3mm程度の粒状体に造粒し、電子線照
射法や有機過酸化物含浸法など公知の架橋方法に
より処理して架橋ポリエチレン粒子としたのち、
有機発泡剤又は無機ガスあるいはその両方を用い
て一段法又は多段法により発泡させ、多数の微細
セル構造から成る架橋ポリエチレン発泡粒子とす
る。 このようにして得られた架橋ポリエチレン発泡
粒子は、次いで型内膨張のための膨張能を付与さ
れるが、これには有機発泡剤の含浸、粒子内の無
機ガス内圧の増大、粒子の圧縮など任意の方法を
用いることができる。 このようにして膨張能を付与された架橋ポリエ
チレン発泡粒子を型内に充てんし、加熱して膨張
させるとともに粒子間を密に融着させると所望の
成形体が形成される。 本発明の成形体は、前記した(イ)ないし(ホ)の事項
により特徴づけられる新規な架橋ポリエチレン発
泡成形体である。 先ず、要件(イ)として本発明成形体を構成する架
橋ポリエチレン発泡粒子は、多数の微細セル構造
から成り、その内部にあるセル構造の膜厚に比し
て大きい表皮部膜厚を有するものであるが、この
ことは、該発泡粒子の断面の顕微鏡拡大写真図に
より容易に確認することができる。すなわち、添
附図面の第1図は、従来の架橋ポリエチレン発泡
粒子、第2図は、本発明における架橋ポリエチレ
ン発泡粒子のそれぞれ断面の顕微鏡拡大写真図で
あるが、第1図をみるとセル構造の膜厚は、粒子
の内部及び表皮部においていずれもほぼ同じであ
るのに対し、第2図では内部の膜厚に比べ表皮部
の膜厚が明らかに厚くなつており、その比率はお
よそ3倍以上になつていることが分る。 本発明における発泡粒子は、さらに従来の発泡
粒子の表面が粗く光沢がないのに対し、平滑で光
沢があるという点及び指で押しつぶしたときにか
なりの弾力を示すという点でも明らかに差異が認
められる。このような発泡粒子を用いることによ
つてはじめて、表面に粒子間の間隙のない発泡成
形体を得ることができる。 次に要件(ロ)として、本発明成形体を構成する発
泡粒子の樹脂が少なくとも107℃、好ましくは107
〜124℃の融点を有することが必要である。この
融点は、示差熱温度計(パーキン・エルマー社
製、デイフアレンシヤル・スキヤニング・カロリ
メーター、1−B型)を用い、昇温速度10℃/
min、試料量0.005gの条件下で測定した値であ
る。この融点が107℃未満では、満足すべきクリ
ープ特性が得られない。本発明者らの研究の結
果、発泡粒子の樹脂融点が124℃を超えると成形
体としたときに特性が低下し、127℃に達すると
実用に供しうる良質な成形体を与えないため、こ
の融点としては107〜124℃特に110〜120℃の範囲
のものが有利であることが分つた。このセル構造
の樹脂の融点は成形体の樹脂の融点と一致する
が、発泡粒子を製造する際に用いた素材の融点と
は必ずしも一致しない。 次に要件(ハ)として、本発明の成形体は、密度(D)
が0.025〜0.05g/cm3の範囲内にあつて、かつ成
形体を25%圧縮するときの応力(F)との間で、式 1/140(270−6/D)≦F≦1/140(315−6/D
) の関係を満たすことが必要である。 これは吸水率を0.3容量%以下にするために必
要な要件であり、この範囲外では、吸水性の低い
ち密な成形体を得ることができない。 第3図は、107〜124℃の範囲の融点を有する
が、製造条件を変えることにより密度及び圧縮応
力の異なる成形体を製造し、その粒子の接合、融
着状態を代表する吸水率によつて成形体の品質を
評価したグラフである。この図において、吸水率
0.3容量%を基準として、それ以下のものを〇、
それを超えるものを×で層別した。なお、吸水率
0.3容量%という基準は、断熱性能の持続性に関
連して選ばれたものである。 この第3図によると、少なくとも吸水率が0.3
容量%以下の値の成形体とするには、成形体の密
度を0.025〜0.05g/cm3の範囲とし、かつ圧縮応
力(F)との間で前記の式を満たすものとすることが
必要であることが分る。換言すれば、樹脂の融点
が107〜124℃の成形体であつても、該成形体の密
度(D)と圧縮応力(F)との関係を示すグラフに対応
し、点(D、F)の座標で表現したときに、a
(0.025、0.54)、b(0.005、1.39)、c(0.025、
0.21)、d(0.050、1.07)を結ぶ線で囲まれた扇形
の内部にあることが必要であるということであ
る。 この圧縮応力は、縦100mm、横100mm、厚さ25mm
以上の試料を12±3mm/分の割合で圧縮し、25%
の歪を生じたときの圧縮応力値を測定することに
よつて求めたものである。 前記した要件(ロ)は微細セルを構成する材料の特
性に関するものであり、要件(ハ)は微細セルの形
状、寸法、セル膜厚及びその分布を含めた気泡構
造と粒子間の融着状態の総合評価に関するもので
あり、これらが緩衝性能などの機械的特性を左右
するものであることを考慮すると、樹脂の融点と
成形体の圧縮能力(F)と密度(D)との関係の組合せ
は、成形体の内部構造を示す1つの指標であると
いうことができる。 さらに、要件(ニ)として、本発明の成形体は、そ
の表面状態を示すくぼみ係数が10以下であること
が必要である。 第4図は(ハ)の関係を満す従来の発泡成形体、第
5図は本発明の気泡成形体のそれぞれ表面状態を
示す顕微鏡拡大写真図であるが、これらを比較す
れば明らかなように、従来のものは粒子間に間隙
すなわちくぼみを有しているのに対し、本発明の
成形体では粒子の間がほとんど完全に埋めつくさ
れていて実質的に粒子間間隙を有していない。 本発明においては、これらの状態の差異をくぼ
み係数というフアクターによつて区別することに
した。このくぼみ係数は、成形体の所定面積(10
×10cm)に、蒸気孔を避けるようにして計1mの
長さに相当する数本の罫線を引き、これを切断線
の稜部にとらえられるくぼみ(切欠巾1mm以上で
判別)の数として示される。 第6図は、このようにして求められたくぼみ係
数と、その成形体の表面光沢及び内部吸水率との
関係を示すグラフであるが、これをみると、くぼ
み係数が大きくなるほど表面光沢が低下し、内部
吸水率が増加する傾向が認められる。これは、た
とえ表面光沢を生じる素材を用いて成形体を製造
したとしても、表面のくぼみの多いものはその陰
影と光の乱反射によつて表面光沢がそこなわれて
成形体表面の光沢度は低下すること、及び表面部
に多くのくぼみを生じるのは少なくとも局部的に
粒子の膨張が不足し、粒子間の接合、融点が不十
分になつて成形体内部の吸水率が増加することを
表わしている。 このくぼみ係数は、成形体の表面状態を定性的
に示すフアクターであるため、その数値が±1程
度の範囲で変動しても実質的な変化を生じない
が、これまで市販されている各種ポリエチレン発
泡成形体のくぼみ係数はいずれも約20以上である
のに対し、本発明の成形体のくぼみ係数がいずれ
も4〜6の範囲にあることによつて明らかに従来
品と区別される限界を10に定めることとした。こ
のことは、従来品と本発明成形体との表面状態を
観察対比することによつても十分に確認すること
ができる。 すなわち、第7図イ,ロと第8図イ,ロは、第
1図と第2図に対応する成形体の表面部分断面の
顕微鏡拡大写真図であるが、従来品(第7図)は
内部断面方向での粒子の接合状態が粗く、成形体
の表面皮膜が薄いのに対し、本発明成形品(第8
図)は同方向での粒子の接合、接着が十分に均質
化している上に成形体表面を形成する粒子の皮膜
も若干厚くなつている。これらの事実は、前記し
た第6図が示す結果とよく一致している。ただ
し、本発明の成形体の表面光沢は、成形体表面の
くぼみ係数に加えて、表面光沢を生じやすい発泡
粒子すなわち表皮部膜の厚い特殊な粒子を用いた
ことにも起因していることが考えられる。いずれ
にしても、このような表面光沢は従来品のいずれ
にも認められなかつた特異的効果ということがで
き、美粧的効果として有意義なものである。 また、この第7図イ、第8図イをみると分るよ
うに、従来の発泡粒子を用いた場合は、粒子融着
面とそれ以外のセル構造膜厚にほとんど差異が認
められないのに対し、本発明の場合は、発泡粒子
における内部セル構造の膜厚と表皮部膜厚との関
係が成形体となつた後でも維持されており後者
は、前者の約3倍以上になつている。 さらに、第9図は発泡成形体の有する吸水性と
その断熱性能の経時持続性(λ′/λ)との関係を
示すグラフである。これは第10図にその断面図
を示す装置による促進試験の結果であるが、この
促進試験は屋上断熱時間約2年に相当するもので
ある。 この第9図から明らかなように、断熱性能の経
時持続性に注目した場合、吸水率0.3容量%は重
要な技術的意義を有する。 また、第11図は熱経時の寸法変化率につい
て、第12図は耐熱クリープについて、第13図
は表面光沢について、第14図は断熱性能の持続
性について、第15図は緩衝特性について、それ
ぞれ本発明成形品(実線)と2種の市販品(破
線、一点鎖線′)とを比較したグラフである
が、これから本発明成形品が従来品よりも非常に
優れた特性を有することが分る。 このような本発明成形品は、密度0.925〜0.940
g/cm3のポリエチレン樹脂から成る粒子を架橋処
理し、次いで該粒子に発泡剤を含浸させたのち、
粒子表面の発泡剤を優先的に揮散後全体的な発泡
処理を行つて、内部にあるセル構造の膜厚に比し
て約3倍以上大きい表面膜厚を有する発泡粒子を
形成させ、次にこの発泡粒子を膨張能付与処理後
型内に充てんし加熱膨張させて発泡粒子間の融着
を行わせ、得られた成形体をさらに60℃以上の温
度で少なくとも6時間エージング処理することに
よつて製造することができる。 この方法においては、原料のポリエチレンを特
に選択する必要があり、一般に密度0.925〜0.940
g/cm3の範囲のポリエチレンを用いることが必要
である。特に好適なのは、密度とビカツト軟化点
(〓)の関係を示すグラフにおいて、座標(密度、
ビカツト軟化点)で、(0.925、377)、(0.925、
369)、(0.940、383)及び(0.940、390)の4点
を結んだ四辺形の範囲内にあるポリエチレンであ
る。このようなポリエチレンを用いることによつ
て融点107〜124℃の樹脂から構成される発泡成形
体が得られる。この原料のポリエチレンは前記し
たようにして造粒され、架橋されるが、続いて内
部にあるセル構造の膜厚に比して大きい表皮部膜
厚を有する発泡粒子を形成させるために、該粒子
に発泡剤を含浸させたのち、粒子表面の発泡剤を
優先的に揮散後全体的な発泡を起させる処理に付
される。このような処理は、例えば発泡性粒子を
約1〜10分間開放状態で大気に曝すか不活性ガス
と接触させ、次いで加熱発泡させるか、上記発泡
性粒子を発泡容器に移送する段階で系内の圧力を
大気圧又はそれ以下になるまで急速に減圧させた
のち、加熱発泡させるか、上記発泡性粒子をその
ままの状態で発泡容器に移し、先ず発泡開始温度
以下の加熱気体を容器内に吹き込んで粒子を昇温
させ、さらに発泡温度の加熱媒体を吹き込んで発
泡させる等の方法によつて行われる。これらの方
法における具体的な条件は、使用する発泡剤の種
類、目標とする発泡倍率などにより変化するが、
簡単な予備実験によつて最適条件を求めることが
できる。 高い発泡倍率の場合は、最初に発泡倍率10倍程
度の発泡粒子としたのち、無理な応力を生じない
ように注意して数段階で所望の発泡倍率に至るま
で発泡させるのが有利である。 第2図は、このようにして得られた発泡粒子の
顕微鏡拡大写真図であるが、第1図の従来の発泡
粒子に比べて、その表皮部の肉厚が厚く、平滑で
あつて、表面部分に含まれた発泡剤を優先的に揮
散させたことによる効果が明白に示されている。 本発明方法においては、このようにして得た発
泡粒子に膨張能付与処理を施すが、これは例えば
発泡粒子をそのかさ容積がもとの見掛けのかさ容
積の95〜50%になるように圧縮するか、あるいは
発泡粒子自体の内圧が0.05〜3Kg/cm2(ゲージ
圧)になるように粒子内に空気のような無機ガス
を追添することによつて行われる。 次に、このようにして膨張能を付与された発泡
粒子を所定の型内に充てんし、水蒸気などを通す
ことによつて加熱し、膨張させると同時に各粒子
を融着させる。そして、これをさらに、60℃以上
の温度で少なくとも6時間エージング処理する
と、所望の成形体が得られる。このエージング処
理は、成形体の対金型寸法比を改善するために必
要な処理であり、これを行うことによつて対金型
寸法比を1に近づけることができる。 この方法において、特に重要なのは、前記した
ように、表皮部と内部のセル構造が異なる特殊な
発泡粒子を形成させることであり、それ以外の工
程については、従来のポリエチレン発泡成形体の
製造に際して常用されている条件をそのまま適用
して行うことができる。 そして、上記のような特殊な発泡粒子の使用に
より、型内での粒子の膨張、融着の様子が変わ
り、結果的にくぼみ係数が小さく、かつ光沢ある
成形体を与えるという従来の架橋ポリエチレン発
泡粒子型内成形法からは予想し得ない効果が奏さ
れるのである。この点についてさらに説明する
と、型内成形体には、ほぼ均一の薄い肉厚で形成
される比較的簡単な形状のものから、肉厚が80mm
以上の厚い板状体あるいは、肉厚10mm以下の部分
や肉厚80mm以上の部分が入り組んだ複雑な形状の
もの、壁部の立上りが壁厚に対して著しく高くな
つているものなので多種多様のものがある。この
ような複雑な形状や肉厚の大きい部分を有する成
形体は、肉厚20〜50mm程度の単純板状体と比べ、
それぞれ型内に充てんされる粒子の分布状態や加
熱温度の伝達挙動などが異なつてくるため、品質
の高いものを得る製造条件が、困難になるのが実
情である。 すなわち、型内発泡成形に際しては、型内で発
揮される膨張能を高くすることが好ましいことは
いうまでもないが、従来の膨張能付与手段例えば
粒子内圧付加、粒子圧縮率増大などだけでは、十
分な実効的膨張能が得られず、かえつて表面過融
着や密度の増大など好ましくない結果をもたらす
ことになるため、比較的単純な形状の成形体を得
るには支障がないとしても、複雑形状の成形体を
良好な品質のものとして得ることは困難であつ
た。 本発明においては、前記発泡粒子自体が膨張能
を有している上に、さらに加えて膨張能付与の処
理を施すことにより、両者が相乗的に働いて型内
の膨張能が著しく向上し、従来方法ではとうてい
得られないような優れた品質をもつ複雑形状の成
形体を得ることを可能にしたのである。 このようにして得られた本発明の発泡成形体
は、セルを構成する樹脂の融点が107℃以上で、
成形体密度(D)と圧縮応力(F)との関係が規定どおり
であり、かつ表面のくぼみ係数が10以下になる。
また、このものは耐熱クリープ性、熱経時の寸法
変化率、表面光沢、外観品位(ひけ、くぼみなど
が少ない)に優れ、さらに吸水性が小さいことか
ら断熱性能の接続性、浮力の維持性が優れたもの
となる。したがつて、ポリエチレン発泡成形体の
物性の選択自由度が著しく拡大され、その利用分
野が広くなるという工業上の利点をもたらす。 次に実施例により、本発明をさらに詳細に説明
するが、各例中で使用される樹脂は以下のもので
ある。
TECHNICAL FIELD The present invention relates to a novel molded product formed by fusing together a large number of crosslinked polyethylene foam particles having a fine cell structure, and a method for manufacturing the same. More specifically, the present invention relates to a novel crosslinked polyethylene foam molded product that exhibits excellent physical properties and has a smooth, glossy surface with almost no interparticle gaps, and a method for producing the same. Up to now, various methods have been proposed for obtaining a molded article that conforms to the mold by filling a mold with cross-linked polyethylene foam particles, heating and expanding the particles, and causing fusion between the particles. Molded products are used in a wide range of fields, including insulation materials for homes, ships, and automobiles, packaging for various goods, cushioning materials for transportation, cushioning materials such as mats and packing materials, other decorative items, toys, and floating devices. There is. However, when actually manufacturing foams suitable for these uses, it is not always possible to obtain foams with fully satisfactory properties.
Naturally, there are limits to that demand. For example, when used as a flotation device, there is a disadvantage that the buoyancy decreases significantly during use, and
Toys have disadvantages in that the large number of gaps that occur between particles on the surface of the molded product causes shadows, and the lack of surface gloss reduces the commercial value in terms of appearance. Furthermore, when used as a heat insulating material, the heat insulating performance deteriorates significantly over time, and the dimensions of the molded product, especially for roofing materials used in locations where the surface is exposed to high temperature atmospheres exceeding approximately 70°C, are is 4-7%
The disadvantage is that the cushioning material shrinks and creates gaps between each unit, making it impossible to fulfill its role.
When used as a cushion material, there is a drawback that, due to insufficient heat-resistant creep properties, the cushioning performance is lost during transportation of the product, resulting in damage to the product. On the other hand, when manufacturing packaging, buffer containers, and insulated storage boxes, it is difficult to obtain a shape that is faithful to the mold if the structure is complicated by thick and thin parts due to uneven foaming in the mold or sink marks. In addition, it has the disadvantage of not having buffering properties or heat insulating properties. The present inventors learned that such defects were caused by the lack of expansion ability of the foamed particles that were fused in the mold, and first developed highly expandable foamed particles made of polyethylene resin with specific physical properties as a base material. Or, by using high-expansion polyethylene foam particles with specific physical properties, it has been possible to obtain a foam molded product with improved properties to some extent, but there are various defects due to defects in its appearance and the shape of the target molded product. The improvement of various defects derived from the structure has not yet been fully satisfactory. Therefore, the first object of the present invention is to provide a molded article having a smooth and glossy appearance with substantially no depressions between the particles forming the surface portion, and a high quality appearance. The second purpose is to provide a molded body that has excellent interparticle fusion bonding inside and outside the molded body and does not cause a decrease in buoyancy over time. The purpose is to provide a molded product with excellent properties and excellent heat creep resistance.The fourth objective is to provide a molded product with excellent sustainability of thermal insulation performance over time and excellent dimensional stability over time. The fifth objective is to ensure that even when molded into complex shapes and dimensions, the surface will be smooth, there will be no loss of edges due to shrinkage, and the compressive strength will be high.
The object of the present invention is to provide a wide variety of molded bodies having various properties such as buffering properties and water absorption resistance. According to the present invention, these objects are achieved in a molded article constituted by fusion and aggregation of crosslinked polyethylene foam particles consisting of a large number of fine cell structures: (b) The melting point of the resin forming the cell structure of the foamed particles is at least 107°C; (c) The density of the molded product ( D) is within the range of 0.025 to 0.05 g/cm 3 and the stress (F) when compressing the molded body by 25% is expressed by the formula 1/140 (270-6/D) ≦F≦1/ 140 (315-6/D); (d) the indentation coefficient between the particles forming the surface portion of the molded body has a value of 10 or less; (e) the aging of the molded body A polyethylene foam molded product having substantially no interparticle voids on its surface is characterized by a dimensional change rate of less than 2% at 90°C for 96 hours and a heat-resistant creep of less than 35% at 80°C. can be achieved. The polyethylene resin used as a material for the molded article of the present invention is preferably an ethylene homopolymer, but it may also be a copolymer of ethylene and other monomers as long as its essential properties are not impaired, or a monopolymer of ethylene. It may also be a blend with other polymers. This material is first granulated into granules with a particle size of about 0.5 to 3 mm, and then processed by known crosslinking methods such as electron beam irradiation and organic peroxide impregnation to form crosslinked polyethylene particles.
Foaming is carried out using an organic blowing agent, an inorganic gas, or both by a single-stage method or a multi-stage method to obtain foamed crosslinked polyethylene particles having a multi-microcell structure. The cross-linked polyethylene foam particles thus obtained are then given expansion capabilities for in-mold expansion, including impregnation with an organic blowing agent, increasing the internal pressure of inorganic gas within the particles, and compacting the particles. Any method can be used. The crosslinked polyethylene foam particles imparted with expansion ability in this manner are filled into a mold, heated to expand, and the particles are tightly fused together to form a desired molded article. The molded product of the present invention is a novel crosslinked polyethylene foam molded product characterized by the above-mentioned items (a) to (e). First, requirement (a) is that the crosslinked polyethylene foam particles constituting the molded article of the present invention are composed of a large number of fine cell structures, and have a skin thickness that is larger than the thickness of the cell structure inside. However, this can be easily confirmed from an enlarged microscopic photograph of the cross section of the foamed particles. That is, FIG. 1 of the attached drawings is an enlarged microscopic photograph of the cross-section of the conventional cross-linked polyethylene foam particles, and FIG. 2 is an enlarged micrograph of the cross-section of the cross-linked polyethylene foam particles of the present invention. The film thickness is almost the same both inside the particle and on the skin, but in Figure 2, the film thickness on the skin is clearly thicker than the inside, and the ratio is approximately three times that of the inside. It turns out that the above is the case. Furthermore, the foamed particles of the present invention are clearly different in that they are smooth and shiny, and exhibit considerable elasticity when crushed with a finger, whereas conventional foamed particles have a rough and lackluster surface. It will be done. Only by using such foamed particles can a foamed molded article with no gaps between particles on its surface be obtained. Next, as a requirement (b), the temperature of the resin of the expanded particles constituting the molded article of the present invention is at least 107°C, preferably 107°C.
It is necessary to have a melting point of ~124°C. This melting point was determined using a differential thermal thermometer (Perkin-Elmer, Differential Scanning Calorimeter, Model 1-B) at a heating rate of 10°C/
This is the value measured under the conditions of min and sample amount of 0.005 g. If the melting point is less than 107°C, satisfactory creep properties cannot be obtained. As a result of the research conducted by the present inventors, we found that if the resin melting point of the expanded particles exceeds 124°C, the properties will deteriorate when molded into a molded product, and if it reaches 127°C, a molded product of high quality that can be put to practical use cannot be obtained. It has been found that a melting point in the range of 107 to 124°C, particularly 110 to 120°C, is advantageous. The melting point of the resin with this cell structure matches the melting point of the resin of the molded body, but does not necessarily match the melting point of the material used to produce the expanded particles. Next, as a requirement (c), the molded article of the present invention has a density (D)
