JPS63119561A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63119561A
JPS63119561A JP61266050A JP26605086A JPS63119561A JP S63119561 A JPS63119561 A JP S63119561A JP 61266050 A JP61266050 A JP 61266050A JP 26605086 A JP26605086 A JP 26605086A JP S63119561 A JPS63119561 A JP S63119561A
Authority
JP
Japan
Prior art keywords
groove
arsenic
groove part
wall
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61266050A
Other languages
Japanese (ja)
Inventor
Yoshikimi Morita
盛田 由公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP61266050A priority Critical patent/JPS63119561A/en
Publication of JPS63119561A publication Critical patent/JPS63119561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To suppress the leakage current between neighboring groove-shaped capacitors, by uniformly forming shallow N-type diffused layers on both inner wall parts and both bottom parts of the first groove part and the second groove part. CONSTITUTION:A field oxide film 5 is formed on a part of a P<-> layer 2, which is formed on a P-type semiconductor substrate 1. Then a first groove part 3 and a second groove part 4 are formed at the neighboring positions. Thereafter a silanol solution, in which high concentration arsenic is included and ethanol is a main solvent, is dropped and applied on the entire surface. Thereafter, the substrate is turned. Then, heat treatment is performed, and both inner wall parts and both bottom parts of the first groove part 3 and the second groove part 4 are covered with oxide films including high concentration arsenic. Thereafter, arsenic ions are implanted only in both inner wall parts of the first groove part 3 and the second groove part 4. Then heat treatment is performed in a mixed gas atmosphere of nitrogen and oxygen. The arsenic is diffused into both bottom parts of the grooves from the oxide films 14. Thus shallow N-type diffused layers 9 having the uniform diffusion depth are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法、特に、MO8型メモリ
ー装置の溝型キャパシタセルの製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a trench type capacitor cell of an MO8 type memory device.

従来の技術 従来、MO8型メモリー装置の溝型キャパシタセルの形
成方法は第2図a、bの工程順断面図に示すような構成
であった。
2. Description of the Related Art Conventionally, a method for forming a trench type capacitor cell of an MO8 type memory device has a structure as shown in the step-by-step sectional views of FIGS. 2a and 2b.

第2図a、bにおいて、1はP型半導体基板、2はP−
層、3は第1の溝部、4は第2の溝部、5はフィールド
酸化膜、6はCVD酸化膜、7はイオンビーム、8は散
乱ビーム、9はN÷拡散層、10はキャパシタ酸化膜、
11は燐を含む多結晶シリコン膜、12は第1のセルキ
ャパシタ部、13は第2のセルキャパシタ部を示す。す
なわち、第2図aの工程は、P型半導体基板1上のP−
層2内に第1の溝部3および隣接する第2の溝部4を形
成した後、CVD酸化膜6をマスクとして、砒素イオン
を注入し、熱処理して、第1の溝部3および第2の溝部
4の両内壁部と両底部にN十拡散層9を形成する工程で
ある。第2図すは、CVD酸化膜6をエツチング除去後
、キャパシタ酸化膜10を介して燐を含む多結晶シリコ
ン膜11を埋設してダイナミックメモリ装置における隣
接した第1のセルキャパシタ部12および第2のセルキ
ャパシタ部13を形成する。
In Figures 2a and b, 1 is a P-type semiconductor substrate, 2 is a P-
3 is the first trench, 4 is the second trench, 5 is the field oxide film, 6 is the CVD oxide film, 7 is the ion beam, 8 is the scattered beam, 9 is N÷diffusion layer, 10 is the capacitor oxide film ,
11 is a polycrystalline silicon film containing phosphorus, 12 is a first cell capacitor section, and 13 is a second cell capacitor section. That is, the process shown in FIG.
After forming the first groove 3 and the adjacent second groove 4 in the layer 2, arsenic ions are implanted using the CVD oxide film 6 as a mask, and heat treatment is performed to form the first groove 3 and the second groove 4. This is a step of forming N+ diffusion layers 9 on both inner walls and both bottoms of 4. FIG. 2 shows that after removing the CVD oxide film 6 by etching, a polycrystalline silicon film 11 containing phosphorus is buried through the capacitor oxide film 10 to form adjacent first cell capacitor parts 12 and second cell capacitor parts in a dynamic memory device. A cell capacitor section 13 is formed.

