JPH0749407A - Fresnel lens for infrared ray - Google Patents

Fresnel lens for infrared ray

Info

Publication number
JPH0749407A
JPH0749407A JP10369894A JP10369894A JPH0749407A JP H0749407 A JPH0749407 A JP H0749407A JP 10369894 A JP10369894 A JP 10369894A JP 10369894 A JP10369894 A JP 10369894A JP H0749407 A JPH0749407 A JP H0749407A
Authority
JP
Japan
Prior art keywords
lens
fresnel lens
light
refractive index
incident light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10369894A
Other languages
Japanese (ja)
Other versions
JP2713550B2 (en
Inventor
Teruhiro Shiono
照弘 塩野
Osamu Yamazaki
攻 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6103698A priority Critical patent/JP2713550B2/en
Publication of JPH0749407A publication Critical patent/JPH0749407A/en
Application granted granted Critical
Publication of JP2713550B2 publication Critical patent/JP2713550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To provide a Fresnel lens of excellent light converging quality by constituting a rugged part which is dependent on the wavelength of the incident light and corresponds to the phase modulation of the lens of the specified material. CONSTITUTION:A rugged part 2 corresponding to the phase modulation of a lens with serrated section is provided on the surface of the Si crystal 1. The depth (t) of the groove of this rugged part 2 is set so as to meet the relationship t=lambda/(n-1) by using the refractive index (n) of the substance constituting the lens and the wavelength lambda of the incident light to maximize the light converging efficiency of the lens. The refractive index of the near-infrared and transparent InP is n=3.5, and the semi-conductor laser beam of lambda=1.55mum is used as the incident light, and the depth of the groove t=0.62mum. This constitution can realize a thin Fresnel lens whose thickness is about 1/5 of the conventional lens. As a result, the quantity of the unwanted multiply reflected light to be generated at the vertical part of the rugged part 2 is greatly reduced, the reduction of the diffraction efficiency attributed to this multiply seflected light is prevented, and a diffraction tpe Fresnel lens excellent in the light-converging efficiency can be easily realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外光用の集光特性が
よく、作製容易な赤外用フレネルレンズに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared Fresnel lens which has good condensing characteristics for infrared light and is easy to manufacture.

【0002】[0002]

【従来の技術】従来の屈折型フレネルレンズに加え、近
年、小型軽量で再現性がよく、収差が小さい回折型フレ
ネルレンズが注目されている。この回折型フレネルレン
ズは、例えば電子ビーム描画等の微細加工によって製造
を行うため、フレネルマイクロレンズまたはマイクロフ
レネルレンズとも呼ばれている。
2. Description of the Related Art Recently, in addition to a conventional refraction type Fresnel lens, a diffraction type Fresnel lens having small size, light weight, good reproducibility and small aberration has been attracting attention. This diffractive Fresnel lens is also called a Fresnel microlens or micro Fresnel lens because it is manufactured by fine processing such as electron beam drawing.

【0003】従来の回折型フレネルレンズは、屈折型フ
レネルレンズ同様ガラスやアクリル樹脂等屈折率nが
1.5前後のもので作られていたため、レンズの位相変
調量に対応した溝の深さは、最大集光効率を得ようとし
た場合、入射光の波長の1/(n−1)倍つまり2倍の
値にする必要がある。例えば、可視光のHe−Neレー
ザの0.6328μmを入射光とする場合、溝の深さは
1.3μmであるが、これが近赤外の波長が1.5μm
用のものになるとフレネルレンズの溝の深さは3μmと
する必要がある。
Since the conventional diffractive Fresnel lens is made of glass or acrylic resin having a refractive index n of about 1.5, like the refractive Fresnel lens, the depth of the groove corresponding to the phase modulation amount of the lens is In order to obtain the maximum light collection efficiency, it is necessary to make the value 1 / (n-1) times, that is, twice the wavelength of the incident light. For example, when 0.6328 μm of a He-Ne laser of visible light is used as incident light, the depth of the groove is 1.3 μm, but this has a near-infrared wavelength of 1.5 μm.
When it comes to use, the groove depth of the Fresnel lens needs to be 3 μm.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来例
のように、屈折率が1.5前後の物質で近赤外用の回折
型フレネルレンズを作ると、溝の深さが深いため正確な
レンズ形状を実現するのは難しく、つまりは集光特性の
よい赤外用フレネルマイクロレンズが得られにくいとい
う問題点を有していた。
However, if a near-infrared diffractive Fresnel lens is made of a substance having a refractive index of around 1.5 as in the conventional example, the groove depth is deep and the lens shape is accurate. However, there is a problem in that it is difficult to obtain an infrared Fresnel microlens having a good light-condensing characteristic.

