JPS63119170A - Electrolyte for use in lithium battery - Google Patents
Electrolyte for use in lithium batteryInfo
- Publication number
- JPS63119170A JPS63119170A JP61265121A JP26512186A JPS63119170A JP S63119170 A JPS63119170 A JP S63119170A JP 61265121 A JP61265121 A JP 61265121A JP 26512186 A JP26512186 A JP 26512186A JP S63119170 A JPS63119170 A JP S63119170A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- electrolyte
- solvent
- mixed solvent
- ethylene carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 56
- 239000003792 electrolyte Substances 0.000 title abstract description 34
- 239000012046 mixed solvent Substances 0.000 claims abstract description 24
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims abstract description 23
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims abstract description 16
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 9
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 9
- 239000003960 organic solvent Substances 0.000 claims abstract description 9
- 239000002798 polar solvent Substances 0.000 claims abstract description 5
- 239000008151 electrolyte solution Substances 0.000 claims description 15
- 238000007599 discharging Methods 0.000 abstract description 17
- 239000000654 additive Substances 0.000 abstract description 4
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 abstract 1
- 239000002075 main ingredient Substances 0.000 abstract 1
- 239000002904 solvent Substances 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910015013 LiAsF Inorganic materials 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 3
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 3
- XKTYXVDYIKIYJP-UHFFFAOYSA-N 3h-dioxole Chemical compound C1OOC=C1 XKTYXVDYIKIYJP-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- -1 Lewis acid salt Chemical class 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- SPEUIVXLLWOEMJ-UHFFFAOYSA-N 1,1-dimethoxyethane Chemical compound COC(C)OC SPEUIVXLLWOEMJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- HTWIZMNMTWYQRN-UHFFFAOYSA-N 2-methyl-1,3-dioxolane Chemical compound CC1OCCO1 HTWIZMNMTWYQRN-UHFFFAOYSA-N 0.000 description 1
- ZZLCFHIKESPLTH-UHFFFAOYSA-N 4-Methylbiphenyl Chemical compound C1=CC(C)=CC=C1C1=CC=CC=C1 ZZLCFHIKESPLTH-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910015040 LiAsFe Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、リチウム電池用電解液、さらに詳細にはリチ
ウム二次電池に用いる電解液に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electrolyte for lithium batteries, and more particularly to an electrolyte for use in lithium secondary batteries.
リヂウムを負極活物質に用いる電池(以下、リチウム電
池)は、小型・高エネルギ密度を有する電池として研究
されており、すでに二酸化マンガン、フッ化黒鉛などを
正極活物質として用いる電池が市販されている。しかし
、これらの市販のリチウム電池は一次電池であり、実用
に供する充放電可能なリチウム二次電池は実現されてい
ないのが現状である。Batteries that use lithium as the negative electrode active material (hereinafter referred to as lithium batteries) are being researched as small, high-energy-density batteries, and batteries that use manganese dioxide, graphite fluoride, etc. as the positive electrode active material are already on the market. . However, these commercially available lithium batteries are primary batteries, and at present, a rechargeable and dischargeable lithium secondary battery for practical use has not been realized.
リチウム電池を二次電池化するためには、正極活物質の
選択、電池構成法など、多くの解決すべき問題がある。In order to convert a lithium battery into a secondary battery, there are many problems that need to be solved, such as the selection of a positive electrode active material and the battery construction method.
特に、電解液の選択は重要な課題である。常温作動型の
リチウム二次電池には非水電解液を使用することが実用
の見地より望ましいが、電解液の導電率は従来の電池系
に用いられる水溶液系よりも1〜2桁低いという欠点が
ある。In particular, the selection of electrolyte is an important issue. From a practical standpoint, it is desirable to use a non-aqueous electrolyte in a lithium secondary battery that operates at room temperature, but the disadvantage is that the conductivity of the electrolyte is one to two orders of magnitude lower than that of the aqueous solution used in conventional battery systems. There is.
このため電池の放電利用率向上のためには電解液の導電
率向上は不可欠である。同時に二次電池に適用するため
には、非水電解液中におけるリチウムの充放電効率が高
いことが要求される。すなわち、リチウム二次電池に用
いる電解液は、■高い導電率を有すること、■高いリチ
ウムの充放電効率を有することの二点を同時に充足する
必要がある。Therefore, in order to improve the discharge utilization rate of batteries, it is essential to improve the conductivity of the electrolyte. At the same time, in order to apply it to secondary batteries, high charging and discharging efficiency of lithium in the non-aqueous electrolyte is required. That is, the electrolytic solution used in a lithium secondary battery needs to satisfy two requirements at the same time: (1) having high conductivity and (2) having high lithium charging and discharging efficiency.