発明が解決しようとする問題点 このような従来の構成では、砒素イオンのイオンビーム
7が溝部3と溝部4の円内壁部で弾性散乱され、散乱ビ
ーム8が溝部3と溝部4の両底部に多量に注入される。
Problems to be Solved by the Invention In such a conventional configuration, the ion beam 7 of arsenic ions is elastically scattered by the inner circular walls of the grooves 3 and 4, and the scattered beam 8 is scattered at both bottoms of the grooves 3 and 4. Injected in large quantities.

そのため、イオン注入後の熱処理によって形成されたN
十拡散層9の分布は、第2図の各図に示すように、溝部
3と溝部4との円内壁部と、溝部3と溝部4の両底部と
では拡散深さが著しく異なる。すなわち、前記両底部近
傍では、N+拡散層の不純物濃度が前記円内壁部と比較
して異常に高(、それゆえ、拡散深さも前記円内壁部と
比べて異常に深くなり、隣接する溝型キャパシタ(第1
のセルキャパシタ12と第2のセルキャパシタ13)間
のリーク電流を抑制できなくなるという問題があった。
Therefore, the N
In the distribution of the diffusion layer 9, as shown in each figure in FIG. 2, the diffusion depth is significantly different between the inner wall portion of the groove portion 3 and the groove portion 4 and the bottom portions of the groove portion 3 and the groove portion 4. That is, in the vicinity of both bottoms, the impurity concentration of the N+ diffusion layer is abnormally high compared to the inner wall of the circle (therefore, the diffusion depth is also abnormally deep compared to the inner wall of the circle, and the adjacent trench type Capacitor (first
There was a problem in that leakage current between the second cell capacitor 12 and the second cell capacitor 13) could not be suppressed.

本発明はこのような問題点を解決するもので、隣接する
溝型キャパシタ間のリーク電流を抑制できる半導体装置
の製造方法を提供することを目的とするものである。
The present invention has been made to solve these problems, and it is an object of the present invention to provide a method for manufacturing a semiconductor device that can suppress leakage current between adjacent trench capacitors.

問題点を解決するための手段 この問題点を解決するために、本発明は、一導電型半導
体基板内に深い溝を形成した後、高濃度の砒素を含有す
るシラノール系溶液を前記一導電型半導体基板上に塗布
し、熱処理を施すことによって、前記溝の内壁部で薄く
、前記溝の底部で厚く、高濃度の砒素を含有する酸化膜
で前記溝の内壁部と底部とを被覆する工程、イオンビー
ムを前記溝の内壁に対して所定の角度傾斜させた状態で
前記酸化膜を介して前記溝の内壁部に高エネルギーで砒
素を注入し、続いて熱処理により前記酸化膜中より砒素
を前記溝の底部に拡散して、浅い高濃度のN型拡散層を
前記溝の内壁部と底部とに形成する工程を具備した半導
体装置の製造方法である。
Means for Solving the Problem In order to solve this problem, the present invention forms a deep groove in a semiconductor substrate of one conductivity type, and then applies a silanol-based solution containing a high concentration of arsenic to the semiconductor substrate of one conductivity type. A step of coating the inner wall and bottom of the groove with an oxide film containing a high concentration of arsenic, which is thin on the inner wall of the groove and thick on the bottom of the groove, by applying the film onto a semiconductor substrate and subjecting it to heat treatment. , Arsenic is implanted with high energy into the inner wall of the groove through the oxide film with the ion beam tilted at a predetermined angle with respect to the inner wall of the groove, and then arsenic is removed from the oxide film by heat treatment. The method of manufacturing a semiconductor device includes the step of diffusing into the bottom of the trench to form a shallow high concentration N-type diffusion layer on the inner wall and bottom of the trench.

