JPS63118701A - Production of optical element - Google Patents

Production of optical element

Info

Publication number
JPS63118701A
JPS63118701A JP26593886A JP26593886A JPS63118701A JP S63118701 A JPS63118701 A JP S63118701A JP 26593886 A JP26593886 A JP 26593886A JP 26593886 A JP26593886 A JP 26593886A JP S63118701 A JPS63118701 A JP S63118701A
Authority
JP
Japan
Prior art keywords
resist
optical element
grating
film
acceleration voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26593886A
Other languages
Japanese (ja)
Other versions
JPH0827404B2 (en
Inventor
Teruhiro Shiono
照弘 塩野
Kentaro Setsune
瀬恒 謙太郎
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61265938A priority Critical patent/JPH0827404B2/en
Publication of JPS63118701A publication Critical patent/JPS63118701A/en
Publication of JPH0827404B2 publication Critical patent/JPH0827404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To improve optical characteristics by applying positive resist to the surface of a substrate, converging ion beams into the resist so as to make the beams correspond to the shape of an optical element while changing acceleration voltage to draw a picture and executing development processing to change the film thickness of the resist. CONSTITUTION:The positive resist 6 is applied to the glass substrate 1 and an electrification preventing film 3 is vacuum deposited on the surface of the resist 6. The acceleration voltage of ion beams 5 is periodically changed from a large value to a small value or a small value to a large value so as to correspond to the shape of a grating 20 with a fixed period to converge the ion beams 5 into the resist 6 and directly draw a picture. Finally, the film 3 is removed by etching and developed, so that resist is deeply peeled on the draw portion with a high ion beam acceleration voltage and the film thickness of the resist 6 can be changed to obtain the grating 20. Thus, an excellent sectional shape can be obtained with high reproducibility and the optical characteristics can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光学素子の製造方法に関するものであり、特
に光学特性の優れた薄膜形微小光学素子を提供するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing an optical element, and in particular provides a thin film micro optical element with excellent optical properties.

従来の技術 近年、マイクロフレネルレンズやマイクログレーティン
グ等の薄膜形微小光学素子は、小形軽量で種々の機能を
有する光学素子として注目されている。種々の光分布や
高効率を実現しようとすると、フレネルレンズやグレー
ティングの断面形状を制御する必要がある。例えば、断
面形状を適当な膜厚で鋸歯状とすると、回折効率はほぼ
100チという高効率を実現することができる。
2. Description of the Related Art In recent years, thin film micro optical elements such as micro Fresnel lenses and micro gratings have attracted attention as optical elements that are small and lightweight and have various functions. In order to achieve various light distributions and high efficiency, it is necessary to control the cross-sectional shapes of Fresnel lenses and gratings. For example, if the cross-sectional shape is made into a sawtooth shape with an appropriate film thickness, a high diffraction efficiency of approximately 100 inches can be achieved.

従来の薄膜形微小光学素子の製造方法としては、まず第
2図とに示すように、基板1上に電子ビームレジスト2
とAu等の帯電防止膜3を塗布又は堆積し、bに示すよ
うに電子ビーム4の加速電圧は一定のまま電子ビーム4
の走査回数等を制御してレジスト2上に直接描画してレ
ジストを露光し、その後Cに示すように帯電防心膜3の
エツチング現像処理をすることにより断面形状が鋸歯状
の7レネルレンズ、グレーティング2Aを製造するとい
う方法があった。(藤田他:“電子ビーム描画作製によ
るブレーズ化マイクロフレネルレンズ。
As shown in FIG. 2, a conventional method for manufacturing a thin film micro-optical element involves first applying an electron beam resist 2 on a substrate 1.
An antistatic film 3 such as Au is coated or deposited, and as shown in b, the electron beam 4 is heated while the acceleration voltage of the electron beam 4 is constant.
The resist is exposed by drawing directly on the resist 2 by controlling the number of scans, etc., and then etching and development is performed on the antistatic membrane 3 as shown in C to form a 7-renel lens with a sawtooth cross-sectional shape and a grating. There was a method of manufacturing 2A. (Fujita et al.: “Blazed micro Fresnel lens fabricated by electron beam lithography.

電子通信学会論文誌(’)+ 166− C* ’ +
 pp。
Journal of the Institute of Electronics and Communication Engineers (') + 166- C* ' +
pp.