高い導電率と高いリチウムの充放電効率を実現する電解
液としてエチレンカーボネイト/2−メチルテトラヒド
ロフラン混合溶媒系電解液が提案されている(昭和60
年特許願第245718号)。しかしながら、0℃以下
の低温での放電特性のみが問題となるようなリチウム電
池の特殊な使用条件下や固相中のLf”イオンの拡散が
極端に速い正極活物質を用いたリチウム電池において電
解液中でのイオンの拡散速度が放電あるいは充電電流値
に大きく影響する場合、あるいは充放電寿命が極端に長
いことよりも取得電流値が高いことが要求される使用条
件下では、前記エチレンカーボネイト/2−メチルテト
ラヒドロフラン混合溶媒系電解液の導電率特性のさらな
る改善が求められるが、この問題は解決されていなかっ
た。An ethylene carbonate/2-methyltetrahydrofuran mixed solvent electrolyte has been proposed as an electrolyte that achieves high conductivity and high lithium charge/discharge efficiency (1981).
(Patent Application No. 245718). However, under special usage conditions of lithium batteries where only the discharge characteristics at low temperatures below 0°C are a problem, or in lithium batteries using positive electrode active materials in which the diffusion of Lf" ions in the solid phase is extremely fast, electrolysis is difficult. When the diffusion rate of ions in the liquid greatly affects the discharge or charge current value, or under usage conditions where a high acquired current value is required rather than an extremely long charge/discharge life, the ethylene carbonate/ Although there is a need for further improvement in the conductivity characteristics of the 2-methyltetrahydrofuran mixed solvent electrolyte, this problem has not been solved.
本発明の第一の目的は、エチレンカーボネイト/2−メ
チルテトラヒドロフラン混合溶媒系電解液を改良するこ
とにより、上記電解液とほぼ同等のリチウムの充放電効
率を有すると共に、より高い導電率を有するリチウム二
次電池用電解液を提供することである。The first object of the present invention is to improve an ethylene carbonate/2-methyltetrahydrofuran mixed solvent electrolyte, which has a lithium charge/discharge efficiency almost equivalent to that of the above-mentioned electrolyte and a higher conductivity. An object of the present invention is to provide an electrolytic solution for secondary batteries.
本発明の第二の目的は、低温での使用など特殊条件下で
良好に使用できるリチウム電池に用いるための電解液を
提供することを目的とする。A second object of the present invention is to provide an electrolytic solution for use in lithium batteries that can be used satisfactorily under special conditions such as use at low temperatures.
本発明の第三の目的は、Li″″イオンの拡散速度が放
電あるいは充電電流値に大きく影響する場合または充放
電寿命が長いことよりも取得電流が高いことを要求され
るリチウム電池に使用できるリチウム二次電池用電解液
を提供することである。A third object of the present invention is that it can be used in lithium batteries where the diffusion rate of Li"" ions greatly affects the discharge or charge current value, or where a high acquisition current is required rather than a long charge/discharge life. An object of the present invention is to provide an electrolyte for lithium secondary batteries.
本発明による他の目的は、以下の記載番こまって更に明
らかになる。Other objects according to the invention will become more apparent from the following description.
したがって、本発明によるリチウム二次電池用電解液は
、リチウム塩を有機溶媒に熔解させたリチウム電池用電
解液において、前記電解液の有機溶媒は、
i)エチレンカーボネイト、あるいはプロピレンカーボ
ネイト、あるいはエチレンカーボネイトとプロピレンカ
ーボネイトの混合溶媒、および1i)2−メチルテトラ
ヒドロフラン、および1ii)20℃における粘度が2
.5cP(センチポイズ)未満の非プロトン極性溶媒と
の混合溶媒を主成分とするものであることを特徴とする
。Therefore, the electrolytic solution for lithium secondary batteries according to the present invention is an electrolytic solution for lithium batteries in which a lithium salt is dissolved in an organic solvent, and the organic solvent of the electrolytic solution is: i) ethylene carbonate, propylene carbonate, or ethylene carbonate; and propylene carbonate, and 1i) 2-methyltetrahydrofuran, and 1ii) with a viscosity of 2 at 20°C.
.. It is characterized in that its main component is a mixed solvent with an aprotic polar solvent of less than 5 cP (centipoise).