is within the range of 0.025 to 0.05 g/cm 3 and the stress (F) when compressing the molded body by 25%, the formula 1/140 (270-6/D)≦F≦1/ 140 (315-6/D
) It is necessary to satisfy the following relationship. This is a necessary requirement to make the water absorption rate 0.3% by volume or less, and outside this range, it is not possible to obtain a dense molded article with low water absorption. Figure 3 shows that molded bodies with melting points in the range of 107 to 124°C, but with different densities and compressive stresses, are produced by changing the manufacturing conditions, and the water absorption rate, which represents the state of bonding and fusion of the particles, is obtained. This is a graph that evaluates the quality of the molded product. In this figure, the water absorption rate
Based on 0.3 volume%, anything less than that is 〇,
Those exceeding this were stratified by ×. In addition, water absorption rate
The criterion of 0.3% by volume was chosen in relation to the sustainability of the insulation performance. According to this Figure 3, the water absorption rate is at least 0.3.
In order to obtain a molded body with a value of volume % or less, it is necessary that the density of the molded body be in the range of 0.025 to 0.05 g/cm 3 and that the compressive stress (F) satisfy the above formula. It turns out that In other words, even if the melting point of the resin is a molded body of 107 to 124°C, points (D, F) correspond to the graph showing the relationship between the density (D) and compressive stress (F) of the molded body. When expressed in the coordinates of a
(0.025, 0.54), b (0.005, 1.39), c (0.025,
0.21) and d(0.050, 1.07). This compressive stress is 100mm long, 100mm wide, and 25mm thick.
The above sample was compressed at a rate of 12 ± 3 mm/min, and 25%
This was determined by measuring the compressive stress value when strain occurs. The above-mentioned requirement (B) is related to the characteristics of the material constituting the microcells, and requirement (C) is the shape and size of the microcells, the cell structure including the cell film thickness and its distribution, and the state of fusion between particles. This is related to the comprehensive evaluation of can be said to be one indicator of the internal structure of the molded article. Furthermore, as requirement (d), the molded article of the present invention needs to have a depression coefficient, which indicates the surface condition, of 10 or less. FIG. 4 is an enlarged microscope photograph showing the surface condition of a conventional foam molded product that satisfies the relationship (c), and FIG. 5 is an enlarged micrograph showing the surface condition of the foam molded product of the present invention. In addition, while the conventional molded product has gaps or depressions between particles, the molded product of the present invention almost completely fills the spaces between particles and has virtually no interparticle spaces. . In the present invention, the difference between these states is distinguished by a factor called a depression coefficient. This indentation coefficient is determined by the predetermined area (10
x 10cm), draw several ruled lines corresponding to a total length of 1m while avoiding steam holes, and indicate this as the number of depressions (identified by a notch width of 1mm or more) that can be caught on the ridge of the cutting line. It can be done. Figure 6 is a graph showing the relationship between the indentation coefficient determined in this way and the surface gloss and internal water absorption rate of the molded product. Looking at this graph, it can be seen that the larger the indentation coefficient, the lower the surface gloss. However, there is a tendency for the internal water absorption rate to increase. This means that even if a molded object is manufactured using a material that produces surface gloss, if the surface has many depressions, the surface gloss will be damaged due to the shadows and diffused reflection of light, and the gloss level of the surface of the molded object will decrease. The fact that the particle temperature decreases and that many depressions occur on the surface area indicates that the expansion of the particles is insufficient, at least locally, and the bonding between particles and melting point become insufficient, resulting in an increase in the water absorption inside the molded body. ing. This indentation coefficient is a factor that qualitatively indicates the surface condition of the molded product, so even if the value varies within a range of about ±1, there will be no substantial change. The indentation coefficients of all foam molded products are about 20 or more, whereas the indentation coefficients of the molded products of the present invention are all in the range of 4 to 6, which clearly distinguishes them from conventional products. 10. This can also be sufficiently confirmed by observing and comparing the surface conditions of the conventional product and the molded product of the present invention. That is, FIGS. 7A and 7B and FIGS. 8A and 8B are enlarged microscopic photographs of partial cross-sections of the surface of the molded product corresponding to FIGS. 1 and 2, but the conventional product (FIG. 7) The bonding state of the particles in the internal cross-sectional direction is rough and the surface film of the molded product is thin, whereas the molded product of the present invention (No. 8
In Figure), the bonding and adhesion of particles in the same direction is sufficiently homogeneous, and the film of particles forming the surface of the molded product is also slightly thicker. These facts agree well with the results shown in FIG. 6 above. However, the surface gloss of the molded product of the present invention may be due not only to the indentation coefficient of the molded product surface but also to the use of foamed particles that tend to produce surface gloss, that is, special particles with a thick skin film. Conceivable. In any case, such surface gloss can be said to be a unique effect that has not been observed in any of the conventional products, and is a significant cosmetic effect. In addition, as can be seen from Figure 7 A and Figure 8 A, when conventional foamed particles are used, there is almost no difference in the thickness of the cell structure on the particle fusion surface and other areas. On the other hand, in the case of the present invention, the relationship between the thickness of the internal cell structure and the thickness of the surface layer in the expanded particles is maintained even after the foamed particles are formed, and the latter is about three times or more than the former. There is. Furthermore, FIG. 9 is a graph showing the relationship between the water absorbency of a foamed molded article and the sustainability of its heat insulating performance over time (λ'/λ). This is the result of an accelerated test using the device whose cross-sectional view is shown in FIG. 10, and this accelerated test corresponds to a rooftop insulation time of about 2 years. As is clear from FIG. 9, when focusing on the sustainability of thermal insulation performance over time, a water absorption rate of 0.3% by volume has an important technical significance. In addition, Figure 11 shows the dimensional change rate over time, Figure 12 shows the heat resistance creep, Figure 13 shows the surface gloss, Figure 14 shows the sustainability of the insulation performance, and Figure 15 shows the buffer properties. This is a graph comparing the molded product of the present invention (solid line) with two commercially available products (broken line, dashed-dotted line'), and it can be seen from this graph that the molded product of the present invention has much superior properties than conventional products. . Such a molded article of the present invention has a density of 0.925 to 0.940.
After cross-linking particles of polyethylene resin of g/cm 3 and then impregnating the particles with a blowing agent,
After preferentially volatilizing the foaming agent on the particle surface, a general foaming treatment is performed to form foamed particles having a surface film thickness that is approximately three times or more larger than the film thickness of the internal cell structure, and then After the expansion ability imparting treatment, the foamed particles are filled into a mold, heated and expanded to cause fusion between the expanded particles, and the resulting molded product is further aged at a temperature of 60°C or higher for at least 6 hours. It can be manufactured using In this method, it is necessary to particularly select the raw material polyethylene, which generally has a density of 0.925 to 0.940.
It is necessary to use polyethylene in the range g/cm 3 . Particularly suitable is the coordinate (density,
Vikatsu softening point), (0.925, 377), (0.925,
369), (0.940, 383), and (0.940, 390). By using such polyethylene, a foamed molded article made of a resin having a melting point of 107 to 124°C can be obtained. This raw material polyethylene is granulated and crosslinked as described above, and then in order to form expanded particles having a skin thickness larger than the thickness of the cell structure inside the particles, After the particles are impregnated with a foaming agent, the foaming agent on the surface of the particles is preferentially volatilized and then subjected to a treatment to cause foaming on the entire surface. Such treatment includes, for example, exposing the expandable particles to the atmosphere in an open state for about 1 to 10 minutes or bringing them into contact with an inert gas, followed by heating and foaming, or at the stage of transferring the expandable particles to a foaming container. After rapidly reducing the pressure to atmospheric pressure or lower, heat and foam the particles, or transfer the expandable particles as they are to a foaming container, and first blow heated gas below the foaming initiation temperature into the container. This is carried out by a method such as raising the temperature of the particles at a temperature of 100° C. and then blowing a heating medium at a foaming temperature to cause foaming. The specific conditions for these methods vary depending on the type of blowing agent used, the target expansion ratio, etc.
Optimal conditions can be determined by simple preliminary experiments. In the case of a high expansion ratio, it is advantageous to first form foamed particles with an expansion ratio of about 10 times, and then foam the particles in several stages until the desired expansion ratio is reached, taking care not to generate excessive stress. FIG. 2 is an enlarged microscopic photograph of the foamed particles obtained in this way. Compared to the conventional foamed particles shown in FIG. 1, the skin part is thicker and smoother, and the surface The effect of preferentially volatilizing the blowing agent contained in the area is clearly shown. In the method of the present invention, the foamed particles obtained in this way are subjected to expansion ability imparting treatment. Alternatively, it can be carried out by adding an inorganic gas such as air into the foamed particles so that the internal pressure of the foamed particles themselves becomes 0.05 to 3 kg/cm 2 (gauge pressure). Next, the foamed particles imparted with expansion ability in this manner are filled into a predetermined mold, and heated by passing water vapor or the like to expand and fuse the particles at the same time. When this is further aged at a temperature of 60° C. or higher for at least 6 hours, a desired molded article can be obtained. This aging treatment is necessary for improving the mold size ratio of the molded article, and by performing this aging treatment, the mold size ratio can be brought close to 1. What is particularly important in this method is, as mentioned above, to form special foam particles with different cell structures in the skin and inside, and the other steps are the same as those commonly used in the production of conventional polyethylene foam moldings. You can apply the conditions as they are. By using the special foamed particles mentioned above, the way the particles expand and fuse in the mold changes, resulting in a molded product with a low dent coefficient and a high gloss compared to conventional cross-linked polyethylene foam. The particle in-mold molding method produces unexpected effects. To further explain this point, in-mold molded objects range from relatively simple shapes formed with a thin, almost uniform wall thickness to those with a wall thickness of 80 mm.
A wide variety of materials are available, such as thick plate-like materials such as those with a wall thickness of 10 mm or less and parts with a wall thickness of 80 mm or more. There is something. Molded objects with such complex shapes and large wall thicknesses have a higher
The reality is that the manufacturing conditions for obtaining high quality products are difficult because the distribution state of particles filled in the mold and the transmission behavior of heating temperature are different for each mold. In other words, when performing in-mold foam molding, it goes without saying that it is preferable to increase the expansion ability exerted within the mold, but conventional means for imparting expansion ability, such as adding internal pressure to particles and increasing particle compressibility, alone are insufficient. Because sufficient effective expansion ability cannot be obtained, and instead brings about unfavorable results such as excessive surface fusion and increased density, even if there is no problem in obtaining a molded article with a relatively simple shape, It has been difficult to obtain molded bodies with complex shapes of good quality. In the present invention, in addition to the foamed particles themselves having expansion ability, by additionally performing a treatment to impart expansion ability, the two work synergistically to significantly improve the expansion ability within the mold. This made it possible to obtain complex-shaped molded products with excellent quality that could never be obtained using conventional methods. The foam molded article of the present invention thus obtained has a melting point of the resin constituting the cells of 107°C or higher,
The relationship between compact density (D) and compressive stress (F) is as specified, and the surface depression coefficient is 10 or less.
In addition, this product has excellent heat resistance creep properties, dimensional change rate over heat, surface gloss, and appearance quality (few sink marks, dents, etc.), and has low water absorption, so it has excellent insulation performance connectivity and buoyancy maintenance. It will be excellent. Therefore, the degree of freedom in selecting the physical properties of the polyethylene foam molded product is significantly expanded, and the industrial advantage is that the field of use thereof is widened. Next, the present invention will be explained in more detail with reference to Examples, and the resins used in each example are as follows.

