JPS58153388A - Monitoring method for semiconductor laser output beam - Google Patents

Monitoring method for semiconductor laser output beam

Info

Publication number
JPS58153388A
JPS58153388A JP57035790A JP3579082A JPS58153388A JP S58153388 A JPS58153388 A JP S58153388A JP 57035790 A JP57035790 A JP 57035790A JP 3579082 A JP3579082 A JP 3579082A JP S58153388 A JPS58153388 A JP S58153388A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
diffraction
grating
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57035790A
Other languages
Japanese (ja)
Inventor
Koki Mineo
峰尾 弘毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57035790A priority Critical patent/JPS58153388A/en
Publication of JPS58153388A publication Critical patent/JPS58153388A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Abstract

PURPOSE:To enable to perform an accurate and stable monitoring on the laser beam by a method wherein a diffraction grating is provided in front of a semiconductor laser beam and a direct monitoring is performed on the laser beam. CONSTITUTION:The diffraction grading 34 such as a grating lens and the like is arranged on the output beam path (the path of output laser beam to be used directly) located in front of a semiconductor laser 31. The diffracted beam 36 coming from said diffraction grating 34 is picked out to outside for use. On the other hand, among the output beams 35 of the semiconductor layer, the laser beam 37 to be used directly is monitored by providing a light-receiving element 35 so that the zero diffraction beam, which has not received the effect of diffraction of the diffraction grating 34, or a higher diffraction beam can be received. Thus, the intensity of the laser beam used directly is monitored as above, and the monitoring can be performed accurately and stably.

Description

【発明の詳細な説明】 〔発明の技術労費〕 本発明は半導体レーザ光源の発振出力をモニターする方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Labor Cost of the Invention The present invention relates to a method for monitoring the oscillation output of a semiconductor laser light source.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体レーザはGa入JAs  @ 1l−V族化合物
半導体結晶上の一対のへき開面をレーザ発振を起こさせ
るための共振器として利用している。従来技術では一対
のへき開面の両端より等しくレーザ発振か行なわれてい
るものと仮定し、第1図に示すように、半導体レーザ1
1の前方へ放射される光量13に対し後方へ放射される
光量12をホトディテクター14でill定する事で前
方へ放射される光量をモニターしていた。
A semiconductor laser uses a pair of cleavage planes on a Ga-containing JAs @ 1l-V group compound semiconductor crystal as a resonator for laser oscillation. In the conventional technology, it is assumed that laser oscillation is performed equally from both ends of a pair of cleavage planes, and as shown in FIG.
The amount of light radiated forward was monitored by determining the amount 12 of light radiated backward relative to the amount 13 of light radiated forward with a photodetector 14.

しかし半導体レーザのへき開面は劣化防止またはレーザ
光の放射効率を高める目的でAJ、0.中SiNの薄膜
を保護膜として施こす事が一般に行なわれている。上記
保5iIINは真空蒸着法やスパッター法により形成す
るが不均一性を生じる事もあ抄。
However, the cleavage plane of a semiconductor laser is set at an AJ of 0.05 mm for the purpose of preventing deterioration or increasing the radiation efficiency of laser light. Generally, a thin film of SiN is applied as a protective film. The above-mentioned 5iIIN is formed by a vacuum evaporation method or a sputtering method, but non-uniformity may occur.

また半導体レーザ駆動中圧発生する保1Illiの特性
変化の不均一性、あるいは回折格子を共振器として利用
した半導体レーザの場合は回折格子の形成上の不均一よ
り両方向へ放射されるレーザ光に不均一性が生じる。
In addition, there is also non-uniformity in the characteristics of the semiconductor laser which is generated during driving of the semiconductor laser, or in the case of a semiconductor laser that uses a diffraction grating as a resonator, there is non-uniformity in the laser light emitted in both directions due to the non-uniformity in the formation of the diffraction grating. Uniformity occurs.

従って後方へ放射されたレーザ光強度による従来のモニ
タ一方法は必ずしも安定した半導体L/ −ザ光出力モ
ニターとは言えない。
Therefore, the conventional method of monitoring based on the intensity of the laser beam emitted backward cannot necessarily be said to be a stable semiconductor laser light output monitor.