本発明によれば、従来のエチレンカーボネイト/2−メ
チルテトラヒドロフラン混合溶媒系電解液とほぼ同等の
リチウムの充放電効率を有すると共に、より高い導電率
を有するリチウム二次電池用電解液を提供できるという
利点がある。このため、特殊な条件下で使用するリチウ
ム二次電池、Li”イオンの拡散速度が放電あるいは充
電電流値に大きく影響するようなリチウム、二次電池ま
たは充放電寿命が長いことよりも取得電流が高いことを
要求されるリチウム電池に有効に使用できるという利点
も生しる。According to the present invention, it is possible to provide an electrolyte for lithium secondary batteries that has almost the same lithium charging and discharging efficiency as the conventional ethylene carbonate/2-methyltetrahydrofuran mixed solvent electrolyte and has higher conductivity. There are advantages. For this reason, for lithium secondary batteries used under special conditions, where the diffusion rate of Li" ions greatly affects the discharging or charging current value, or for lithium secondary batteries that have a long charging/discharging life, the obtained current is Another advantage is that it can be effectively used in lithium batteries, which require high performance.
本発明をさらに詳細に説明する。 The present invention will be explained in further detail.
リチウム二次電池は、負極活物質がリチウムあるいはリ
チウムイオンを放電可能にするリチウム合金であり、正
極活物質がリチウムイオンと電気化学的に可逆反応を行
う物質であり、電解液がリチウム塩を有機溶媒に熔解さ
せた電池であるが、本発明によれば、前記有機溶媒とし
て、i)エチレンカーボネイト、あるいはプロピレンカ
ーボネイト、あるいはエチレンカーボネイトとプロピレ
ンカーボネイトの混合溶媒、および1i)2−メチルテ
トラヒドロフラン、および1ii)20℃における粘度
が2.5cP未溝の非プロトン極性溶媒との混合溶媒を
主成分として用いている。In a lithium secondary battery, the negative electrode active material is lithium or a lithium alloy that allows lithium ions to be discharged, the positive electrode active material is a material that electrochemically performs a reversible reaction with lithium ions, and the electrolyte is an organic According to the present invention, the organic solvent is i) ethylene carbonate, propylene carbonate, or a mixed solvent of ethylene carbonate and propylene carbonate, and 1i) 2-methyltetrahydrofuran, and 1ii). ) A mixed solvent with a non-protic polar solvent having a viscosity of 2.5 cP at 20° C. is used as the main component.
エチレンカーボネイト、プロピレンカーボネイト、ある
いはエチレンカーボネイトとプロピレンカーボネイトの
混合溶媒と2−メチルテトラヒドロワラン混合溶媒系電
解液はリチウムの充放電効率が特に高く、また導電率も
単独溶媒系電解液に比較して高い値を示す。しかしなが
ら、充放電サイクル寿命が極端に長いことは必要とされ
ず、取得電流値が特に高い値が要求とされるような電池
の特殊使用条件下では、エチレンカーボネイト/2−メ
チルナ1−ラヒドロフラン混合溶媒系電解液の導電率は
必ずしも充分とは断言できない可能性がある。通常、リ
チウム電池用電解液に用いる溶質(電解質)はリチウム
のルイス酸塩であり、例えば、LiCl04 、LiA
sF t3 、 LiBF4 、LiPFB、LiCF
3SO3、L4CF3 CO2、、LiAlCl4、等
が知られている。これらのリチウム塩はアニオンの半径
が大きく、カチオンとアニオンとの間に働く静電気的ク
ーロン引力が小さいため、イオンの解離度は高い。この
ため、導電率の改善には溶媒の粘度を低下させ、イオン
の移動性を向上させることが効果的であると考えられる
。20℃における粘度は、プロピレンカーボネイトが約
2.5cP、プロピレンカーボネイトとエチレンカーボ
ネイトの混合溶媒(体積混合比、1:4)が約2.4c
P(エチレンカーボネイトは融点が36℃で20’cで
は固体)であり、粘度が2.5cP未満の溶媒を混合す
ることは導電率の向上に効果的であると考えられる。し
かし、低粘度溶媒を混合することでエチレンカーボネイ
ト/2−メチルテトラヒドロフラン混合系より極端にリ
チウムの充放電効率が低下してしまうことは欠点となっ
てしまう。ところが、後述の実施例に示すように、本発
明の混合溶媒を用いることにより、エチレンカーボネイ
ト/2−メチルテトラヒドロフラン混合溶媒系電解液に
比較して、リチウムの充放電効率を極端に劣化させるこ
となく、導電率を改善したリチウム二次電池用電解液を
提供し得る。Ethylene carbonate, propylene carbonate, or a mixed solvent of ethylene carbonate and propylene carbonate, and a mixed solvent-based electrolyte of 2-methyltetrahydrofalane have particularly high lithium charging and discharging efficiency, and the conductivity is also higher than that of single-solvent electrolytes. Show value. However, under special battery usage conditions where an extremely long charge/discharge cycle life is not required and a particularly high acquired current value is required, ethylene carbonate/2-methylna-1-lahydrofuran mixed solvent There is a possibility that the electrical conductivity of the system electrolyte may not necessarily be sufficient. Usually, the solute (electrolyte) used in the electrolyte for lithium batteries is a Lewis acid salt of lithium, such as LiCl04, LiA