85−91(昭5a−1)) 発明が解決しようとする問題点 このような従来の方法では、低質量の電子ビームを用い
て描画しているため、レジスト内や基板からの散乱のた
めいわゆる近接効果が生じ、さらにはレジストの感度特
性を正確に補正して露光量を調整する必要があり、第3
図Cに示すようなグレーティングのだれや表面の凹凸が
生じやすく、理想的な鋸歯形状の実現は難しく、つまり
は良好な光学特性をもつ光学素子は得られなかった。
85-91 (Sho 5a-1)) Problems to be Solved by the Invention In such conventional methods, writing is performed using a low-mass electron beam, so that scattering within the resist and from the substrate causes so-called Proximity effects occur, and it is also necessary to accurately correct the sensitivity characteristics of the resist to adjust the exposure amount.
As shown in Figure C, grating sagging and surface irregularities are likely to occur, making it difficult to achieve an ideal sawtooth shape.In other words, an optical element with good optical properties could not be obtained.

本発明はかかる点に鑑みてなされたもので、光学特性の
優れた薄膜形光字素子を提供することを目的とする。
The present invention has been made in view of these points, and an object of the present invention is to provide a thin film type optical element with excellent optical properties.

問題点を解決するための手段 本発明は上記問題点を解決するため、イオンビームを用
いて、加速電圧を変化させて製造するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention uses an ion beam and manufactures it by changing the acceleration voltage.

作  用 本発明は電子ビームに比べて質量の重いイオンビームを
用いているためレジスト内での散乱が生じにくくなる。
Function: Since the present invention uses an ion beam with a heavier mass than an electron beam, scattering within the resist is less likely to occur.

又、イオンの侵入深さは加速電圧に依存して変化するこ
とを利用して深さ方向の露光制御を精密に行うことが出
来る。
Further, exposure control in the depth direction can be performed precisely by utilizing the fact that the penetration depth of ions changes depending on the accelerating voltage.

実施例 第1図は本発明の一実施例のグレーティングの製造工程
図である。同図において、1は基板、6はポジ形レジス
ト、3は帯電防止膜である。本実施例では、基板1とし
てガラス、ポジ形レジスト6としてPMMA、帯電防止
膜3としてAu膜を用いた。しかるに、基板1としては
グレーティングの使用波長において透過率の優れている
ものなら何でもよい。又Au膜3はイオンビーム6の帯
電を防止するためだけに用いているものであり、イオン
ビーム6の帯電の心配のない場合、つまり基板1あるい
はレジスト2が導電性のある場合には必要がないし、A
J等の他の金属薄膜でもよい。
Embodiment FIG. 1 is a manufacturing process diagram of a grating according to an embodiment of the present invention. In the figure, 1 is a substrate, 6 is a positive resist, and 3 is an antistatic film. In this example, glass was used as the substrate 1, PMMA was used as the positive resist 6, and Au film was used as the antistatic film 3. However, the substrate 1 may be any material as long as it has excellent transmittance at the wavelength used by the grating. Furthermore, the Au film 3 is used only to prevent the ion beam 6 from being charged, and is not necessary when there is no concern about the ion beam 6 being charged, that is, when the substrate 1 or the resist 2 is conductive. No, A
Other metal thin films such as J may also be used.

次に、製造工程について説明する。まず、第1図aに示
すように基板1の上に、ポジ形レジスト6を例えば、1
.3μm塗布し、その上に帯電防止膜3を例えば、10
0人真空蒸着した。次に、第1図すに示すように製造す
る例えば、周期5μmのグレーティング2′の形状に対
応するように、イオンビーム6の加速電圧を周期的に大
きな値から小さな値へと、又は小さな値から大きな値へ
と変化させて、ポジ形レジスト6に集束させて直接描画
した。本発明者らは、イオンビーム5のレジスト6層内
への侵入深さは、イオンビーム5の加速電圧で決まり、
多小露光量がオーバーしても、現像後の膜厚はほぼ一定
であることを発見した。例えば、イオンビームとしてB
e  を用い、加速電圧ノ大きサカ、5oKV 、10
0KV 、150KV 。
Next, the manufacturing process will be explained. First, as shown in FIG. 1a, a positive resist 6, for example, 1
.. 3 μm coating, and on top of that, antistatic film 3 with a thickness of 10 μm, for example.
0 people vacuum evaporated. Next, the acceleration voltage of the ion beam 6 is periodically changed from a large value to a small value, or to a small value, so as to correspond to the shape of the grating 2' having a period of 5 μm, for example, which is manufactured as shown in FIG. to a large value, and was focused on the positive resist 6 and directly written. The present inventors have determined that the penetration depth of the ion beam 5 into the resist 6 layer is determined by the accelerating voltage of the ion beam 5.
It has been discovered that even if the exposure amount is exceeded, the film thickness after development remains almost constant. For example, as an ion beam, B
Using e, the accelerating voltage is large, 5oKV, 10
0KV, 150KV.