また半導体レーザにおいては、半導体レーザ自身への戻
り光が1〜0.1チ程存在するとレーザ発振が乱され光
出力が不安定となる事が知られている。従来のモニター
配置では半導体レーザ後方へ放射された光が受光素子1
4やパッケージ15部で反射されて半導体レーザ11に
戻ってくる恐れがあり、この戻り光も注意しなければな
らなかった。
Furthermore, in a semiconductor laser, it is known that if there is about 1 to 0.1 inch of return light to the semiconductor laser itself, the laser oscillation will be disturbed and the optical output will become unstable. In the conventional monitor arrangement, the light emitted toward the rear of the semiconductor laser is transmitted to the light receiving element 1.
There is a risk that the reflected light may be reflected by the laser beam 4 or the package 15 and return to the semiconductor laser 11, so care must be taken regarding this returning light.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みてなされたもので、半導体レー
ザの前方へ放射されたレーザ光即ち直接使用するレーザ
光の出力を直接モニターする事により正確かつ安定した
モニターが行なえる半導体レーザ出力光モニタ一方法を
提供することを目的とするものである。
The present invention has been made in view of the above points, and it is possible to accurately and stably monitor the output light of a semiconductor laser by directly monitoring the output of the laser light emitted forward from the semiconductor laser, that is, the output of the laser light used directly. The purpose is to provide a method for monitoring.

〔発明の概要〕[Summary of the invention]

本発明は半導体レーザの前方出力光路上(直接使用する
出力レーザ光路上)にグレーティングレンズ等の回折格
子を配置し、この回折格子による回折光を外部に取り出
して使用するようになすとともに、前記回折格子の回折
効果を受けなかった零次回折光あるいは高次回折光を受
光するよう受光素子を配置して直接使用するレーザ光の
光強度をモニターするようにしたものである。
The present invention arranges a diffraction grating such as a grating lens on the front output optical path of a semiconductor laser (output laser optical path used directly), and extracts the diffracted light by this diffraction grating to the outside for use. A light receiving element is arranged to receive zero-order diffraction light or high-order diffraction light that has not been affected by the diffraction effect of the grating, and the light intensity of the laser light used directly is monitored.

〔発明の効果j 本発明によると、直接使用するレーザ光の光強度をモニ
ターすることができるので、半導体レーザ共振器面両端
の不均一性に影蕃され危いで、正確かつ安定にモニター
することができる。
[Effect of the invention j According to the present invention, the light intensity of the directly used laser light can be monitored, so it is possible to accurately and stably monitor the light intensity which is affected by the non-uniformity at both ends of the semiconductor laser resonator surface. I can do it.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面を参照して詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第2図(alおよび(b)は本発明で使用するグレーテ
ィングレンズ20の構成およびその基本動作を説明する
ものである。
FIGS. 2A and 2B illustrate the configuration and basic operation of the grating lens 20 used in the present invention.

グレーティングレンズは光学的には回折格子の一種に属
し、例えば第2図(a) 、 (blに示す様にガラス
基板21の表面に不等間隔な同心円状の回折格子パター
ン22を刻んだものである。グレーティングレンズ内の
断面A−Bを取り上げてレンズ作用を説明すると、グレ
ーティングレンズ基板20Kfll[#ICIC波長光
を入射させ2本の代表的光線m、bの進む方向はグレー
ティングレンズ上の格子間隔dが各々異なるために回折
光のふれの角θは−=z81n(λ/d)で変化し、格
子間隔dの小′省い部分に入射した光線bO方がaより
大きなふれの角を生じて結果としてグレーティングレン
ズ20通過後の回折光は集光し凸レンズ作用を受ける。
A grating lens optically belongs to a type of diffraction grating, and for example, as shown in FIGS. To explain the lens action by taking the cross section A-B inside the grating lens, we can see that the grating lens substrate 20Kfll [#ICIC wavelength light is incident and the direction in which the two representative light rays m and b travel is the lattice interval on the grating lens. Since d is different, the deflection angle θ of the diffracted light changes by -=z81n(λ/d), and the beam bO incident on the small part of the grating spacing d has a larger deflection angle than a. As a result, the diffracted light after passing through the grating lens 20 is condensed and subjected to a convex lens action.

第2図の回折格子パターンを有するグレーティングレン
ズは平行光線をほぼ一点に集光する事が可能である。
The grating lens having the diffraction grating pattern shown in FIG. 2 can condense parallel light rays to almost one point.