sF t3 , LiBF4 , LiPFB, LiCF
3SO3, L4CF3 CO2, LiAlCl4, etc. are known. In these lithium salts, the anion has a large radius and the electrostatic Coulomb attraction between the cation and anion is small, so the degree of ion dissociation is high. Therefore, it is considered effective to reduce the viscosity of the solvent and improve the mobility of ions in order to improve the conductivity. The viscosity at 20°C is approximately 2.5 cP for propylene carbonate, and approximately 2.4 cP for a mixed solvent of propylene carbonate and ethylene carbonate (volume mixing ratio, 1:4).
P (ethylene carbonate has a melting point of 36° C. and is solid at 20° C.), and it is considered that mixing a solvent with a viscosity of less than 2.5 cP is effective in improving the electrical conductivity. However, the disadvantage is that the mixing of a low viscosity solvent causes the lithium charging and discharging efficiency to be extremely lower than that of the ethylene carbonate/2-methyltetrahydrofuran mixed system. However, as shown in the Examples below, by using the mixed solvent of the present invention, compared to the ethylene carbonate/2-methyltetrahydrofuran mixed solvent electrolyte, lithium charging and discharging efficiency was not significantly deteriorated. , it is possible to provide an electrolyte solution for lithium secondary batteries with improved conductivity.
上述の低粘度溶媒として、例えば、ギ酸メチル、酢酸メ
チル、テトラヒドロピラン、1.3−ジオキソラン、1
,2−ジメトキシエタン、1,2−ジェトキシエタン、
2−メチル−1,3−ジオキソラン、4−メチル−1,
3−ジオキソラン、アセトニトリル、テトラヒドロピラ
ン等より選択された一種以上を用いることが可能である
。これらの低粘度溶媒の体積混合量は電解液の全溶媒量
に対して80%未満であり、特に好ましくは30〜50
%である。80%以上の混合量ではリチウムの充放電効
率が極端に低くなる虞がある。Examples of the above-mentioned low viscosity solvent include methyl formate, methyl acetate, tetrahydropyran, 1,3-dioxolane, 1
, 2-dimethoxyethane, 1,2-jethoxyethane,
2-methyl-1,3-dioxolane, 4-methyl-1,
It is possible to use one or more selected from 3-dioxolane, acetonitrile, tetrahydropyran, etc. The volumetric mixing amount of these low viscosity solvents is less than 80% of the total solvent amount of the electrolytic solution, particularly preferably 30 to 50%.
%. If the mixing amount is 80% or more, there is a possibility that the charging and discharging efficiency of lithium will be extremely low.
前述の混合溶媒に熔解されるリチウム塩は、本発明にお
いて基本的に限定されるものではない。The lithium salt dissolved in the above-mentioned mixed solvent is not fundamentally limited in the present invention.
例えば、LiAsF e、LiCl0a、Li5bFe
、、 LiPF6、LiBF4、LiAlCl4、L
iCF3SO3、LiCF3CO2,1、iz R10
C110等の一種以上のリチウム塩を有効に用いること
ができる。For example, LiAsFe, LiCl0a, Li5bFe
,, LiPF6, LiBF4, LiAlCl4, L
iCF3SO3, LiCF3CO2,1, iz R10
One or more lithium salts such as C110 can be effectively used.
このようなリチウム塩は、前記混合溶媒に0.5〜2.
5モル/β (M )添加するのがよい。0.5M未満
であると、リチウムの充放電特性が著しく低下し、また
2、5ンを超えると溶質の溶解が困難になる虞があるか
らである。Such a lithium salt is added to the mixed solvent in an amount of 0.5 to 2.