【表】 また、各特性の測定及び評価は以下のようにし
て行つた。 (1) 融着性;およそ縦300mm、横300mm、厚さ80mm
の成形体板状試験片に、深さ30mmの切れ目を入
れ、折り曲げながら成形体を引き裂き、引裂部
断面当りに存在する全粒子数に対する割れた粒
子数の百分比を求め、以下の基準により評価す
る。
[Table] In addition, each characteristic was measured and evaluated as follows. (1) Fusion property: Approximately 300mm long, 300mm wide, 80mm thick
Make a cut with a depth of 30 mm in a plate-shaped test piece of a molded product, tear the molded product while bending it, calculate the percentage of the number of cracked particles to the total number of particles present per tear section, and evaluate according to the following criteria. .

【表】 (2) 吸水率;およそ縦300mm、横300mm、厚さ80mm
の成形体試験片を作り、その体積(V)及び重
量(W)を正確に測定したのち、約20℃の淡水
中の水面下25mmの位置に24時間浸せきし、取り
出したのち表面を手早くふき取り、浸せき前後
の重量増加分(W)を求め、以下の式に従つて
計算する。 吸水率(容積%)=W×100/V×水の密度
[Table] (2) Water absorption rate; approximately 300mm long, 300mm wide, 80mm thick
After making a molded test piece and accurately measuring its volume (V) and weight (W), it was immersed in freshwater at approximately 20°C at a depth of 25 mm below the water surface for 24 hours, and after being taken out, the surface was quickly wiped off. , the weight increase (W) before and after immersion is determined and calculated according to the following formula. Water absorption rate (volume %) = W x 100/V x water density