第3図はこのようなグレーティングレンズを使用した本
発明の基本的なモニタ一方法を説明するための図である
0図示するように半導体レーザ31をその前方出力光が
斜め下方に放射されるようサブマウント基板32を介し
て半導体レーザパッケージ33に設ける。そして、この
半導体レーザ31の前方出力光の光路上に第2図で示し
たような表面に同心円状の回折格子パターン22が刻ま
れたグレーティングレンズ34をその回折格子パターン
22刻成面が半導体レーザ314C対向するよう配置す
る。
FIG. 3 is a diagram for explaining a basic monitoring method of the present invention using such a grating lens. It is provided on a semiconductor laser package 33 via a submount substrate 32. Then, on the optical path of the forward output light of this semiconductor laser 31, a grating lens 34 having a concentric diffraction grating pattern 22 carved on its surface as shown in FIG. 314C are arranged to face each other.

なお、回折格子間隔dは図面上方に向かって徐々に広く
なるよう和する。このような構成において、半導体レー
ザ31をグレーティングレンズ34の焦点位置に置くと
、半導体レーザ出力光35のグレーティングレンズ34
による回折光36は平行光線となり外部に取り出され、
直接使用することができる。一方、半導体レーザ出力光
35のうちグレーティングレンズ34による回折効果を
受けない零次回折光は真直ぐ進む、そこで本発明では、
この零次回折光を受光するよう半導体レーザ31とクレ
ーティングレンズ34のほぼ中心部を結ぶ線の延長上に
受光素子38を配置しこの零次回折光をモニターする。
Note that the diffraction grating spacing d is summed so that it gradually becomes wider toward the top of the drawing. In such a configuration, when the semiconductor laser 31 is placed at the focal position of the grating lens 34, the semiconductor laser output light 35 is directed to the grating lens 34.
The diffracted light 36 becomes parallel light rays and is taken out to the outside.
Can be used directly. On the other hand, the zero-order diffracted light of the semiconductor laser output light 35 that is not affected by the diffraction effect by the grating lens 34 travels straight, so in the present invention,
A light receiving element 38 is arranged on an extension of a line connecting the semiconductor laser 31 and the approximate center of the crating lens 34 to receive this zero-order diffracted light, and monitors this zero-order diffracted light.

このような構成によると、直接使用するレーザ出力の進
行を妨げることなく、直接使用するレーザ出力光の光強
度をモニターすることができる。
According to such a configuration, the light intensity of the directly used laser output light can be monitored without interfering with the progress of the directly used laser output light.

次に本発明の異体的実施例について説明する。Next, a variant embodiment of the present invention will be described.

厚さl−のBK−7ガラスをグレーティングレンズ基板
として使用し、回折格子ノくターンの範囲を2−×2飄
として、格子間隔の広いA側で格子間隔dムx= I 
L 9 声01.中央部でdo = 3.1 /’ ”
s B側でd B w L G μm  のグレーティ
ングレンズをホトエツチング技術で形成してグレーティ
ングレンズ34を作製した。このグレーティングレンズ
34の発振波長800fimのレーザ光に対する焦点位
置はレンズの中央よ)第3図において斜め上方15°の
方向へ5−行った位置となる。従って発振波長800n
m O半導体レーずチップ31をサブマウント基板32
に固定し先後パッケージ33の上記の位置へマウントす
ゐとグレーティングレンズ34による回折光は平行ビー
ムとなり前方へ放射される。
BK-7 glass with a thickness of l- is used as the grating lens substrate, the range of the diffraction grating turns is set to 2-×2 holes, and the grating spacing is dmm x = I on the A side where the grating spacing is wide.
L 9 voice 01. do = 3.1/' in the center
A grating lens 34 was fabricated by forming a grating lens of d B w L G μm on the s B side using a photoetching technique. The focal position of the grating lens 34 for the laser beam having an oscillation wavelength of 800 fim is a position 5 degrees diagonally upward in the direction of 15° in FIG. 3 from the center of the lens. Therefore, the oscillation wavelength is 800n
M O semiconductor laser chip 31 is mounted on a submount substrate 32
The diffracted light by the grating lens 34 is fixed to the above position of the front and rear package 33 and is emitted forward as a parallel beam.

零次回折光37を受光するために受光素子38の位置は
半導体レー131とグレーティングレンズ34中央を延
長した位置即ちグレーティングレンズ基板から2.5〜
3I外へ行ったパッケージ33上に固定すると^い。
In order to receive the zero-order diffracted light 37, the position of the light receiving element 38 is a position extending from the center of the semiconductor laser 131 and the grating lens 34, that is, 2.5 to 2.5 mm from the grating lens substrate.
3I fix it on the package 33 that went outside.