It is preferable to add 5 mol/β (M). If it is less than 0.5M, the charging and discharging characteristics of lithium will be significantly deteriorated, and if it exceeds 2.5M, it may become difficult to dissolve the solute.
本発明において使用される電解液の有機溶媒はi)エチ
レンカーボネイトあるいはプロピレンカーボネイトある
いはエチレンカーボネイi・とプロピレンカーボネイト
の混合溶媒、および1i)2−メチルテトラヒドロフラ
ン、および1ii)20℃における粘度が2.5cP未
溝の非プロトン極性溶媒との混合溶媒を主成分としてい
る。The organic solvent of the electrolyte used in the present invention is i) ethylene carbonate or propylene carbonate or a mixed solvent of ethylene carbonate and propylene carbonate, 1i) 2-methyltetrahydrofuran, and 1ii) a viscosity of 2. The main component is a mixed solvent with a 5cP non-grooved aprotic polar solvent.
このような混合溶媒に対し、溶質の溶解度を向上させる
ためなどの理由により少量の添加剤を使用することがで
きる。このような添加剤としては ゛例えば
、ヘキサメチルリン酸トリアミド、N、N、 N′、N
′−テトラメチルエチレンジアミン、ジグライム、トリ
グライム、テトラグライム等より選択された一種以上の
化合物を用いることかできる。A small amount of additive can be used in such a mixed solvent for reasons such as improving the solubility of the solute. Such additives include, for example, hexamethylphosphoric triamide, N, N, N', N
One or more compounds selected from '-tetramethylethylenediamine, diglyme, triglyme, tetraglyme, etc. can be used.
本発明による電解液を用いたリチウム電池に用いる負極
活物質は基本的に限定されるものではなく、従来のリチ
ウム電池に用いられている負極活物質、すなわちリチウ
ム、あるいはリチウムイオンを放電可能にするリチウム
合金を用いることができる。The negative electrode active material used in the lithium battery using the electrolyte according to the present invention is basically not limited, and any negative electrode active material used in conventional lithium batteries, that is, lithium or lithium ions, can be discharged. Lithium alloys can be used.
また、同様に本発明において用いられる正極活物質も基
本的に限定されず、従来のリチウム二次電池に用いられ
ている正極活物質、すなわちリチラムイオンと電気化学
的に可逆反応を行う物質であることができる。Similarly, the positive electrode active material used in the present invention is not fundamentally limited, and must be a material that electrochemically undergoes a reversible reaction with the positive electrode active material used in conventional lithium secondary batteries, that is, lithium ions. I can do it.
以下、実施例について説明する。Examples will be described below.
実施例1
電解液として、エチレンカーボネイト(以下、ECと略
記)と2−メチルテトラヒドロフラン(以下、2MeT
IIFと略記)とテトラヒドロフラン(以下、TIIF
)との混合溶媒(体積混合比、1:1:1)に1.5
M (M :モル/β)のLiAsF 6を熔解した
ものを作製した。−10〜30℃における上記電解液の
導電率を第1図に示す。第1図には、本発明の効果を示
すための参考例として、1.5MLiAsF e E
C/2MeTHF (体積混合比、l/I )の導電率
も示しである。第1図から、本発明によるEC/2Me
TllF/TIIF混合系電解液は、EC/ 2MeT
IIF系より高い導電率を示すことが判る。Example 1 Ethylene carbonate (hereinafter abbreviated as EC) and 2-methyltetrahydrofuran (hereinafter 2MeT) were used as electrolytes.
(abbreviated as IIF) and tetrahydrofuran (hereinafter referred to as TIIF)
) and a mixed solvent (volume mixing ratio, 1:1:1) of 1.5
A product was prepared by melting LiAsF 6 of M (M: mol/β). The electrical conductivity of the electrolytic solution at -10 to 30°C is shown in FIG. In FIG. 1, as a reference example for showing the effects of the present invention, 1.5MLiAsF e E
The conductivity of C/2MeTHF (volume mixing ratio, l/I) is also shown. From FIG. 1, it can be seen that EC/2Me according to the present invention
The TllF/TIIF mixed electrolyte is EC/2MeT
It can be seen that the conductivity is higher than that of the IIF type.
実施例2
電解液として、1.5MLiAsF e −F、C/2
MeTIIF/TIIF(体積混合比、1/1 /’1
)を作製して、以下に述べろ方法によってリチウムの
充放電効率を求めた。Example 2 As electrolyte, 1.5MLiAsF e -F, C/2
MeTIIF/TIIF (volume mixing ratio, 1/1/'1
) was prepared, and the lithium charge/discharge efficiency was determined by the method described below.