【0005】本発明は、上記問題点を解決するもので、
集光特性のよい赤外用フレネルレンズを提供することを
目的とする。
The present invention solves the above problems,
It is an object of the present invention to provide an infrared Fresnel lens having good light collecting characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するため、入射光の波長に依存し、レンズの位相変調
量に応じた凹凸部は、屈折率が3以上で、かつ、Siも
しくはSiを含む材料で構成したものである。
In order to achieve the above object, the present invention depends on the wavelength of incident light, and the concave and convex portion depending on the phase modulation amount of the lens has a refractive index of 3 or more and Si. Alternatively, it is made of a material containing Si.

【0007】[0007]

【作用】本発明は上記した構成により、構成物質の屈折
率が高いためフレネルレンズの溝の深さを浅くでき、作
製容易, 高効率な赤外用フレネルレンズを実現するもの
である。
The present invention realizes an infrared Fresnel lens which is easy to manufacture and highly efficient because the groove of the Fresnel lens can be made shallow because of the high refractive index of the constituent material.

【0008】[0008]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。図1(a),(b)はそれぞれ本発明の一実
施例における回折型の赤外用フレネルレンズ(以下フレ
ネルレンズと称す)を示す断面図, 平面図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 (a) and 1 (b) are a sectional view and a plan view, respectively, showing a diffractive infrared Fresnel lens for infrared rays (hereinafter referred to as Fresnel lens) in one embodiment of the present invention.

【0009】図1において、1はSi結晶であり、表面
に断面が鋸歯状のレンズの位相変調量に応じた凹凸部2
が施してある。鋸歯状の凹凸部2の溝の深さtは、レン
ズの集光効率が最大になるために、レンズを構成してい
る物質の屈折率n、及び入射光の波長λを用いて、t=
λ/(n−1)と設定する必要がある。近赤外で透明な
Siの屈折率は、n=3.5であり、本実施例では、入
射光としてλ=1.55μmの半導体レーザ光を用いた
ので溝の深さをt=0.62μmとした。従来例のよう
にガラスやアクリル, 電子ビームレジスト等の屈折率が
1.5前後のもので作製したフレネルレンズの場合、溝
の深さtはλ=1.55μmに対してt=3.1μmと
する必要があったから、本実施例のフレネルレンズによ
り、溝の深さtが従来例の1/5程度で、薄いフレネル
レンズが実現できたと言える。その結果、凹凸部の垂直
部分で生じる不要な多重反射光が大幅に少なくなり、こ
の多重反射光に起因した回折効率の低下を防止して、集
光特性に優れた回折形フレネルレンズを容易に実現でき
る。
In FIG. 1, reference numeral 1 is a Si crystal, and a concavo-convex portion 2 corresponding to the phase modulation amount of a lens having a sawtooth cross section on its surface.
Has been applied. The depth t of the groove of the saw-toothed concavo-convex portion 2 is t = using the refractive index n of the substance forming the lens and the wavelength λ of the incident light in order to maximize the focusing efficiency of the lens.
It is necessary to set λ / (n-1). The refractive index of Si which is transparent in the near infrared is n = 3.5, and in this embodiment, since the semiconductor laser light of λ = 1.55 μm was used as the incident light, the groove depth was t = 0. It was 62 μm. In the case of a Fresnel lens made of glass, acrylic, electron beam resist or the like having a refractive index of around 1.5 as in the conventional example, the groove depth t is λ = 1.55 μm, whereas t = 3.1 μm. Therefore, it can be said that the Fresnel lens of the present embodiment can realize a thin Fresnel lens with the groove depth t being about 1/5 of that of the conventional example. As a result, the unnecessary multiple reflection light generated in the vertical portion of the uneven portion is significantly reduced, and it is possible to prevent the diffraction efficiency from being lowered due to the multiple reflection light and to easily form a diffractive Fresnel lens having excellent light-collecting characteristics. realizable.

【0010】また、入射光の反射を減少させるために、
少なくともレンズの入射側または反射側のどちらか一方
の面に無反射コーティングを行うと集光効率がさらに良
くなる。
Further, in order to reduce reflection of incident light,
If at least either the incident side or the reflecting side of the lens is coated with a non-reflective coating, the light collection efficiency will be further improved.