200 KVで適性露光以上のとき、現像によりはく離
したレジスト6の膜厚は、それぞれ、O,Sμm。
At 200 KV and above appropriate exposure, the film thicknesses of the resist 6 peeled off by development were O and S μm, respectively.

0.8μm、1.0μm、1.2μmとなり露光量には
依存せず加速電圧でほぼ決定された。又、イオンビーム
5は基板1側にはほとんど透過しないので、レジスト6
の感度がよくなり、描画時間も短くなった。
They were 0.8 μm, 1.0 μm, and 1.2 μm, and were almost determined by the accelerating voltage without depending on the exposure amount. In addition, since the ion beam 5 hardly passes through the substrate 1 side, the resist 6
The sensitivity has improved and the drawing time has become shorter.

本実施例では、Be  ビーム6の加速電圧を、例えば
グレーティング20の山の部分は1KV。
In this embodiment, the acceleration voltage of the Be beam 6 is set to, for example, 1 KV at the peaks of the grating 20.

谷の部分は220KVと設定し、グレーティング2′形
状に対応するようにIKVから220KVまでなめらか
に変化させた。最後に、帯電防止膜3をエツチングして
除去し、現像処理をすると、第1図Cに示すように、描
画したイオンビームの加速電圧が高いところほど、レジ
スト6が多くはく離して、レジスト6の膜厚を変化させ
ることができ、これによりグレーティング20を得た。
The valley part was set at 220KV, and the voltage was changed smoothly from IKV to 220KV to correspond to the shape of the grating 2'. Finally, when the antistatic film 3 is removed by etching and developed, as shown in FIG. The thickness of the grating 20 was obtained by changing the thickness of the grating 20.

グレーティング2oは、イオンビーム5のレジスト6内
での散乱、又は基板1からの散乱の影響を受ける。いわ
ゆる近接効果の影響もなく、設計通シのだれや凹凸のな
い良好な鋸歯状の断面形状が実現できた。さらに、イオ
ンビーム6の侵透深さは露光量によらずほぼ加速電圧で
決まるので、従来例のようにレジス)6の感度特性を正
確に補正して露光量を調整する必要もなくなり、再現性
よく良好な断面形状が容易に実現することができた。つ
まりは、光学特性のよいグレーティング20が得られた
The grating 2o is affected by scattering of the ion beam 5 within the resist 6 or scattering from the substrate 1. There was no influence of the so-called proximity effect, and a good sawtooth cross-sectional shape without droop or unevenness throughout the design was realized. Furthermore, since the penetration depth of the ion beam 6 is almost determined by the accelerating voltage regardless of the exposure amount, there is no need to accurately correct the sensitivity characteristics of the resistor 6 and adjust the exposure amount as in the conventional example. A good cross-sectional shape with good properties could be easily achieved. In other words, a grating 20 with good optical properties was obtained.

レジスト6の膜厚は本実施例ではd = 1.37xm
としたが、これは、グレーティング20の使用波長をH
e−Neレーザのλ−0.63 、287zmとし、レ
ジスト6のPMMAの屈折率がn−1,6であるため、
1次回折効率はd=λ/ (n−1) −1,3のとき
最大となるためである。ポジ形のレジストの屈折率は、
1.6〜1.7程度であるため、高効率を得ようとした
場合、レジスト6の膜厚はd=2λ以下でよいことがわ
かった。
The film thickness of the resist 6 is d = 1.37xm in this example.
However, this means that the wavelength used for the grating 20 is H
Since the e-Ne laser has λ-0.63 and 287zm, and the refractive index of PMMA of resist 6 is n-1.6,
This is because the first-order diffraction efficiency is maximum when d=λ/(n-1)-1,3. The refractive index of positive resist is
Since it is approximately 1.6 to 1.7, it was found that the film thickness of the resist 6 may be d=2λ or less when trying to obtain high efficiency.