作用 本発明では、前記溝の底部に、前記溝の内壁部よりも厚
く、高濃度の砒素を含有する酸化膜を形成できるため、
砒素イオン注入時に、前記溝の内壁部で弾性散乱された
散乱ビームが前記溝の底部に注入されることを抑制でき
る。一方、前記溝の底部には、前記高濃度の砒素を含有
する酸化膜があるため、熱処理条件を最適化すれば、前
記溝の内壁部と底部とにおけるN型拡散層の不純物濃度
と拡散深さとを同等にすることができる。すなわち、前
記溝の内壁部の浅いN型拡散層は砒素のイオン注入によ
り形成し、前記溝の底部の浅いN型拡散層は、高濃度の
砒素を含有する酸化膜がらの砒素の拡散により形成でき
る。それゆえ、隣接する溝型キャパシタ間のリーク電流
も抑制できる。
Function: In the present invention, an oxide film containing a high concentration of arsenic can be formed at the bottom of the groove, which is thicker than the inner wall of the groove.
At the time of arsenic ion implantation, it is possible to suppress the scattered beam that is elastically scattered on the inner wall of the groove from being implanted into the bottom of the groove. On the other hand, since there is an oxide film containing high concentration of arsenic at the bottom of the trench, if the heat treatment conditions are optimized, the impurity concentration and diffusion depth of the N-type diffusion layer at the inner wall and bottom of the trench can be improved. can be made equal. That is, the shallow N-type diffusion layer at the inner wall of the groove is formed by arsenic ion implantation, and the shallow N-type diffusion layer at the bottom of the groove is formed by arsenic diffusion from an oxide film containing a high concentration of arsenic. can. Therefore, leakage current between adjacent trench capacitors can also be suppressed.

実施例 以下、本発明の一実施例について、第1図a。Example Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1a.

bの工程順断面図に基づいて説明する。The explanation will be given based on the step-by-step sectional view of b.

まず第1図aでは、P型半導体基板1上に形成されたP
−層2の一部にフィールド酸化膜5を形成した後、P−
層2の一部を、CVD酸化膜6をマスクとして、異方性
エツチングにより選択的にエツチングして深さ3〜6μ
m程度の第1の溝部3と第2の溝部4とを互いに隣接さ
せて形成し、続いて、高濃度の砒素を含有し、エタノー
ルを主溶媒としたシラノール系溶液を全面に滴下塗布後
、6000〜5ooo回/分の回転数で基板を回転させ
、次に、100〜300’C程度の温度で熱処理して、
第1の溝部3と第2の溝部4の円内壁部で300〜50
0A程度、両底部で1oo。
First, in FIG. 1a, P
- After forming field oxide film 5 on a part of layer 2, P-
A part of the layer 2 is selectively etched to a depth of 3 to 6 μm by anisotropic etching using the CVD oxide film 6 as a mask.
A first groove part 3 and a second groove part 4 of about m length are formed adjacent to each other, and then a silanol solution containing a high concentration of arsenic and using ethanol as a main solvent is applied dropwise to the entire surface. The substrate is rotated at a rotation speed of 6000 to 500 times/min, and then heat treated at a temperature of about 100 to 300'C.
300 to 50 on the inner wall of the first groove 3 and the second groove 4
Approximately 0A, 1oo at both bottoms.