充放電効率(Ea)は作用極に白金を対極および参照電
極としてリチウムを用いた電池を作製し、以下のように
測定した。測定は、まず0.5mA /cJの定電流で
60分間、白金極上にリチウムを析出させたf& (4
,8C/ctJ) 、この析出させたリチウムの一部(
1,2C/cJ)をLi1イオンとして放電し、再びさ
らに1.2C/cnlの容量で放電するサイクル試験を
繰り返した。充放電効率([a)は白金極の電位の変化
により求め、見掛は上100%の効率を示すサイクル数
をnとすると、下記の式(T)より、前記Haを求める
ことができる。The charge/discharge efficiency (Ea) was measured as follows by preparing a battery using platinum as a working electrode and lithium as a counter electrode and a reference electrode. The measurement was first carried out using f & (4
,8C/ctJ), a part of this precipitated lithium (
A cycle test was repeated in which the battery was discharged at a capacity of 1.2 C/cJ) as Li1 ions, and then further discharged at a capacity of 1.2 C/cnl. The charge/discharge efficiency ([a) is determined by a change in the potential of the platinum electrode, and if n is the number of cycles showing an apparent efficiency of 100%, the Ha can be determined from the following formula (T).
Ea= (1,2−(4,8−1,,2) / n)
/1.2 X100 (%) −−(T )結果を第
1表に示す。第1表には、比較例として、1.5MLi
AsF e −EC/2MeTIIF (体積混合比。Ea= (1,2-(4,8-1,,2)/n)
/1.2 X100 (%) --(T) The results are shown in Table 1. Table 1 shows 1.5MLi as a comparative example.
AsF e -EC/2MeTIIF (volume mixing ratio.
1/1)を用いた場合のリチウムの充放電効率も示しで
ある。EC/ 2MeTIIF/TIIF混合系〔第1
表(A)〕はEC/2MeTIIF混合系〔第1表(B
)〕とほぼ同等の値を示すことがわかる。1/1) is also shown. EC/2MeTIIF/TIIF mixed system [1st
Table (A)] shows the EC/2MeTIIF mixed system [Table 1 (B)
)].
実施例3
電解液として、1.5ML+As’F e −EC/2
MeTHF/ギ酸メチル(以下、MP ) (体積
混合比、415 /6 )を作製し、導電率を測定した
。第2図に結果を示す。第2図かられかるように、本発
明によるEC/ 2MeTHP/ MP混合系を用いる
ことにより、EC/2MeTHF混合系より高い導電率
が得られることが判る。Example 3 As electrolyte solution, 1.5ML+As'F e -EC/2
MeTHF/methyl formate (hereinafter referred to as MP) (volume mixing ratio, 415/6) was prepared, and the electrical conductivity was measured. Figure 2 shows the results. As can be seen from FIG. 2, by using the EC/2MeTHP/MP mixed system according to the present invention, higher conductivity can be obtained than the EC/2MeTHF mixed system.
実施例4
電解液として、1.5MLiAsF s −EC/2M
eTtlF/MP(体積混合比、415 /6 )を作
製し、実施例2と同様にしてリチウムの充放電効率を測
定した。結果を第1表に示す。EC/ 2MeTHF
/ MP混合系〔第1表(C)〕は、EC/2Me↑I
IP混合系〔第1表(B)〕とほぼ同等のリチウムの充
放電効率を示すことが判る。Example 4 1.5M LiAsF s -EC/2M as electrolyte
eTtlF/MP (volume mixing ratio, 415/6) was produced, and the lithium charge/discharge efficiency was measured in the same manner as in Example 2. The results are shown in Table 1. EC/2MeTHF
/ MP mixed system [Table 1 (C)] is EC/2Me↑I
It can be seen that the lithium charging/discharging efficiency is almost the same as that of the IP mixed system [Table 1 (B)].
実施例5
電解液として、1.5MLiAsF s EC/2M
eTllF/アセトニトリル(以下、AN) (体積
混合比、415 /6 ”)を作製し、導電率を測定し
た。第3図に結果を示す。第3図から判るように、本発
明によるEC/2MeT)IP/AN混合系を用いるこ
とにより、EC/2MeTtlP混合系より高い導電率
が得られることが判る。Example 5 As electrolyte, 1.5M LiAsF s EC/2M
eTllF/acetonitrile (hereinafter referred to as AN) (volume mixing ratio, 415/6") was prepared and its conductivity was measured. The results are shown in Figure 3. As can be seen from Figure 3, EC/2MeT according to the present invention ) It can be seen that higher conductivity can be obtained by using the IP/AN mixed system than the EC/2MeTtlP mixed system.