【表】 (3) ひけ;およそ縦300mm、横300mm、厚さ80mmの
成形体板状試験片上面に、対角線方向に水平定
規を当て、この試験片と定規の間に生じた間隙
の最大距離と対角線の長さとの間の百分比を求
め、以下の基準により評価する。
[Table] (3) Sink mark: Place a horizontal ruler diagonally on the top surface of a molded plate-shaped test piece approximately 300 mm long, 300 mm wide, and 80 mm thick, and measure the maximum distance of the gap between this test piece and the ruler. Find the percentage between the length of the diagonal and the length of the diagonal, and evaluate according to the following criteria.

【表】 (4) 熱経時の寸法変化率;50mm立方に切出した成
形体試験片を、90℃に調温した恒温槽内に96時
間置き、取り出したのち1時間放冷し、最初の
成形体に対する寸法変化率(%)を求め、その
最大値について以下の基準により評価する。
[Table] (4) Dimensional change rate over heat: A molded product test piece cut into 50 mm cubes was placed in a constant temperature bath controlled at 90°C for 96 hours, taken out, and allowed to cool for 1 hour. The dimensional change rate (%) with respect to the body is determined, and its maximum value is evaluated according to the following criteria.

【表】 (5) 圧縮クリープ性;50mm×50mm×25mmに切出し
た成形体試験片に25℃の温度の下で、0.1Kg/
cm2の荷重を掛け、その直後の厚さ(to)と、24
時間経過後の厚さ(t)を測定し、次式に従つ
て計算する。 圧縮クリープ(%)=to−t/to×100
[Table] (5) Compression creep property: 0.1 kg/kg of test piece cut into 50 mm x 50 mm x 25 mm at 25°C.
Apply a load of cm 2 , and the thickness (to) immediately after that, 24
The thickness (t) after the elapse of time is measured and calculated according to the following formula. Compression creep (%) = to-t/to×100

【表】 (6) 耐熱クリープ;前項圧縮クリープ性と同様の
操作を80℃の温度の下で行い圧縮クリープを求
め以下の基準に従つて評価する。
[Table] (6) Heat resistance creep: Perform the same operation as in the previous section on compression creep property at a temperature of 80°C to determine the compression creep and evaluate it according to the following criteria.

【表】 (7) 成形体の光沢度(反射率);成形体の表面部
を日本電色工業製Gioss Meter VG−10型に装
着し照射の角度を45゜に調整しその反射率を測
定し以下の基準に従つて評価する。
[Table] (7) Glossiness (reflectance) of the molded body; attach the surface of the molded body to Nippon Denshoku Kogyo's Gioss Meter VG-10 model, adjust the irradiation angle to 45°, and measure the reflectance. and will be evaluated according to the following criteria.

【表】 (8) 断熱性能の経時的持続性;成形体中心部より
縦200mm、横200mm、厚さ25mmに切り出した成形
体試験片について、第10図に示す装置を用い
て測定する。 すなわち、断熱材2で囲まれた温度調節器3
を備えた容器1に50℃の温湯4を入れ、該容器
の開口部側を、前記の試験片により、パツキン
6を介して閉塞する。この際、試験片の下面と
容器内の温湯面との間は約30mmの距離を設ける
ように配置する。また、試験片の上面は、循環
水口7及び8から循環される冷却水によつて3
℃に冷却されている冷却板9に密着している。
このような状態を保つて、30日間放置したの
ち、試料片の表面をガーゼで軽く拭きとり、
ASTM C518に従つてのものの熱伝導率λ′を測
定し、あらかじめ試験前に同じ条件下で測定し
た熱伝導率λとの変化の割合λ′/λを求め、次
表に従つて評価する。
[Table] (8) Sustainability of thermal insulation performance over time: A test piece of the molded product cut out from the center of the molded product to a length of 200 mm, width of 200 mm, and thickness of 25 mm is measured using the apparatus shown in Figure 10. That is, a temperature regulator 3 surrounded by a heat insulating material 2
50° C. hot water 4 is poured into a container 1 equipped with a container 1, and the opening side of the container is closed with the above-mentioned test piece via a packing 6. At this time, place the test piece so that there is a distance of approximately 30 mm between the bottom surface of the test piece and the hot water surface in the container. In addition, the upper surface of the test piece is cooled by cooling water circulated from circulation water ports 7 and 8.
It is in close contact with the cooling plate 9 which is cooled to ℃.
After maintaining this condition for 30 days, wipe the surface of the sample piece lightly with gauze.
The thermal conductivity λ' of the material is measured in accordance with ASTM C518, and the rate of change λ'/λ from the thermal conductivity λ measured under the same conditions before the test is determined and evaluated according to the following table.

【表】 (9) 総合評価;各特性の評価を総合し、商品価値
を判定する。
[Table] (9) Comprehensive evaluation; evaluate the product value by integrating the evaluation of each characteristic.

【表】 実施例 1 ポリエチレン樹脂A〜Gに架橋剤としてジクミ
ルパーオキシドを含浸させ、加熱架橋して平均粒
径1.2mmの架橋ポリエチレン粒子を調製した。 次いでこの架橋ポリエチレン粒子を耐圧容器に
収容しジクロロジフルオロメタン液を加え加温し
つつ含浸処理を行い発泡性架橋ポリエチレン粒子
とした。 この発泡性粒子をいつたん大気圧下に曝した
後、発泡装置に収容し水蒸気を用いて加熱発泡さ
せた。 この発泡粒子(一次発泡粒子)を加圧空気中に
保持し空気を含む発泡性粒子とし水蒸気を用いさ
らに加熱発泡させた。 以上の操作時に用いた条件範囲は以下に示す範
囲であり各樹脂についてほぼ30倍の発泡粒子とな
るよう最適条件を選んだ。 未発泡時の粒子の平均粒径 1.2mm ゲル分率 58〜62% 発泡剤含浸温度 80℃ 発泡剤含浸時間 1〜1.5時間 大気下放置時間 1〜3分 一次発泡水蒸気圧 0.6〜0.9Kg/cm2 一次発泡加熱時間 20〜50秒 空気追添圧力 10Kg/cm2 空気追添温度 80〜90℃ 空気追添時間 4〜6時間 二次発泡水蒸気圧 0.4〜1.0Kg/cm2 二次発泡時間 20〜50秒 この発泡粒子(二次発泡粒子)を1週間大気圧
下に放置し粒子内に発泡剤や大気圧以上の内圧が
含まれていないことを確認したのち、該粒子を耐
圧容器に入れ常温の空気で約5秒間処理し元のか
さ容積の88%(圧縮率12%)に圧縮し、これをそ
のまま型内に充てんし加熱、冷却後型より取出し
70℃の熱風乾燥炉で約6時間エージングして成形
体を得た。 なお用いた型は小孔を有する閉鎖金型(内寸法
300mm×300mm×80mm)であり成形温度は1.2〜2.0
Kg/cm2圧の水蒸気で約20〜30秒加熱融着し、約20
℃の水で30〜60秒の冷却を行つた。 このようにして得た成形体の樹脂融点、融着、
ひけ、耐熱クリープを測定、評価した結果を第1
表に示した。
[Table] Example 1 Polyethylene resins A to G were impregnated with dicumyl peroxide as a crosslinking agent and crosslinked by heating to prepare crosslinked polyethylene particles having an average particle size of 1.2 mm. Next, the crosslinked polyethylene particles were placed in a pressure container, dichlorodifluoromethane solution was added thereto, and an impregnation treatment was performed while heating to obtain expandable crosslinked polyethylene particles. After the expandable particles were exposed to atmospheric pressure, they were placed in a foaming device and heated and foamed using water vapor. These foamed particles (primary foamed particles) were held in pressurized air to form air-containing foamable particles, which were further heated and foamed using water vapor. The range of conditions used in the above operations was as shown below, and the optimum conditions were selected to obtain approximately 30 times as many expanded particles for each resin. Average particle size of unfoamed particles 1.2mm Gel fraction 58-62% Blowing agent impregnation temperature 80℃ Blowing agent impregnation time 1-1.5 hours Standing time in atmosphere 1-3 minutes Primary foaming water vapor pressure 0.6-0.9Kg/cm 2Primary foaming heating time 20-50 seconds Air addition pressure 10Kg/cm 2Air addition temperature 80-90℃ Air addition time 4-6 hours Secondary foaming water vapor pressure 0.4-1.0Kg/cm 2Secondary foaming time 20 ~50 seconds Leave these foamed particles (secondary foamed particles) under atmospheric pressure for one week, and after confirming that there is no foaming agent or internal pressure higher than atmospheric pressure inside the particles, place the particles in a pressure-resistant container. Treated with air at room temperature for about 5 seconds to compress it to 88% of the original bulk volume (compression ratio 12%), fill it into the mold as it is, heat it, cool it, and then remove it from the mold.
A molded body was obtained by aging in a hot air drying oven at 70°C for about 6 hours. The mold used was a closed mold with small holes (inner dimensions
300mm x 300mm x 80mm) and the molding temperature is 1.2~2.0
Kg/cm Heat fused with water vapor at 2 pressure for about 20 to 30 seconds, approx.
Cooling was performed for 30-60 seconds in water at ℃. Resin melting point, fusion,
The results of measuring and evaluating sink marks and heat resistance creep are the first
Shown in the table.