【0011】次に、図2を用いて作製工程を説明する。
まず図2(a)のSi結晶1上に図2(b)のように電子ビー
ムレジスト3をコーティングし、電子ビームリソグラフ
ィにより、図2(c)のようにレンズのパターンを作製し
た。次に、イオンビームエッチングを行い、図2(d)の
ように電子ビームレジスト3の形をSi結晶1に転写し
て凹凸部2を形成した。この時電子ビームレジスト3の
コーティング厚さを制御し溝の深さtが最適になるよう
にした。
Next, the manufacturing process will be described with reference to FIG.
First, an electron beam resist 3 was coated on the Si crystal 1 shown in FIG. 2A as shown in FIG. 2B, and a lens pattern was made as shown in FIG. 2C by electron beam lithography. Next, ion beam etching was performed, and the shape of the electron beam resist 3 was transferred to the Si crystal 1 as shown in FIG. At this time, the coating thickness of the electron beam resist 3 was controlled to optimize the groove depth t.

【0012】なお、レンズとして作用するのは、Si結
晶1表面の凹凸のある部分であるので、この部分がSi
でありさえすれば良く、凹凸のない部分は他の物質でも
よい。
It is to be noted that it is the uneven portion of the surface of the Si crystal 1 that acts as a lens, so this portion is made of Si.
However, other material may be used for the portion having no unevenness.

【0013】以上のように本実施例によれば、溝の深さ
が従来例に比べて約1/5まで薄くなったことにより、
だれのない正確な凹凸形状が実現でき、溝の深さが薄く
なったことと、正確な凹凸形状が実現できたことによ
り、その結果集光特性のよい回折形フレネルレンズが実
現でき、またイオンビームエッチングでパターンの転写
をする時間も短くなり作製が容易である。
As described above, according to the present embodiment, the depth of the groove is reduced to about 1/5 of that of the conventional example.
Accurate concavo-convex shape without sagging, thin groove depth, and accurate concavo-convex shape resulted in diffractive Fresnel lens with good condensing characteristics. The time for transferring the pattern by beam etching is shortened, and the fabrication is easy.

【0014】以上の説明はSiを用いた回折形のフレネ
ルレンズについて行ったが、屈折率が3以上の物質であ
ればよく、Siを含み、屈折率が3以上の材料から構成
された回折形のフレネルレンズについても同様の効果が
得られる。
The above description has been made on the diffraction type Fresnel lens using Si, but any substance having a refractive index of 3 or more may be used, and a diffraction type made of a material containing Si and having a refractive index of 3 or more may be used. The same effect can be obtained with the Fresnel lens.

【0015】尚、Siの透過波長領域は、1.2μm〜
16μmであり、しかもSiはこの領域で屈折率が3以
上である。従って、入射光が結晶の透過波長領域ならど
の波長でも、同様の効果が得られる。
The transmission wavelength region of Si is 1.2 μm
16 μm, and Si has a refractive index of 3 or more in this region. Therefore, the same effect can be obtained regardless of the wavelength of the incident light in the transmission wavelength range of the crystal.

【0016】[0016]

【発明の効果】以上のように本発明によれば、高屈折率
な物質、例えばSiでフレネルレンズの凹凸部を構成す
ることにより、溝の深さが浅くて、かつ正確なレンズ形
状を実現でき、その結果集光特性のよい回折型の赤外用
フレネルレンズを容易に実現できる。
As described above, according to the present invention, by forming the uneven portion of the Fresnel lens with a material having a high refractive index, for example, Si, the groove depth is shallow and an accurate lens shape is realized. As a result, a diffractive infrared Fresnel lens with good condensing characteristics can be easily realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例における赤外用フレネ
ルレンズの断面図 (b)は本発明の一実施例における赤外用フレネルレンズ
の平面図
1A is a cross-sectional view of an infrared Fresnel lens according to an embodiment of the present invention, and FIG. 1B is a plan view of an infrared Fresnel lens according to an embodiment of the present invention.

【図2】(a)〜(d)は本発明の一実施例の赤外用フレネル
レンズの作製工程図
2 (a) to 2 (d) are manufacturing process diagrams of an infrared Fresnel lens according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Si結晶 2 凹凸部 1 Si crystal 2 Uneven portion

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】入射光の波長に依存し、レンズの位相変調
量に応じた凹凸部がレンズ表面に形成された回折型のフ
レネルレンズであって、前記凹凸部は、屈折率が3以上
で、かつ、SiもしくはSiを含む材料から構成された
ことを特徴とする赤外用フレネルレンズ。
1. A diffractive Fresnel lens in which an uneven portion depending on the wavelength of incident light and corresponding to the phase modulation amount of the lens is formed on the lens surface, and the uneven portion has a refractive index of 3 or more. And a Fresnel lens for infrared, which is made of Si or a material containing Si.
【請求項2】凹凸部は、前記凹凸部を構成する材料の屈
折率nと入射光の波長λとに対して、λ/(n−1)の
溝の深さを有する鋸歯形状であることを特徴とする請求
項1記載の赤外用フレネルレンズ。
2. The concavo-convex portion has a saw-tooth shape having a groove depth of λ / (n−1) with respect to a refractive index n of a material forming the concavo-convex portion and a wavelength λ of incident light. The infrared Fresnel lens according to claim 1.
【請求項3】少なくとも表面又は裏面に無反射コーティ
ングを施したことを特徴とする請求項1記載の赤外用フ
レネルレンズ。
3. The Fresnel lens for infrared rays according to claim 1, wherein at least the front surface or the back surface is provided with an antireflection coating.
JP6103698A 1994-05-18 1994-05-18 Infrared diffraction lens Expired - Lifetime JP2713550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6103698A JP2713550B2 (en) 1994-05-18 1994-05-18 Infrared diffraction lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6103698A JP2713550B2 (en) 1994-05-18 1994-05-18 Infrared diffraction lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59245078A Division JPH0679081B2 (en) 1984-11-20 1984-11-20 Infrared Fresnel lens