本実施例では、イオンとしてBe  を用いた場合につ
いて説明したが、他のイオンを用いても同様の効果が得
られた。このとき、イオンの質量が重いほど侵入深さが
浅くなったため、加速電圧をイオンの質量に応じて適切
に設定する必要があった。又、加速電圧が250KV以
下を実用とじて考えたとき、質量27のAl  は25
0KVで侵入深さが0.871m であり、質量28の
S12+は250KVで侵入深さが0.67zmであっ
た。グレーティング20等の光学素子は使用波長λ−0
,4〜1μmのものが多いので、レジスト6の最大膜厚
は2λ程度つまりは0.8μm〜271m必要である。
In this example, a case was explained in which Be was used as the ion, but similar effects could be obtained using other ions. At this time, the heavier the mass of the ion, the shallower the penetration depth, so it was necessary to appropriately set the accelerating voltage according to the mass of the ion. Also, considering that the accelerating voltage is 250 KV or less for practical use, Al with a mass of 27 is 25
The penetration depth was 0.871 m at 0 KV, and the S12+ of mass 28 had a penetration depth of 0.67 zm at 250 KV. Optical elements such as grating 20 use wavelength λ-0
, 4 to 1 μm, the maximum film thickness of the resist 6 must be about 2λ, that is, 0.8 μm to 271 m.

以上の実験から、質量27以下のイオンを用いると、特
に高効率をもつ光学素子が実現できることを発見した。
From the above experiments, we discovered that an optical element with particularly high efficiency can be realized by using ions with a mass of 27 or less.

本実施例ではレジスト6としてPMMAを用いた場合に
ついて説明したが、他のレジストについても同様に効果
があった。
In this example, the case where PMMA was used as the resist 6 was explained, but the same effect was obtained with other resists.

第2図は、本発明の一実施例の作製完了後のグレーティ
ング20の使用例を示すものである。基板1側から、入
射光7として例えばHe−Neレーザ光を入射させると
、グレーティング2oにより回折されて、入射光7とは
違った角度で回折光8として出射される例である。
FIG. 2 shows an example of use of the grating 20 after completion of fabrication according to an embodiment of the present invention. This is an example in which when, for example, a He-Ne laser beam is incident as incident light 7 from the substrate 1 side, it is diffracted by the grating 2o and output as diffracted light 8 at a different angle from that of the incident light 7.

本実施例では、周期5/JfHのグレーティングにを作
製したため、回折光8の出射角度は、入射光7に対して
約7°であった。又、本実施例によりだれのない良好な
グレーティング2oが作製できたため、回折された光の
割合は、100%に近い良好なものであった。又、入射
光7はグレーティング20側から入射してもよい。
In this example, since a grating with a period of 5/JfH was fabricated, the output angle of the diffracted light 8 was approximately 7° with respect to the incident light 7. Moreover, since a good grating 2o with no droop could be produced in this example, the proportion of diffracted light was good, close to 100%. Further, the incident light 7 may be incident from the grating 20 side.

又、本実施例では断面形状が鋸歯状のグレーティングに
ついて説明を行ってきたが、種々の断面形状をもつグレ
ーティングやフレネルレンズ等の他の薄膜微小光学素子
の製造方法についても同様の効果が得られるのは言うま
でもない。
Furthermore, although this embodiment has described a grating with a sawtooth cross-sectional shape, similar effects can be obtained with methods of manufacturing other thin-film micro-optical elements such as gratings and Fresnel lenses with various cross-sectional shapes. Needless to say.

発明の効果 以上のように、本発明によれば、ビームの近接効果を減
少させ、又レジストの感度特性の補正もほとんど不必要
となり、良好な断面形状実現が可能となり、つまりは光
学特性のよい薄膜微小光学素子が実現できるという効果
を有する。
Effects of the Invention As described above, according to the present invention, the proximity effect of the beam is reduced, correction of the sensitivity characteristics of the resist is almost unnecessary, and it is possible to realize a good cross-sectional shape. This has the effect that a thin film micro-optical element can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の一実施例のグレーテ
ィングの製造工程図および構成図、第3図は従来例のグ
レーティングの製造工程図である。 1・・・・・・基板、20・・・・・・グレーティング
、5・・・・・・イオンビーム、6・・・・・・ポジ形
レジスト。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/ 
−−一基板 3−帯電前止膜 π−−−グルーティング /−m−基板 7−入射光 8−@M元 第 2 図            π−−−グレーテ
ィング2つ
FIGS. 1 and 2 are a manufacturing process diagram and a configuration diagram of a grating according to an embodiment of the present invention, respectively, and FIG. 3 is a manufacturing process diagram of a conventional grating. 1...Substrate, 20...Grating, 5...Ion beam, 6...Positive resist. Name of agent: Patent attorney Toshio Nakao and 1 other person/
--One substrate 3-Pre-charging film π---Grouting/-m-Substrate 7-Incoming light 8-@M element 2nd Figure π---Two gratings