【表】 第1表から明らかなように記述した方法によつ
て得た成形体の特性を融着性、ひけ、耐熱クリー
プで評価したところ、その成形体を形成する樹脂
の融点が107〜124℃を示す場合には良好な結果を
示し、さらには110℃〜120℃の範囲であることが
一段と望ましい成形体であることが分る。 実施例 2 樹脂記号B、C、D、E、Fを用い実施例1に
示す方法により発泡性架橋ポリエチレン粒子を調
製し、次いでこれを大気圧下で0分〜4分間曝気
した後、発泡装置に収容し、0.5〜1.0Kg/cm2の水
蒸気を用い加熱昇温速度を20〜50秒、昇温後の加
熱時間を5秒となるよう調整し、一次発泡粒子を
得た。 この一次発泡粒子を80℃、10Kg/cm2の加圧空気
中で6時間処理し、空気を含む発泡性粒子とし
0.5〜1.0Kg/cm2の水蒸気を用い加熱昇温速度を20
〜50秒、昇温後の加熱時間を5秒となるように調
整し二次発泡粒子を得た。 この二次発泡粒子に上記と同じ空気含浸発泡処
理を繰返し発泡倍率15〜45倍の架橋ポリエチレン
発泡粒子を得た。 この発泡粒子を1週間大気圧下に放置し粒子内
に発泡剤や大気圧以上の内圧が含まれていないこ
とを確認した後、該粒子を耐圧容器に入れ、常温
のまま空気圧をかけることによりもとのかさ容積
の80%(圧縮率20%)又は88%(圧縮率12%)に
圧縮し、これを小孔を有する閉鎖金型(内寸法
300×300×80mm)にそのまま充てんし1.2〜2.0
Kg/cm2圧の水蒸気で20〜30秒加熱融着し約20℃の
水で30〜60秒間の冷却後、型より取出し70℃の熱
風乾燥炉で6時間エージングして成形体を得た。 得られた成形体について(1)〜(37)の番号を付
し、おのおの融点、密度、25%圧縮時の応力及び
吸水率を測定し第2表に示した。 また第2表の内容を前記した基準で層別し表示
符号で示した。この結果を第3図に移しプロツト
した。 第3図の結果によると、吸水率が0.3容量%以
下となる成形体は、その密度(D)と圧縮応力(F)との
関係が、(D)が0.025〜0.05g/cm2の範囲で、かつ
点(D、F)で表現する座標で、a(0.025、
0.54)、b(0.050、1.39)、c(0.025、0.21)、d
(0.050、1.07)を結ぶ扇形の内部にあることを満
す成形体である必要性がある。
[Table] As is clear from Table 1, when the properties of the molded product obtained by the method described were evaluated in terms of fusion properties, sink marks, and heat resistance creep, the melting point of the resin forming the molded product was 107 to 124. It can be seen that good results are obtained when the temperature is in the range of 110°C to 120°C, and that the molded product is even more desirable when the temperature is in the range of 110°C to 120°C. Example 2 Expandable crosslinked polyethylene particles were prepared by the method shown in Example 1 using resin symbols B, C, D, E, and F, and then aerated under atmospheric pressure for 0 to 4 minutes, and then placed in a foaming device. The primary expanded particles were obtained by adjusting the heating rate to 20 to 50 seconds and the heating time after raising the temperature to 5 seconds using water vapor of 0.5 to 1.0 Kg/cm 2 . The primary expanded particles were treated in pressurized air at 10 kg/ cm2 at 80°C for 6 hours to form expandable particles containing air.
Using 0.5 to 1.0 Kg/ cm2 of water vapor, the heating rate was set to 20.
~50 seconds, and the heating time after temperature rise was adjusted to 5 seconds to obtain secondary expanded particles. The same air impregnation foaming treatment as above was repeated on these secondary foamed particles to obtain crosslinked polyethylene foamed particles with an expansion ratio of 15 to 45 times. After leaving the expanded particles under atmospheric pressure for one week and confirming that the particles do not contain a foaming agent or internal pressure higher than atmospheric pressure, the particles are placed in a pressure-resistant container and air pressure is applied at room temperature. It is compressed to 80% (compression ratio 20%) or 88% (compression ratio 12%) of the original bulk volume, and then molded into a closed mold with small holes (inner dimensions
300 x 300 x 80 mm) and fill it as it is with 1.2 to 2.0
Kg/cm2 After heating and fusing with steam at 2 pressure for 20 to 30 seconds and cooling with water at about 20°C for 30 to 60 seconds, it was taken out of the mold and aged in a hot air drying oven at 70°C for 6 hours to obtain a molded body. . The obtained molded bodies were numbered (1) to (37), and the melting point, density, stress at 25% compression and water absorption were measured and shown in Table 2. In addition, the contents of Table 2 were stratified based on the criteria described above and indicated by symbols. The results are plotted in Figure 3. According to the results shown in Figure 3, a molded body with a water absorption rate of 0.3% by volume or less has a relationship between its density (D) and compressive stress (F), where (D) is in the range of 0.025 to 0.05 g/ cm2 . , and the coordinates expressed by the point (D, F) are a(0.025,
0.54), b (0.050, 1.39), c (0.025, 0.21), d
(0.050, 1.07).

【表】【table】

【表】 実施例 3 実施例2に示した(1)〜(37)の成形体のうちF
とDの関係が第3図a,b,c,dで囲まれた扇
形の範囲にある(13)(17)(27)(29)(33)(34)
の成形体を選び成形体表面の光沢、内部吸水率と
くぼみ係数との関係を計測した結果を第3表と第
6図に示す。
[Table] Example 3 Among the molded bodies (1) to (37) shown in Example 2, F
The relationship between and D is within the fan-shaped range surrounded by a, b, c, and d in Figure 3.
Table 3 and FIG. 6 show the results of selecting molded bodies and measuring the relationship between the gloss of the molded body surface, the internal water absorption rate, and the indentation coefficient.