〜1500A程度の膜厚の高濃度砒素含有酸化膜14で
第1の溝部3と第2の溝部4の円内壁部および両底部を
被覆する。次に、第1図すでは、イオンビームを、第1
の溝部3と第2の溝部4の両内壁に対して、10”程度
傾斜させた状態で、加速エネルギー100Kev程度、
注入量I X 10 ”cm−2程度で、90”ずつ4
回、逐次回転させることによって、砒素イオンを第1の
溝部3および第2の溝部4の両内壁部上の高濃度の砒素
を含有する酸化膜14を介して前記円内壁部にのみ注入
し、続いて、窒素と酸素の比が3=1となるような混合
ガス雰囲気中で、1000℃程度の温度で熱処理して、
前記溝部の両底部上の高濃度の砒素を含有する酸化膜1
4中より砒素を前記溝の両底部に拡散して、前記溝部の
菌内壁部と底部に拡散深さの均一な浅いN型拡散層9(
不純物濃度lX1019〜I X 10”cm−’程度
、拡散深さ1000〜2000A程度)を形成した後、
酸化膜14を弗酸系溶液によってエツチング除去し、さ
らに熱酸化により、゛フィールド酸化膜5以外の全面に
100〜200A程度の膜厚のキャパシタ酸化膜10を
形成し、続いて、燐を含む多結晶シリコン膜11を減圧
CVD法により形成し、第1のセルキャパシタ部12と
第2のセルキャパシタ部13以外の燐を含む多結晶シリ
コン膜を選択除去してキャパシタ酸化膜10および燐を
含む多結晶シリコン膜11から成るキャパシタ電極を形
成する。
The inner walls and both bottoms of the first groove 3 and the second groove 4 are coated with a highly concentrated arsenic-containing oxide film 14 having a thickness of about 1,500 Å. Next, in Figure 1, the ion beam is
The acceleration energy is about 100 Kev, with the inner walls of the groove 3 and the second groove 4 inclined by about 10 inches.
Injection amount I
by sequentially rotating the first groove 3 and the second groove 4, arsenic ions are injected only into the inner wall of the circle through the oxide film 14 containing a high concentration of arsenic on both the inner walls of the first groove 3 and the second groove 4, Next, heat treatment is performed at a temperature of about 1000°C in a mixed gas atmosphere where the ratio of nitrogen and oxygen is 3=1.
Oxide film 1 containing high concentration arsenic on both bottoms of the groove portion
4, arsenic is diffused into both bottoms of the groove to form a shallow N-type diffusion layer 9 (with uniform diffusion depth) on the inner wall and bottom of the groove.
After forming an impurity concentration of about 1×1019 to I×10” cm and a diffusion depth of about 1000 to 2000 A,
The oxide film 14 is removed by etching with a hydrofluoric acid solution, and then a capacitor oxide film 10 with a thickness of about 100 to 200 A is formed on the entire surface other than the field oxide film 5 by thermal oxidation. A crystalline silicon film 11 is formed by low pressure CVD, and the phosphorus-containing polycrystalline silicon film other than the first cell capacitor section 12 and second cell capacitor section 13 is selectively removed to form the capacitor oxide film 10 and the phosphorus-containing polycrystalline silicon film. A capacitor electrode made of crystalline silicon film 11 is formed.