Claims (5)

【特許請求の範囲】[Claims] (1)基板上にポジ形レジストを塗布し、上記レジスト
にイオンビームを、光学素子の形状に対応するように加
速電圧を変化させながら集束させて描画し、現像処理を
行い上記レジストの膜厚を変化させることを特徴とする
光学素子の製造方法。
(1) A positive resist is applied onto the substrate, an ion beam is focused and drawn on the resist while changing the acceleration voltage to correspond to the shape of the optical element, and development processing is performed to increase the film thickness of the resist. 1. A method for manufacturing an optical element, characterized by changing.
(2)イオンの質量は27以下であることを特徴とする
特許請求の範囲第1項に記載の光学素子の製造方法。
(2) The method for manufacturing an optical element according to claim 1, wherein the mass of the ions is 27 or less.
(3)光学素子はフレネルレンズであることを特徴とす
る特許請求の範囲第1項に記載の光学素子の製造方法。
(3) The method for manufacturing an optical element according to claim 1, wherein the optical element is a Fresnel lens.
(4)光学素子はグレーティングであることを特徴とす
る特許請求の範囲第1項に記載の光学素子の製造方法。
(4) The method for manufacturing an optical element according to claim 1, wherein the optical element is a grating.
(5)レジストの膜厚は光学素子の使用波長の2倍以下
であることを特徴とする特許請求の範囲第1項に記載の
光学素子の製造方法。
(5) The method for manufacturing an optical element according to claim 1, wherein the thickness of the resist is twice or less the wavelength used by the optical element.
JP61265938A 1986-11-07 1986-11-07 Optical element manufacturing method Expired - Lifetime JPH0827404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265938A JPH0827404B2 (en) 1986-11-07 1986-11-07 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265938A JPH0827404B2 (en) 1986-11-07 1986-11-07 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JPS63118701A true JPS63118701A (en) 1988-05-23
JPH0827404B2 JPH0827404B2 (en) 1996-03-21

Family

ID=17424164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265938A Expired - Lifetime JPH0827404B2 (en) 1986-11-07 1986-11-07 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JPH0827404B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112705A (en) * 1980-12-29 1982-07-13 Shimadzu Corp Manufacture of holographic grating
JPS6127505A (en) * 1984-07-18 1986-02-07 Nippon Sheet Glass Co Ltd Manufacture of blaze optical element
JPS61172101A (en) * 1985-01-25 1986-08-02 Matsushita Electric Ind Co Ltd Formation of diffraction grating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112705A (en) * 1980-12-29 1982-07-13 Shimadzu Corp Manufacture of holographic grating
JPS6127505A (en) * 1984-07-18 1986-02-07 Nippon Sheet Glass Co Ltd Manufacture of blaze optical element
JPS61172101A (en) * 1985-01-25 1986-08-02 Matsushita Electric Ind Co Ltd Formation of diffraction grating

Also Published As

Publication number Publication date
JPH0827404B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US5982545A (en) Structure and method for manufacturing surface relief diffractive optical elements
JP3368225B2 (en) Method for manufacturing diffractive optical element
US4842969A (en) Transmittance modulation photomask, process for producing the same, and process for producing diffraction gratings using the same
US4983499A (en) Method of forming waveguide lens having refractive index distribution
JPWO2004031815A1 (en) Anti-reflection diffraction grating
JPS5842003A (en) Polarizing plate
JPS62109049A (en) Production of minute optical element
JPS63118701A (en) Production of optical element
JPS59116602A (en) Production of chirped-grating
CN115428153A (en) Lens array and preparation method thereof
JPH1130711A (en) Diffraction optical element and its manufacture, and optical equipment
JPS608802A (en) Manufacture of blazed grating
JPS61122602A (en) Fresnel lens
JPH0812302B2 (en) Method for producing titanium oxide thin film
JPS6127505A (en) Manufacture of blaze optical element
JPS60202402A (en) Fresnel lens
JP3041916B2 (en) Method for manufacturing lens array
JPH07113905A (en) Production of diffraction grating
JPS61174502A (en) Optical element for soft x ray
JPS6221102A (en) Manufacture of fresnel lens
JPS63271265A (en) Production of transmissivity modulation type photomask and production of diffraction gtating using the photomask
JP2706621B2 (en) Infrared diffraction lens
JPH05333204A (en) Production of diffractive optical element
JPS60191202A (en) Production for fresnel lens
JP2702883B2 (en) Infrared diffraction lens