以上の設計により組み立てられた半導体レーザーは平行
!ビームが得られ各構成部品相互の間に適切な角度が付
けられているため回折格子パターンの無い基板表面を無
反射コーティングすればほとんど戻抄光のない半導体レ
ーザであり安定したレーザ光源として使用できる。
The semiconductor laser assembled using the above design is parallel! Since a beam is obtained and appropriate angles are set between each component, if the surface of the substrate without a diffraction grating pattern is coated with anti-reflection coating, the semiconductor laser will have almost no return light and can be used as a stable laser light source. .

なお実施例においては受光素子をグレーティングレンズ
からの零次回折光を受光する位置に設けたが、高次回折
光を受光するような位置に設けてモニターすることも可
能である。tたモニター位置に受光素子として直接光電
変換素子を置くことも勿論可能であるが、同様に受光素
子として光伝送媒体をモニター位置に置き、この光伝送
媒体により導かれたレーザ光を光電変換素子によりモニ
ターすることも可能である。
In the embodiment, the light-receiving element is provided at a position where it receives the zero-order diffracted light from the grating lens, but it is also possible to provide it at a position where it receives the higher-order diffracted light for monitoring. Of course, it is possible to place a photoelectric conversion element directly as a light receiving element at the monitor position, but it is also possible to place an optical transmission medium as a light receiving element at the monitor position and transmit the laser light guided by this optical transmission medium to the photoelectric conversion element. It is also possible to monitor by

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体レーザ出力光モニタ一方法を説明
するための図、第2図は本発明で使用するグレーティン
グレンズの構成およびその基本動作を説明するための図
、第3図は本発明の実施fllに基く半導体レーザ出力
光のモニタ一方法をta明すゐ丸めの図である。 11.31・・・・半導体レーザ 14,38・・・・
受光素子2G、$4・・・・グレーティングレンズ22
・・・・回折格子ノくターン 代理人 弁理士  則 近 憲 佑 (ほか1名)第1
図 第2図
Fig. 1 is a diagram for explaining a conventional semiconductor laser output light monitoring method, Fig. 2 is a diagram for explaining the configuration of the grating lens used in the present invention and its basic operation, and Fig. 3 is a diagram for explaining the structure of the grating lens used in the present invention. FIG. 2 is a rounded diagram illustrating a method of monitoring semiconductor laser output light based on the implementation of FIG. 11.31...Semiconductor laser 14,38...
Light receiving element 2G, $4...Grating lens 22
... Diffraction Grating Nokuturn Agent Patent Attorney Kensuke Chika (and 1 other person) 1st
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  半導体レーザの出力光路上に回折格子を配置
し、この回折格子による回折光を外部に取り出すように
なすとともに、前記回折格子の回折効果を受けなかった
零次回折光又は高次回折光を受光するよう受光素子を配
置して前記半導体レーザ′出力光の光強度をモニターす
ることを特徴とする手導体し−ず出力光モニタ一方法。
(1) A diffraction grating is placed on the output optical path of the semiconductor laser, and the diffracted light by this diffraction grating is taken out to the outside, and the zero-order diffraction light or higher-order diffraction light that has not been affected by the diffraction effect of the diffraction grating is received. 1. A method for monitoring output light without using a hand conductor, characterized in that a light receiving element is arranged so as to monitor the light intensity of the output light of the semiconductor laser.
(2)回折格子としてグレーティングレンズを用い、仁
のグレーティングレンズの焦点位置に半導体レーザを配
置し、この半導体レーザと前記グレーティングレンズの
中心部を結ぶ線の延長上に受光素子を配置するようkし
た仁とを4$11とする特許請求の範囲第1項記載の半
導体レーザ出力光モニタ一方法。
(2) A grating lens was used as a diffraction grating, a semiconductor laser was placed at the focal point of the grating lens, and a light receiving element was placed on an extension of a line connecting the semiconductor laser and the center of the grating lens. A method for monitoring a semiconductor laser output light according to claim 1, wherein the amount is $4.11.
JP57035790A 1982-03-09 1982-03-09 Monitoring method for semiconductor laser output beam Pending JPS58153388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035790A JPS58153388A (en) 1982-03-09 1982-03-09 Monitoring method for semiconductor laser output beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035790A JPS58153388A (en) 1982-03-09 1982-03-09 Monitoring method for semiconductor laser output beam