発明の効果 以上のように本発明によれば、隣接する第1の溝部と第
2の溝部の菌内壁部と両底部に浅いN型拡散層を均一に
形成でき、隣接する溝型キャパシタ間のリーク電流を抑
制できる効果が得られ、所望の特性の半導体装置を提供
することができ、歩留り向上を図ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to uniformly form a shallow N-type diffusion layer on the inner walls and both bottoms of the adjacent first groove portion and second groove portion, and to form a shallow N-type diffusion layer between the adjacent groove-type capacitors. The effect of suppressing leakage current can be obtained, a semiconductor device with desired characteristics can be provided, and the yield can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bは本発明の一実施例を示す工程順断面図、
第2図は従来例を示す工程順断面図である。 1・・・・・・P型半導体基板、2・・・・・・P−層
、3・・・・・・第1の溝部、4・・・・・・第2の溝
部、5・・・・・・フィールド酸化膜、6・・・・・・
CVD酸化膜、7・・・・・・イオンビーム、8・・・
・・・散乱ビーム、9・・・・・・N+層、10・・・
・・・キャパシタ酸化膜、11・・・・・・燐を含む多
結晶シリコン膜、12・・・・・・第1のセルキャパシ
タ部、13・・・・・・第2のセルキャパシタ部、14
・・・・・・高濃度の砒素を含有する酸化膜。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 第2図
FIGS. 1a and 1b are cross-sectional views showing an embodiment of the present invention in the order of steps;
FIG. 2 is a process-order sectional view showing a conventional example. DESCRIPTION OF SYMBOLS 1... P-type semiconductor substrate, 2... P- layer, 3... First groove, 4... Second groove, 5... ...Field oxide film, 6...
CVD oxide film, 7...Ion beam, 8...
...Scattered beam, 9...N+ layer, 10...
... Capacitor oxide film, 11 ... Polycrystalline silicon film containing phosphorus, 12 ... First cell capacitor part, 13 ... Second cell capacitor part, 14
...An oxide film containing a high concentration of arsenic. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板内に深い溝を形成した後、高濃度の
砒素を含有するシラノール系溶液を前記一導電型半導体
基板上に塗布し、熱処理を施すことによって、前記溝の
内壁部で薄く、前記溝の底部で厚く、高濃度の砒素を含
有する酸化膜で前記溝の内壁部と底部を被覆する工程と
、イオンビームを前記溝の内壁に対して所定の角度傾斜
させた状態で前記酸化膜を介して前記溝の内壁部に高エ
ネルギーで砒素イオンを注入し、続いて熱処理により前
記酸化膜中より砒素を前記溝の底部に拡散して、浅い高
濃度のN型拡散層を前記溝の内壁部と底部に均一な深さ
で形成する工程とを具備することを特徴とした半導体装
置の製造方法。
After forming a deep groove in a semiconductor substrate of one conductivity type, a silanol solution containing a high concentration of arsenic is applied onto the semiconductor substrate of one conductivity type, and heat treatment is performed to form a thin groove on the inner wall of the groove. A step of coating the inner wall and bottom of the groove with a thick oxide film containing arsenic at a high concentration at the bottom of the groove, and performing the oxidation while tilting the ion beam at a predetermined angle with respect to the inner wall of the groove. Arsenic ions are implanted with high energy into the inner wall of the trench through the film, and then arsenic is diffused from the oxide film to the bottom of the trench by heat treatment to form a shallow high concentration N-type diffusion layer in the trench. 1. A method of manufacturing a semiconductor device, comprising the step of forming a uniform depth on the inner wall and bottom of the semiconductor device.
JP61266050A 1986-11-07 1986-11-07 Manufacture of semiconductor device Pending JPS63119561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61266050A JPS63119561A (en) 1986-11-07 1986-11-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266050A JPS63119561A (en) 1986-11-07 1986-11-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63119561A true JPS63119561A (en) 1988-05-24

Family

ID=17425689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266050A Pending JPS63119561A (en) 1986-11-07 1986-11-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63119561A (en)

Similar Documents

Publication Publication Date Title
JPH01125935A (en) Manufacture of semiconductor device
JPH04102317A (en) Manufacture of semiconductor device
US4377901A (en) Method of manufacturing solar cells
JPS6367730A (en) Method of doping trench formed in semiconductor substrate
JPS63166220A (en) Manufacture of semiconductor device
JPH01147829A (en) Manufacture of semiconductor device
JPS5917243A (en) Manufacture of semiconductor device
JPS6133253B2 (en)
JP2825878B2 (en) Trench forming method
JPS63119561A (en) Manufacture of semiconductor device
JPS63133664A (en) Manufacture of semiconductor device
JPS63115359A (en) Manufacture of trench type capacitor
JPS63102357A (en) Manufacture of semiconductor device
JPS63102352A (en) Manufacture of semiconductor device
JPS62241376A (en) Manufacture of mos type semiconductor device
JPH02139921A (en) Manufacture of semiconductor device
JPS61288462A (en) Manufacture of semiconductor device
JP3312384B2 (en) Lateral bipolar transistor and manufacturing method thereof
JPS61267341A (en) Manufacture of semiconductor device
JPS62189730A (en) Manufacture of semiconductor device
JPH01251715A (en) Manufacture of semiconductor device
JPH01173712A (en) Manufacture of semiconductor device
JPH0750770B2 (en) Method for manufacturing semiconductor device
JPH0212815A (en) Manufacture of semiconductor device
JPS6276559A (en) Manufacture of semiconductor device