【表】 第6図の結果によるとくぼみ係数が大きくなる
程、表面光沢は下り内部吸水率が増加する傾向に
あることが分る。 また、内部吸水率と光沢とを、本発明でいうく
ぼみ係数で判別するときは、市販品程度の成形体
は、約20附近に、特に優れると評価される成形体
は約5附近にそれぞれ位置する。 一方、くぼみ係数は、評価方法そのものに確率
的要素をもつているので、±1を争うような臨界
的な意義はない。 しかし、20と5との間のより安全側の10を1つ
の限界とすることには、技術水準を示す意義が生
じることが理解されよう。 なお、ここに示す内部吸水率とは成形体肉厚の
中心部から厚みの上下方向に15mmずつ(計30mm
厚)の成形体を切出して測定した吸水率を示す。 また、本実施例に使用した従来品(区分符号
34)と本発明品(区別符号17)の成形体表面部分
を切断しその断面拡大写真を撮つた。その結果を
第7図、第8図に示す。 第7図及び第8図によればくぼみ係数の小さい
区分符号(17)の成形体を構成する発泡粒子の
個々の外郭部分の膜の厚さが区分符号(34)の成
形体のそれよりもやや厚目であり粒子相互の密着
度合もより緊密であることがわかる。 さらに上記(34)と(17)の成形に際して使用
した発泡粒子についてその断面拡大写真を撮つ
た。その結果を第1図、第2図に示す。 第1図及び第2図によれば前記成形体の断面拡
大写真で述べた粒子表面の膜厚の差がより明確に
識別できる。 すなわち、第2図に示す断面では表面部と内部
とを構成するセル膜の厚さが明らかに異り写真に
示された基準スケールによれば表面部の膜厚は最
大15μにも達するのに対し、第1図に示す断面の
それはせいぜい8μ程度である。また、第2図に
よれば表面部分を構成するセルの中には極端に小
さいセルも含まれ発泡の際に十分な発泡ガスを把
持しえなかつたために(事前に放散されたため
に)起つた現象としてその生成過程をしのばせる
ものがある。 比較例 1 耐圧容器にリン酸ナトリウム水溶液と塩化カリ
ウム水溶液とから調製したリン酸カリウム0.25重
量部を含む水180重量部を収容し、かきまぜなが
らネオベレツクス0.1重量部を含む水20重量部に
ジクミルパーオキシド0.38重量部を加温し、かき
まぜながら、微細分散せしめたものを加えた後、
ポリエチレン(三井ポリケミカル製、商品名ミラ
ソン−9)粒径2.5mmの100重量部を加え、容器内
を窒素置換して100℃で2時間、次に135℃で7時
間の処理を行い内容物を取出したところ、ゲル分
率が50%前後の架橋ポリエチレン粒子を得た。 〔〕 この架橋粒子を耐圧容器に収容しジクロロ
ジフルオロメタンを12%含浸させて加熱発泡粒
子とし該発泡粒子を18Kg/cm2圧のジクロロジフ
ルオロメタンガス下に保持した後これを除圧し
て見掛容積約45c.c./gの発泡粒子を得た。この
発泡粒子をそれぞれ5000c.c.、5625c.c.、6430c.c.ず
つ耐圧容器内に収容し、それぞれ1.0、1.2、1.5
Kg/cm2圧の空気で加圧して発泡粒子容積をそれ
ぞれ4000、4050、4050c.c.まで圧縮してのち、内
寸法300mm×300mm×50mm(内容積4500cm3)の型
内に収容し2.5Kg/cm2圧の水蒸気で加熱し、後
冷却して成形体を得た。これらの成形体を
(38)、(39)、(40)とする。 〔〕 上記架橋粒子を耐圧容器に収容し、ジクロ
ロジフルオロメタンによつて60℃で2時間加圧
含浸処理し、13.5重量%の含浸ビーズを得、こ
のものを1.2Kg/cm2圧の水蒸気で20秒加熱し、
見掛容積約18c.c./gの発泡粒子を得た。この粒
子を耐圧容器に収容し18Kg/cm2圧、75℃の空気
中にそれぞれ15分、20、25分保持した後これを
大気圧まで除圧し見掛容積約27c.c./gの発泡粒
子にした。この粒子内の平均内圧は、それぞれ
0.43、0.84、1.22Kg/cm2(ゲージ圧)であつた。
該発泡粒子を直に内寸法300mm×300mm×50mm
(内容積4500cm2)の型内に収容し、これを1.9
Kg/cm2圧の水蒸気で20秒加熱して成形体を得
た。 これらの成形体を(41)、(42)、(43)とする。 上記(38)〜(43)についてその気泡膜の融
点、成形体密度、25%圧縮時の応力、くぼみ係数
を計測し第4表に示す。 なお、ここでいう粒子の内圧は以下のようにし
て測定した。すなわち加圧雰囲気中より取出した
発泡粒子約10gを手早く5個の容器に分納し、そ
の重量(W)を正確に秤量したのち、一端が大気
圧下に開放された5本の水柱管にそれぞれ連結
し、発泡粒子から逸散するガス量(VG)を経時
的に測定し、次の計算式に従つてそれぞれの値を
求めその平均値をもつて内圧とする。 発泡粒子の内圧=VG/VS−W/D〔単位Kg/cm2〕 ただしDは使用したポリエチレンの密度であ
り、VSは同じ母集団より大量に得た試料により
重量と体積の換算係数を求め、実測した発泡粒子
の重量より算出した発泡粒子の体積である。なお
この場合の測定の終点は前後1時間における内圧
の差が0.01Kg/cm2未満となつた時点とする。
[Table] According to the results shown in Figure 6, it can be seen that as the indentation coefficient increases, the surface gloss tends to decrease and the internal water absorption rate tends to increase. Furthermore, when determining the internal water absorption rate and gloss using the indentation coefficient as used in the present invention, a commercially available molded product is located around approximately 20, and a molded product that is evaluated as particularly excellent is located around approximately 5. do. On the other hand, the dent coefficient has a probabilistic element in the evaluation method itself, so there is no critical significance such as competing for ±1. However, it will be understood that setting 10, which is on the safer side between 20 and 5, as one limit has the significance of indicating the level of technology. Note that the internal water absorption rate shown here is calculated from the center of the molded body wall thickness by 15 mm in the vertical direction of the thickness (total 30 mm).
Figure 2 shows the water absorption rate measured by cutting out a molded body of thickness). In addition, the conventional product (classification code
34) and the product of the present invention (distinction code 17) were cut and enlarged cross-sectional photographs were taken. The results are shown in FIGS. 7 and 8. According to FIGS. 7 and 8, the film thickness of the individual outer shell portions of the expanded particles constituting the compact with classification code (17) having a small indentation coefficient is greater than that of the compact with classification code (34). It can be seen that it is slightly thicker and the degree of adhesion between the particles is also tighter. Furthermore, enlarged cross-sectional photographs were taken of the expanded particles used in the molding of (34) and (17) above. The results are shown in FIGS. 1 and 2. According to FIGS. 1 and 2, the difference in film thickness on the particle surface described in the enlarged cross-sectional photograph of the molded body can be more clearly identified. In other words, in the cross section shown in Figure 2, the thickness of the cell membrane that constitutes the surface part and the inside is clearly different.According to the reference scale shown in the photograph, the thickness of the cell membrane at the surface part reaches a maximum of 15μ. On the other hand, the cross section shown in FIG. 1 has a thickness of about 8μ at most. In addition, according to Figure 2, some of the cells that make up the surface area are extremely small, and this occurred because sufficient foaming gas could not be held during foaming (because it was dissipated in advance). There are phenomena that remind us of the process of their creation. Comparative Example 1 180 parts by weight of water containing 0.25 parts by weight of potassium phosphate prepared from an aqueous sodium phosphate solution and an aqueous potassium chloride solution was placed in a pressure-resistant container, and while stirring, dicumyl par was added to 20 parts by weight of water containing 0.1 part by weight of Neoverex. After heating 0.38 parts by weight of oxide and adding the finely dispersed product while stirring,
Add 100 parts by weight of polyethylene (manufactured by Mitsui Polychemicals, trade name Mirason-9) with a particle size of 2.5 mm, replace the inside of the container with nitrogen, and treat at 100°C for 2 hours, then at 135°C for 7 hours to remove the contents. When taken out, crosslinked polyethylene particles with a gel fraction of about 50% were obtained. [] The crosslinked particles were placed in a pressure container and impregnated with 12% dichlorodifluoromethane to form heat-foamed particles.The foamed particles were held under dichlorodifluoromethane gas at a pressure of 18 kg/ cm2 , and then the pressure was removed to calculate the apparent volume. Approximately 45 c.c./g of expanded particles were obtained. These foamed particles were placed in pressure containers of 5000 c.c., 5625 c.c., and 6430 c.c.
After compressing the expanded particle volume to 4000, 4050, and 4050 c.c. respectively by pressurizing with air at Kg/cm 2 pressure, they are placed in a mold with internal dimensions of 300 mm x 300 mm x 50 mm (inner volume 4500 cm 3 ). It was heated with water vapor at Kg/cm 2 pressure and then cooled to obtain a molded body. These molded bodies are designated as (38), (39), and (40). [] The above crosslinked particles were placed in a pressure container and impregnated with dichlorodifluoromethane at 60°C for 2 hours to obtain impregnated beads with a weight of 13.5%. Heat for 20 seconds,
Expanded particles with an apparent volume of about 18 c.c./g were obtained. The particles were placed in a pressure-resistant container and held in air at 18 kg/cm 2 pressure and 75°C for 15 minutes, 20, and 25 minutes, respectively, and then the pressure was removed to atmospheric pressure to form a foam with an apparent volume of approximately 27 c.c./g. Made into particles. The average internal pressure within this particle is
They were 0.43, 0.84, and 1.22Kg/cm 2 (gauge pressure).
The foamed particles are directly shaped into inner dimensions of 300mm x 300mm x 50mm.
(Inner volume: 4500 cm 2 )
A molded body was obtained by heating with water vapor at Kg/cm 2 pressure for 20 seconds. These molded bodies are designated as (41), (42), and (43). Regarding (38) to (43) above, the melting point, molded body density, stress at 25% compression, and indentation coefficient of the cell membranes were measured and are shown in Table 4. Note that the internal pressure of the particles here was measured as follows. That is, about 10 g of expanded particles taken out from a pressurized atmosphere were quickly divided into 5 containers, their weight (W) was accurately weighed, and then each was placed into 5 water column pipes with one end open to atmospheric pressure. The amount of gas (V G ) escaping from the expanded particles is measured over time, each value is determined according to the following calculation formula, and the average value is taken as the internal pressure. Internal pressure of foamed particles = V G /V S -W/D [unit: Kg/cm 2 ], where D is the density of the polyethylene used, and V S is the weight and volume conversion using a large number of samples obtained from the same population. This is the volume of the foamed particles calculated from the weight of the foamed particles that was actually measured after determining the coefficient. In this case, the end point of the measurement is the time when the difference in internal pressure between before and after one hour becomes less than 0.01 Kg/cm 2 .

【表】 第4表の結果によれば一般に実施されていると
されている現行の成形法による成形体はいずれも
融点、密度と圧縮応力との関係、くぼみ係数にお
いて本発明品の範囲外であることが分る。 実施例 4 実施例2で得た区分符号(17)の成形体、区分
符号(39)、(43)の成形体、さらにX社製緩衝材
用ボード(900mm×1200mm×50mm発泡倍率30倍)
及びY社製緩衝材用ボード(900mm×1200mm×50
mm発泡倍率29倍)とについて成形体気泡膜の融
点、成形体密度、圧縮応力、くぼみ係数、融着
性、吸水率、ひけ、熱経時の寸法変化率、圧縮ク
リープ、耐熱クリープ、表面光沢、断熱性能の経
時的持続性を調べその結果を第5表に示す。
[Table] According to the results in Table 4, all molded products made by the current molding method that is generally practiced are outside the range of the products of the present invention in terms of melting point, relationship between density and compressive stress, and indentation coefficient. I understand something. Example 4 Molded bodies with classification code (17) obtained in Example 2, molded bodies with classification codes (39) and (43), and a board for cushioning material manufactured by Company X (900 mm x 1200 mm x 50 mm, expansion ratio 30 times)
and Y company cushioning board (900mm x 1200mm x 50
(mm foaming magnification 29 times), the melting point of the foam membrane of the molded product, the density of the molded product, the compressive stress, the indentation coefficient, the fusion property, the water absorption rate, the sink mark, the dimensional change rate over heat, the compression creep, the heat-resistant creep, the surface gloss, The sustainability of the insulation performance over time was investigated and the results are shown in Table 5.

【表】 で評価した。
第5表の結果より本案による成形体は全ての面
で従来品よりはるかに優れた性能を示すことが明
らかである。 なお、下記成形体については、熱経時の寸法変
化率、耐熱クリープ、表面光沢、断熱性能の経時
持続性及び緩衝特性の評価時に測定した生データ
ーを各々第11,12,13,14及び15図に
グラフ化して示した。 図中の表示は次の通りである。
[Table] Evaluated.
From the results shown in Table 5, it is clear that the molded product according to the present invention exhibits far superior performance in all aspects to the conventional product. For the following molded bodies, raw data measured during evaluation of dimensional change rate over heat, heat resistance creep, surface gloss, sustainability of heat insulation performance over time, and buffer properties are shown in Figures 11, 12, 13, 14, and 15, respectively. This is shown in a graph. The display in the figure is as follows.