実施例6
電解液として、1.5MLiAsF e −EC/2M
eTHF/八N(体積混合比、へ15 /6 )を用い
た以外は、実施例2と同様にしてリチウムの充放電効率
を測定した。結果を第1表に示す。EC/2MeTII
F/AN混合系〔第1表(D)〕は、EC/ 2MeT
llF混合系〔第1表(B)〕とほぼ同等のリチウムの
充放電効率を示すことが判る。Example 6 As electrolyte, 1.5M LiAsF e -EC/2M
The charging and discharging efficiency of lithium was measured in the same manner as in Example 2, except that eTHF/8N (volume mixing ratio, 15/6) was used. The results are shown in Table 1. EC/2MeTII
The F/AN mixed system [Table 1 (D)] is EC/2MeT
It can be seen that the lithium charging/discharging efficiency is almost the same as that of the llF mixed system [Table 1 (B)].
実施例7
電解液として、■IMLiAsF s −EC/プロピ
レンカーボネイト(以下、PC) /2MeTHF/T
IIF(体積混合比、1/1 /2 /2 ) 、ある
いは■IMLiAsP e −EC/2MeTHF/L
、2−ジメトキシエタン(以下、D肝)(体積混合比、
1/1 /1 )、 ・あるいは■IMLiAsP
e−PC/2MeTHF/1.3−ジオキソラン(以下
、DOL)(体積混合比、3/3 /2 )あるいは■
1.5MLiAsF s −EC/2MeTllF/酢
酸メチル(以下、触)(体積混合比、1/1 /1 )
あるいは■1.5MLi八sF e へEC/2MeT
HF/1.2−ジェトキシエタン(以下、D旺)(体積
混合比、 1 /1 /1 )を用いた以外は実施例2
と同様にしてリチウムの充放電効率を測定し、25°C
における導電率も測定した。これらの結果を第2表に示
す。第2表より本発明による上記■〜■の電解液は、I
IC/2MeTIIP混合系より高い導電率を示すとと
もにEC/2MeTIIF系とほぼ同等のリチウムの充
放電効率を示すことが判る。Example 7 As the electrolyte, ■ IMLiAsF s -EC/propylene carbonate (hereinafter referred to as PC) /2MeTHF/T
IIF (volume mixing ratio, 1/1/2/2) or ■IMLiAsPe-EC/2MeTHF/L
, 2-dimethoxyethane (hereinafter referred to as D liver) (volume mixing ratio,
1/1 /1), or ■IMLiAsP
e-PC/2MeTHF/1.3-dioxolane (hereinafter referred to as DOL) (volume mixing ratio, 3/3/2) or ■
1.5MLiAsFs-EC/2MeTllF/methyl acetate (hereinafter referred to as methyl acetate) (volume mixing ratio, 1/1/1)
Or ■1.5MLi8sF e to EC/2MeT
Example 2 except that HF/1.2-jethoxyethane (hereinafter referred to as D) (volume mixing ratio, 1/1/1) was used.
Measure the charging and discharging efficiency of lithium in the same manner as above, and
The electrical conductivity was also measured. These results are shown in Table 2. From Table 2, the electrolytes of the above ■ to ■ according to the present invention are I
It can be seen that it exhibits higher conductivity than the IC/2MeTIIP mixed system, and also exhibits lithium charging and discharging efficiency almost equivalent to the EC/2MeTIIF system.
第1表
(以下余白)
第2表
□
〔発明の効果〕
以上説明したように、本発明によるリチウム電池用電解
液によれば、i)エチレンカーボネイトあるいはプロピ
レンカーボネイト、あるいはエチレンカーボネイトとプ
ロピレンカーボネイトの混1 合溶媒、およびii)2
−メチルテトラヒドロフラン、および1ii)20℃に
おける粘度が2,5cP未満の非プロトン極性溶媒との
混合溶媒を主成分とした電解液を用いることにより、導
電率が高く、かつリチウムの充放電効率が良好なリチウ
ム電池用電解液を提供できる。Table 1 (blank below) Table 2 □ [Effects of the invention] As explained above, according to the electrolyte for lithium batteries according to the present invention, i) ethylene carbonate, propylene carbonate, or a mixture of ethylene carbonate and propylene carbonate; 1 combined solvent, and ii) 2
- By using an electrolytic solution mainly composed of a mixed solvent of methyltetrahydrofuran and 1ii) an aprotic polar solvent with a viscosity of less than 2.5 cP at 20°C, the electrical conductivity is high and the lithium charging/discharging efficiency is good. It is possible to provide an electrolyte solution for lithium batteries.