Publications (2)

Publication Number Publication Date
JPH0749407A true JPH0749407A (en) 1995-02-21
JP2713550B2 JP2713550B2 (en) 1998-02-16

Family

ID=14360992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6103698A Expired - Lifetime JP2713550B2 (en) 1994-05-18 1994-05-18 Infrared diffraction lens

Country Status (1)

Country Link
JP (1) JP2713550B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790373B2 (en) * 2001-04-26 2004-09-14 Oki Electric Industry Co., Ltd. Microlens, its forming method and optical module
CN105045015A (en) * 2014-04-16 2015-11-11 株式会社腾龙 Infrared camera apparatus
CN114815007A (en) * 2022-03-16 2022-07-29 中国科学院光电技术研究所 Method for manufacturing continuous relief Fresnel lens
WO2022185716A1 (en) * 2021-03-01 2022-09-09 パナソニックIpマネジメント株式会社 Fresnel lens and sensor system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124247A (en) * 1974-08-22 1976-02-27 Yokogawa Electric Works Ltd KOTAIIKIRENZU
JPS51110347A (en) * 1975-02-28 1976-09-29 Hughes Aircraft Co
JPS5336250A (en) * 1976-09-16 1978-04-04 Toshiba Corp Fresnel lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124247A (en) * 1974-08-22 1976-02-27 Yokogawa Electric Works Ltd KOTAIIKIRENZU
JPS51110347A (en) * 1975-02-28 1976-09-29 Hughes Aircraft Co
JPS5336250A (en) * 1976-09-16 1978-04-04 Toshiba Corp Fresnel lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790373B2 (en) * 2001-04-26 2004-09-14 Oki Electric Industry Co., Ltd. Microlens, its forming method and optical module
CN105045015A (en) * 2014-04-16 2015-11-11 株式会社腾龙 Infrared camera apparatus
CN105045015B (en) * 2014-04-16 2018-01-02 株式会社腾龙 Infrared pick-up device and camera device
WO2022185716A1 (en) * 2021-03-01 2022-09-09 パナソニックIpマネジメント株式会社 Fresnel lens and sensor system
CN114815007A (en) * 2022-03-16 2022-07-29 中国科学院光电技术研究所 Method for manufacturing continuous relief Fresnel lens

Also Published As

Publication number Publication date
JP2713550B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
JP2794084B2 (en) Optical device and manufacturing method thereof
JP2002510400A (en) Optical integrated circuit
KR100379246B1 (en) Continuous Neutral Density Filter Capable of Controlling the Intensity Distribution of Light Beam According to the Thickness of Filter
US6160945A (en) Optical waveguide device for loss absorption and fabrication method thereof
US6812059B2 (en) Method of manufacturing a photodiode to have an active region with a convex-lens-shaped surface
US5101297A (en) Method for producing a diffraction grating in optical elements
JPWO2004031815A1 (en) Anti-reflection diffraction grating
JPH0749407A (en) Fresnel lens for infrared ray
JPH0679081B2 (en) Infrared Fresnel lens
JP2003344630A (en) Optical member
JP3189922B2 (en) Diffractive optical element
JP2706621B2 (en) Infrared diffraction lens
JPH0749408A (en) Fresnel lens for infrared ray
US4712856A (en) Geodesic optical component
JPS58153388A (en) Monitoring method for semiconductor laser output beam
JP3214964B2 (en) Diffractive optical element
JPH0740111B2 (en) Manufacturing method of micro optical element
JPS60181701A (en) Grating lens for coupling optical fiber
JPH0792526B2 (en) Grating lens
JP3003348B2 (en) Optical lens and manufacturing method thereof
JPS61241712A (en) Input-output device for guided light
JP2773401B2 (en) Optical lens
JP3052528B2 (en) Optical lens and manufacturing method thereof
JPS60202402A (en) Fresnel lens
JP3079497B2 (en) Heterogeneous lens

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term