【表】 実施例 5 D樹脂(径約1.2mm)に0.4%のジクミルパーオ
キシドを含浸させこれを150℃まで加熱してゲル
分率60%の架橋ポリエチレン粒子とした。このも
のにジクロロジフルオロメタンの約12%量を含浸
させ、発泡性架橋ポリエチレン粒子となし、この
ものを2分してそれぞれJ、Kとした。先ず粒子
Jは、これをそのまま直に発泡装置に移し水蒸気
により4℃/secの昇温速度で115℃まで加熱して
発泡倍率約8倍の発泡(一次発泡)粒子とし、次
にこれを80℃、5Kg/cm2(ゲージ圧)の空気圧下
に6時間保持させて後、水蒸気により昇温速度4
℃/secで115℃まで加熱して発泡倍率約17倍の発
泡(二次発泡)粒子とし、さらに同様条件にて空
気の含浸−加熱発泡(三次発泡)を行つて成形体
倍率約30倍の発泡粒子とした。 他方、発泡性粒子Kの方は、発泡装置に移す前
に、常温大気圧下で約4分間曝すこと、一次発泡
時の昇温速度を2℃/secにすること、以外は発
泡粒子と同じ操作を行なつて発泡倍率約30倍の
発泡粒子とした。 上記の2種の発泡粒子を詳細に観察する
と、発泡粒子は実施例2の成形体No.17を作成し
た発泡粒子に、は同No.34を作成した発泡粒子
に、それぞれ構造、特性等がすこぶる近似した結
果を示した。すなわちは厚い表皮付きの光沢の
ある発泡粒子であるのに対し、は薄い表皮付き
の光沢のない発泡粒子であつた。 上記の発泡粒子を用いて、各々下記形状の
成形体を作成した。 成形体;肉厚みが100mmの板状体、 成形体;肉厚み約14mmの壁部でなる、立上りの
高い長方形(たて470×よこ265×高さ300)の
容器、 成形体;肉厚み5m/m、高さ32m/mの仕切
板9枚が16.5m/m巾の間隔で棧をなして並ん
でいる内部構造を持つ長方形(たて235×よこ
180×高さ48)の容器、 成形体;壁部の大部分の肉厚みが約10m/m
で、角部のない流線形状のたて270×よこ210×
高さ140mmの容器、(機械カバー) なお、成形条件としては、 (i) 粒子圧縮度(型内膨張能付与)
0.5〜35%〔元の嵩容積の95〜65%〕 (ii) 型内加熱温度(最大スチーム圧)
1.2〜1.5Kg/cm2 (iii) 型内加熱時間 10〜15sec (iv) 型内冷却時間 30〜40sec (v)成形体エージング条件 70℃ 6hr の範囲から最適条件を選んだ。 結果、粒子ではどのように条件を選んでも、
粒子で得られる成形体にはならなかつた。 各成形体について外観上、最良のものと思える
もの対比した結果を第6表に示す。
[Table] Example 5 Resin D (about 1.2 mm in diameter) was impregnated with 0.4% dicumyl peroxide and heated to 150°C to form crosslinked polyethylene particles with a gel fraction of 60%. This product was impregnated with about 12% dichlorodifluoromethane to form expandable crosslinked polyethylene particles, which were divided into two parts, designated as J and K, respectively. First, Particles J are directly transferred to a foaming device and heated to 115°C with water vapor at a temperature increase rate of 4°C/sec to form foamed (primary foamed) particles with an expansion ratio of approximately 8 times. ℃, kept under air pressure of 5Kg/cm 2 (gauge pressure) for 6 hours, and then heated at a rate of 4 with water vapor.
The particles are heated to 115°C at a rate of ℃/sec to form foamed particles (secondary foaming) with an expansion ratio of approximately 17 times, and then air impregnation and heat foaming (tertiary foaming) are performed under the same conditions to obtain a molded product with an expansion ratio of approximately 30 times. It was made into foamed particles. On the other hand, the expandable particles K are the same as the expanded particles except that they are exposed to room temperature and atmospheric pressure for about 4 minutes before being transferred to the foaming device, and the temperature increase rate during primary foaming is 2°C/sec. This operation was performed to obtain foamed particles with an expansion ratio of approximately 30 times. A detailed observation of the above two types of expanded particles reveals that the expanded particles have different structures, properties, etc., in the expanded particles from which molded object No. 17 of Example 2 was created and the expanded particles from which molded object No. 34 was created. The results were very close. That is, the foamed particles had a thick skin and were glossy, whereas the foamed particles had a thin skin and were dull. Using the above expanded particles, molded bodies having the following shapes were created. Molded object: A plate-shaped object with a wall thickness of 100 mm. Molded object: A rectangular container with a high rise (length 470 x width 265 x height 300 mm) with a wall approximately 14 mm thick. Molded object: Wall thickness 5 m /m, with an internal structure of 9 partition plates 32m/m high arranged in a grid at intervals of 16.5m/m (vertical 235 x horizontal)
180 x height 48) container, molded body; most of the wall thickness is approximately 10 m/m
Streamlined shape with no corners (vertical: 270 x horizontal: 210 x
Container with a height of 140 mm (machine cover) The molding conditions are: (i) Particle compression degree (imparting expansion ability in the mold)
0.5-35% [95-65% of original bulk volume] (ii) In-mold heating temperature (maximum steam pressure)
1.2 to 1.5 Kg/cm 2 (iii) In-mold heating time 10 to 15 sec (iv) In-mold cooling time 30 to 40 sec (v) Molded article aging conditions Optimum conditions were selected from the range of 70° C. 6 hr. As a result, no matter how you choose the conditions for particles,
A molded body obtained from particles could not be obtained. Table 6 shows the results of comparing each molded article with what seems to be the best one in terms of appearance.

【表】 第6表の結果によると、同じ発泡粒子を用いて
も、得ようとする成形体の構造によつて、得られ
る成形体が示す密度(D)、圧縮応力(F)、くぼみ係数
は変化する。 しかし、本発明の成形体No.17を完成させた同種
の発泡粒子は、従来製作が困難とされて来た形
状構造の成形体を本発明でいう成形体の構造示標
及び特性を満した状態で、具現させ得ることを実
証している。 このようにして得られた粒子の成形体、
、、は、新規なものであるばかりでなく、
従来渇望されながらも完成できなかつた型内成形
の利点を生かせる形状、構造の成形体であるか
ら、その有用性はきわめて高い。 実施例 6 実施例5と同じ発泡粒子を用い、これらを
加圧空気下に所要時間保持することによつて発泡
粒子内の内圧を0.05〜2.5Kg/cm2(ゲージ圧)の
範囲に高めた各種試料を調製し、実施例5と同様
の成形条件下で発泡成形した。このようにして得
られた成形体の諸特性を測定し、比較したところ
実施例5の場合と同様に、発泡粒子を用いたも
のの方が発泡粒子を用いたものよりもはるかに
良好な結果を示した。 実施例 7 本発明方法のエージング処理の効果を確めるた
めに、実施例5で用いたのと同じ発泡粒子を用
いて実施例5と同じ成形条件下でたて、よこ、高
さがいずれも50mmのブロツク21個を製造し、金型
から取り出した後、以下の異なつた条件下でエー
ジング処理を施した。 (1) 無処理。 (2) 50℃に調温した恒温室内に4、6、8、10又
は12時間滞留させる。 (3) 60℃に調温した恒温室内に4、6、8、10又
は12時間滞留させる。 (4) 70℃に調温した恒温室内に4、6、8、10又
は12時間滞留させる。 (5) 80℃に調温した恒温室内に4、6、8、10又
は12時間滞留させる。 この結果を、処理時間と対金型寸法比との関係
を示すグラフとして第16図に示す。 なお、この金型寸法比は、(1)については金型か
ら取り出した時点、その他はいずれも所定滞留時
間経過時点に成形体を恒温室より取り出し、これ
を常温、常圧下で4時間放冷したのち、その寸法
を測定して求めた。 このグラフから明らかなように、対金型寸法比
を1.0に接近させるためには、成形後に熱処理す
ることが必要であり、またその際の加熱条件は60
℃以上の温度で6時間以上、望ましくは80℃以上
の温度で8時間以上である。 以上の実験結果から明らかにしたとおり本発明
は、熱経時の寸法変化、耐熱クリープ等で代表さ
れる耐熱性に優れ、しかも、緩衝特性や断熱性能
の持続性に優れ、さらに表面が平滑で光沢を有す
ることができ、その上に様々な形状構造のものに
することも可能な、従来では類をみない成形体で
あるので、その実用価値は高く、産業界に著るし
く貢献できる発明である。
[Table] According to the results in Table 6, even if the same expanded particles are used, the density (D), compressive stress (F), and indentation coefficient of the obtained molded product depend on the structure of the molded product to be obtained. changes. However, the same type of foamed particles that completed molded article No. 17 of the present invention satisfy the structural characteristics and properties of a molded article as defined in the present invention, even though the molded article has a shape and structure that has been considered difficult to produce in the past. It has been demonstrated that it can be realized in various situations. A molded body of particles obtained in this way,
, , are not only novel;
It is extremely useful because it is a molded article with a shape and structure that can take advantage of the advantages of in-mold molding, which was previously desired but could not be completed. Example 6 Using the same foamed particles as in Example 5, the internal pressure inside the foamed particles was increased to a range of 0.05 to 2.5 Kg/cm 2 (gauge pressure) by holding them under pressurized air for the required time. Various samples were prepared and foam molded under the same molding conditions as in Example 5. The various properties of the molded products thus obtained were measured and compared, and as in Example 5, results using foamed particles were much better than those using foamed particles. Indicated. Example 7 In order to confirm the effect of the aging treatment of the method of the present invention, the same foamed particles as used in Example 5 were used, and under the same molding conditions as in Example 5, the length, width, and height were changed. Twenty-one 50 mm blocks were manufactured, and after being removed from the mold, they were subjected to aging treatments under the following different conditions. (1) No treatment. (2) Remain in a constant temperature room controlled at 50℃ for 4, 6, 8, 10 or 12 hours. (3) Remain in a constant temperature room controlled at 60℃ for 4, 6, 8, 10 or 12 hours. (4) Remain in a constant temperature room controlled at 70℃ for 4, 6, 8, 10 or 12 hours. (5) Remain in a constant temperature room controlled at 80℃ for 4, 6, 8, 10 or 12 hours. The results are shown in FIG. 16 as a graph showing the relationship between processing time and mold size ratio. In addition, this mold size ratio is determined by taking the molded product out of the thermostatic chamber at the time of taking it out from the mold for (1), and after the predetermined residence time has elapsed for all other cases, and letting it cool for 4 hours at room temperature and normal pressure. Afterwards, its dimensions were determined. As is clear from this graph, heat treatment is required after molding in order to bring the mold-to-mold size ratio close to 1.0, and the heating conditions at that time are 60
℃ or higher for 6 hours or more, preferably 80℃ or higher for 8 hours or more. As clarified from the above experimental results, the present invention has excellent heat resistance as typified by dimensional change over heat and heat-resistant creep, etc., as well as excellent durability in buffering properties and heat insulation performance, and has a smooth and glossy surface. It is an unprecedented molded product that can be made into a variety of shapes and structures, so it has high practical value and is an invention that can make a significant contribution to industry. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は従来用いられている発泡粒子
と本発明で用いられる発泡粒子のそれぞれ表皮部
分断図の顕微鏡写真図、第3図は発泡成形体の密
度と圧縮応力との関係を示すグラフ、第4図と第
5図は従来の発泡成形体及び本発明の発泡成形体
それぞれの表面部分の顕微鏡写真図、第6図はく
ぼみ係数と表面光沢及び内部吸水率との関係を示
すグラフ、第7図イ,ロと第8図イ,ロはそれぞ
れ第4図と第5図に対応する成形体表面部分の拡
大率を高めた顕微鏡写真図、第9図は成形体の吸
水率と断熱性能の持続性との関係を示すグラフ、
第10図は断熱性能の経時的持続性を測定するた
めの装置の断面図、第11図は成形体の加熱状態
における経時的寸法変化を示すグラフ、第12図
は成形体の加熱状態における圧縮クリープの変化
を示すグラフ、第13図は成形体表面の光沢度
(反射率)を示すグラフ、第14図は成形体の吸
水時間と断熱性能の経時的持続性の関係を示すグ
ラフ、第15図は成形体の緩衝特性を示すグラ
フ、第16図は本発明方法におけるエージング処
理効果を示すグラフである。 なお、第10図中の符号1は容器、2は断熱
材、3は温度調節機、5は試験片、6はパツキン
グ、9は冷却板を示す。
Figures 1 and 2 are micrographs of partial cross-sectional views of the skin of conventionally used foamed particles and foamed particles used in the present invention, respectively, and Figure 3 shows the relationship between the density and compressive stress of the foamed molded product. The graphs shown in Figures 4 and 5 are micrographs of the surface portions of the conventional foam molded product and the foam molded product of the present invention, respectively, and Figure 6 shows the relationship between the depression coefficient, surface gloss, and internal water absorption rate. Graphs, Figure 7 A and B and Figure 8 A and B are micrographs with increased magnification of the surface of the molded body corresponding to Figures 4 and 5, respectively, and Figure 9 is the water absorption rate of the molded body. Graph showing the relationship between and sustainability of insulation performance,
Fig. 10 is a cross-sectional view of a device for measuring the sustainability of thermal insulation performance over time, Fig. 11 is a graph showing dimensional changes over time in a heated state of a compact, and Fig. 12 is a compression diagram of a compact in a heated state. Graph showing the changes in creep; Figure 13 is a graph showing the glossiness (reflectance) of the surface of the molded body; Figure 14 is a graph showing the relationship between the water absorption time of the molded body and the sustainability of heat insulation performance over time; Figure 15 The figure is a graph showing the cushioning properties of the molded article, and FIG. 16 is a graph showing the effect of aging treatment in the method of the present invention. In FIG. 10, reference numeral 1 indicates a container, 2 indicates a heat insulating material, 3 indicates a temperature controller, 5 indicates a test piece, 6 indicates packing, and 9 indicates a cooling plate.