Publications (1)

Publication Number Publication Date
JPS58153388A true JPS58153388A (en) 1983-09-12

Family

ID=12451704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035790A Pending JPS58153388A (en) 1982-03-09 1982-03-09 Monitoring method for semiconductor laser output beam

Country Status (1)

Country Link
JP (1) JPS58153388A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141794A (en) * 1985-12-16 1987-06-25 Toshiba Corp Semiconductor laser
JPH04336483A (en) * 1991-05-14 1992-11-24 Rohm Co Ltd Semiconductor laser unit
JPH0631163U (en) * 1993-07-22 1994-04-22 セイコーエプソン株式会社 Semiconductor laser unit
JPH0846294A (en) * 1995-09-08 1996-02-16 Seiko Epson Corp Semiconductor laser
EP0786838A2 (en) * 1996-01-25 1997-07-30 Hewlett-Packard Company Laser based light source using diffraction, scattering or transmission
US5771254A (en) * 1996-01-25 1998-06-23 Hewlett-Packard Company Integrated controlled intensity laser-based light source
US6792178B1 (en) 2000-01-12 2004-09-14 Finisar Corporation Fiber optic header with integrated power monitor
US6932522B2 (en) 1998-12-30 2005-08-23 Finisar Corporation Method and apparatus for hermetically sealing photonic devices
JP2014016247A (en) * 2012-07-09 2014-01-30 Shimadzu Corp Wavelength variable monochromatic light source

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141794A (en) * 1985-12-16 1987-06-25 Toshiba Corp Semiconductor laser
JPH04336483A (en) * 1991-05-14 1992-11-24 Rohm Co Ltd Semiconductor laser unit
JPH0631163U (en) * 1993-07-22 1994-04-22 セイコーエプソン株式会社 Semiconductor laser unit
JPH0846294A (en) * 1995-09-08 1996-02-16 Seiko Epson Corp Semiconductor laser
EP0786838A2 (en) * 1996-01-25 1997-07-30 Hewlett-Packard Company Laser based light source using diffraction, scattering or transmission
EP0786838A3 (en) * 1996-01-25 1997-10-08 Hewlett Packard Co Laser based light source using diffraction, scattering or transmission
US5771254A (en) * 1996-01-25 1998-06-23 Hewlett-Packard Company Integrated controlled intensity laser-based light source
US5809050A (en) * 1996-01-25 1998-09-15 Hewlett-Packard Company Integrated controlled intensity laser-based light source using diffraction, scattering and transmission
US6932522B2 (en) 1998-12-30 2005-08-23 Finisar Corporation Method and apparatus for hermetically sealing photonic devices
US6792178B1 (en) 2000-01-12 2004-09-14 Finisar Corporation Fiber optic header with integrated power monitor
JP2014016247A (en) * 2012-07-09 2014-01-30 Shimadzu Corp Wavelength variable monochromatic light source

Similar Documents

Publication Publication Date Title
US4672187A (en) Focusing error detecting device in head assembly for optical disc
JP2618875B2 (en) Waveguide
JPS58153388A (en) Monitoring method for semiconductor laser output beam
EP0480485B1 (en) Integrated optic disc pickup
US5113071A (en) Encoder in which single light source projects dual beams onto grating
US5173915A (en) Semiconductor laser device
JPH0720359A (en) Optical device
US5473470A (en) Polarization detector
US5721426A (en) Optical transmitting/receiving module having communication lines coupled by a single lens
JP2783806B2 (en) Optical output monitor
JP2004165592A (en) Tunable optical source module
JPS61145876A (en) Package for light emitting device
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
US6091756A (en) Analog laser assembly
WO2022079912A1 (en) Semiconductor light-receiving element
JPH01119929A (en) Optical pickup
JPH06252489A (en) External resonator laser
JPH0973026A (en) Integrated type optical connecting structure
JPS60143682A (en) Wave length variation compensation device of semiconductor laser
JPH03182705A (en) Optical element and its manufacture
JPH0230002B2 (en)
JPH01122463A (en) Photoscanning module
JPS6043679B2 (en) Semiconductor laser device with coupling circuit
GB2310507A (en) Transceiver module for optical communication
JPH07135303A (en) Optical package