第1図〜第3図は、本発明による電解液の導電1率と温
度の関係を示した図である。
出願人代理人 雨 宮 正 季
(I8)
第1図
第2図FIGS. 1 to 3 are diagrams showing the relationship between the electrical conductivity and temperature of the electrolytic solution according to the present invention. Applicant's agent Masaki Amemiya (I8) Figure 1 Figure 2
Claims (1)
池用電解液において、前記有機溶媒は、i)エチレンカ
ーボネイト、あるいはプロピレンカーボネイトあるいは
エチレンカーボネイトとプロピレンカーボネイトの混合
溶媒、および ii)2−メチルテトラヒドロフラン、およびiii)
20℃における粘度が2.5cP未満の非プロトン極性
溶媒との混合溶媒を主成分とすることを特徴とするリチ
ウム電池用電解液。(1) In an electrolytic solution for lithium batteries in which a lithium salt is dissolved in an organic solvent, the organic solvent is i) ethylene carbonate, propylene carbonate, or a mixed solvent of ethylene carbonate and propylene carbonate, and ii) 2-methyltetrahydrofuran. and iii)
An electrolytic solution for lithium batteries, characterized in that the main component is a mixed solvent with an aprotic polar solvent having a viscosity of less than 2.5 cP at 20°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61265121A JPS63119170A (en) | 1986-11-07 | 1986-11-07 | Electrolyte for use in lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61265121A JPS63119170A (en) | 1986-11-07 | 1986-11-07 | Electrolyte for use in lithium battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63119170A true JPS63119170A (en) | 1988-05-23 |
JPH053115B2 JPH053115B2 (en) | 1993-01-14 |
Family
ID=17412907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61265121A Granted JPS63119170A (en) | 1986-11-07 | 1986-11-07 | Electrolyte for use in lithium battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63119170A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0398689A2 (en) * | 1989-05-16 | 1990-11-22 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59134568A (en) * | 1983-01-24 | 1984-08-02 | Nippon Telegr & Teleph Corp <Ntt> | Electrolyte for lithium battery |
-
1986
- 1986-11-07 JP JP61265121A patent/JPS63119170A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59134568A (en) * | 1983-01-24 | 1984-08-02 | Nippon Telegr & Teleph Corp <Ntt> | Electrolyte for lithium battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0398689A2 (en) * | 1989-05-16 | 1990-11-22 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JPH053115B2 (en) | 1993-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7582380B1 (en) | Lithium-ion cell with a wide operating temperature range | |
KR20070098636A (en) | Non-aqueous electrolyte secondary battery | |
JP2007087883A (en) | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery | |
JP2003203674A (en) | Nonaqueous electrolyte secondary cell | |
JP4753593B2 (en) | Nonaqueous electrolyte secondary battery | |
Lee et al. | Hydrofluoroether-assisted dilution of Na-ion concentrated ionic liquid electrolyte for safe, stable cycling of high-voltage Na-metal batteries | |
JPS59134568A (en) | Electrolyte for lithium battery | |
WO2023035399A1 (en) | Nonaqueous electrolyte and battery | |
JP3418446B2 (en) | Electrolyte for electrochemical cell and battery | |
JPS63119170A (en) | Electrolyte for use in lithium battery | |
JP2015230830A (en) | Active material, and sodium ion battery and lithium ion battery using the same | |
JP2008084766A (en) | Non-aqueous electrolyte secondary battery | |
JPS63114075A (en) | Electrolyte for lithium secondary battery | |
JP2654553B2 (en) | Electrolyte for lithium secondary battery | |
JPH0351068B2 (en) | ||
JPS62271370A (en) | Electrolyte for lithium battery | |
JPH0377626B2 (en) | ||
JPS62219475A (en) | Secondary cell of lithium | |
JPS63239781A (en) | Lithium ion conductive eiectrolyte | |
JP2003346799A (en) | Non-aqueous electrolyte secondary battery | |
JPS62222575A (en) | Lithium secondary battery | |
JPS62222577A (en) | Electrolyte for lithium battery | |
JPS63114076A (en) | Electrolyte for lithium secondary battery | |
KR20010107708A (en) | Doped positive-electrode material in electrochemical cells | |
JP2000040524A (en) | Electrolyte for lithium secondary battery and secondary battery |