Claims (1)

【特許請求の範囲】 1 多数の微細セル構造から成る架橋ポリエチレ
ン発泡粒子が融着集合して構成された成形体にお
いて、 (イ) 該発泡粒子がその内部にあるセル構造の膜厚
に比して約3倍以上大きい表皮部膜厚を有して
いること、 (ロ) 該発泡粒子のセル構造を形成する樹脂の融点
が少なくとも107℃であること、 (ハ) 該成形体の密度(D)が0.025〜0.05g/cm3の範
囲内にあり、かつ成形体を25%圧縮するときの
応力(F)との間で式 1/140(270−6/D)≦F≦1/140(315−6/D) の関係を満たしていること、 (ニ) 該成形体の表面部を形成する粒子間のくぼみ
係数が10以下の値を有すること、 (ホ) 該成形体の経時的寸法変化率が90℃、96時間
において2%未満、耐熱クリープが80℃におい
て35%未満の値を示すこと、 を特徴とする表面に粒子間間隙を実質的に有しな
いポリエチレン発泡成形体。 2 密度0.925〜0.940g/cm3のポリエチレン樹脂
から成る粒子を架橋処理し、次いで該粒子に発泡
剤を含浸させたのち、粒子表面の発泡剤を優先的
に揮散後全体的な発泡処理を行つて、内部にある
セル構造の膜厚に比して約3倍以上大きい表皮部
膜厚を有する発泡粒子を形成させ、次にこの発泡
粒子を膨張能付与処理後型内に充てんし加熱膨張
させて発泡粒子間の融着を行わせ、得られた成形
体をさらに60℃以上の温度で少なくとも6時間エ
ージング処理することを特徴とする表面に粒子間
間隙を実質的に有しないポリエチレン発泡成形体
の製造方法。
[Scope of Claims] 1. In a molded article constructed by fusion and aggregation of crosslinked polyethylene foam particles consisting of a large number of fine cell structures, (a) the foam particles have a thickness relative to the thickness of the cell structure therein; (b) The melting point of the resin forming the cell structure of the foamed particles is at least 107°C; (c) The density of the molded product (D ) is within the range of 0.025 to 0.05 g/cm 3 and the stress (F) when compressing the molded body by 25% is expressed by the formula 1/140 (270-6/D)≦F≦1/140 (315-6/D) (d) The indentation coefficient between the particles forming the surface of the molded body has a value of 10 or less; (e) The molded body changes over time. A polyethylene foam molded article having substantially no interparticle gaps on its surface, characterized by having a dimensional change rate of less than 2% at 90°C for 96 hours and a heat-resistant creep of less than 35% at 80°C. 2 Particles made of polyethylene resin with a density of 0.925 to 0.940 g/cm 3 are cross-linked, then the particles are impregnated with a foaming agent, and the foaming agent on the surface of the particles is preferentially volatilized, followed by a general foaming treatment. Then, foamed particles are formed that have a skin thickness that is about three times or more larger than the thickness of the cell structure inside, and then these foamed particles are filled into a mold after being treated to give expansion ability, and heated and expanded. A polyethylene foam molded product having substantially no interparticle gaps on its surface, characterized in that the foamed particles are fused together by fusion, and the resulting molded product is further subjected to an aging treatment at a temperature of 60°C or higher for at least 6 hours. manufacturing method.
JP55146535A 1979-12-10 1980-10-20 Foamed polyethylene molded object and manufacture tereof Granted JPS5770621A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP55146535A JPS5770621A (en) 1980-10-20 1980-10-20 Foamed polyethylene molded object and manufacture tereof
CA000366174A CA1147100A (en) 1979-12-10 1980-12-04 Expanded cross-linked polyethylene particle, a molded product thereof and the methods thereof
KR1019800004639A KR830002656B1 (en) 1980-06-30 1980-12-05 Expended cross-linked pelyethylene particls a molded product there-of and the methodes thereof
US06/213,643 US4366263A (en) 1979-12-10 1980-12-05 Expanded cross-linked polyethylene particle, a molded product thereof and the methods thereof
EP80107757A EP0032557B1 (en) 1979-12-10 1980-12-09 An expanded cross-linked polyethylene particle and methods to produce molded products thereof
DE8080107757T DE3072109D1 (en) 1979-12-10 1980-12-09 An expanded cross-linked polyethylene particle and methods to produce molded products thereof
HK284/89A HK28489A (en) 1979-12-10 1989-04-06 An expanded cross-linked polyethylene particle and methods to produce molded products thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55146535A JPS5770621A (en) 1980-10-20 1980-10-20 Foamed polyethylene molded object and manufacture tereof

Publications (2)

Publication Number Publication Date
JPS5770621A JPS5770621A (en) 1982-05-01
JPS6311975B2 true JPS6311975B2 (en) 1988-03-16

Family

ID=15409837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55146535A Granted JPS5770621A (en) 1979-12-10 1980-10-20 Foamed polyethylene molded object and manufacture tereof

Country Status (1)

Country Link
JP (1) JPS5770621A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861128A (en) * 1981-10-09 1983-04-12 Asahi Chem Ind Co Ltd Foamed molded propylene resin article and its preparation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128065A (en) * 1973-04-10 1974-12-07
JPS5138746A (en) * 1974-09-27 1976-03-31 Obayashi Constr Co Ltd
JPS53137170A (en) * 1977-05-06 1978-11-30 Hitachi Ltd Automatic range interchanging system for electromagnetic flow meter converter
JPS5698147A (en) * 1979-12-30 1981-08-07 Kanegafuchi Chem Ind Co Ltd Foamed polyolefin molding by water-impermeable bead method and preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128065A (en) * 1973-04-10 1974-12-07
JPS5138746A (en) * 1974-09-27 1976-03-31 Obayashi Constr Co Ltd
JPS53137170A (en) * 1977-05-06 1978-11-30 Hitachi Ltd Automatic range interchanging system for electromagnetic flow meter converter
JPS5698147A (en) * 1979-12-30 1981-08-07 Kanegafuchi Chem Ind Co Ltd Foamed polyolefin molding by water-impermeable bead method and preparation

Also Published As

Publication number Publication date
JPS5770621A (en) 1982-05-01

Similar Documents

Publication Publication Date Title
EP1403305B1 (en) Method for producing polypropylene type resin foamed particle
JPS58136632A (en) Production of expanded polyolefin resin molding
EP0142724A2 (en) Pre-foamed beads of polyethylene-base resin
JPH0629334B2 (en) Method for producing linear low-density polyethylene resin in-mold foam molding
JP3995714B2 (en) Polyethylene pre-expanded particles
EP0032557B1 (en) An expanded cross-linked polyethylene particle and methods to produce molded products thereof
JPS60168632A (en) Expanded molding of bridged polypropylene resin
JPS5836004B2 (en) Hatsupouseihinnoseizo
JP2003039565A (en) Foamed particle molded object
JPH0559139B2 (en)
EP0068467A1 (en) Polypropylene foamed molded articles and process for production thereof
JPS6311975B2 (en)
WO2021200641A1 (en) Vehicle seat core material
JPS6333451B2 (en)
JPS59188413A (en) In-mold foamed and molded body of non-crosslinked linear polyethylene resin and its manufacture
JPS59187035A (en) Particle for expanding linear polyethylene resin
JP2001162640A (en) Method for manufacturing thermoplastic resin foamed molding
JPS6311974B2 (en)
JPS639974B2 (en)
KR830002656B1 (en) Expended cross-linked pelyethylene particls a molded product there-of and the methodes thereof
JPS629255B2 (en)
JPS6245819B2 (en)
JPH10251437A (en) Molded item of foamed polypropylene resin particle
JP7329639B1 (en) Expanded polypropylene resin particles, method for producing expanded polypropylene resin particles, and cushioning material for distribution
JPS61113627A (en) Foamed particle of high-density polyethylene resin and production thereof