JPS6311866A - Direct current sensor - Google Patents

Direct current sensor

Info

Publication number
JPS6311866A
JPS6311866A JP61155293A JP15529386A JPS6311866A JP S6311866 A JPS6311866 A JP S6311866A JP 61155293 A JP61155293 A JP 61155293A JP 15529386 A JP15529386 A JP 15529386A JP S6311866 A JPS6311866 A JP S6311866A
Authority
JP
Japan
Prior art keywords
current
magnetic field
magnetic core
detected
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61155293A
Other languages
Japanese (ja)
Inventor
Kentaro Horiuchi
憲太郎 堀内
Naoki Wakao
直樹 若生
Hiroshi Numakura
弘 沼倉
Taido Sakamoto
坂本 泰堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tokin Corp
Original Assignee
Mitsubishi Electric Corp
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Tohoku Metal Industries Ltd filed Critical Mitsubishi Electric Corp
Priority to JP61155293A priority Critical patent/JPS6311866A/en
Publication of JPS6311866A publication Critical patent/JPS6311866A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To extend a current detection range by the same magnetic core, by providing a bias magnetic field generating means for generating a bias magnetic field in the magnetic core. CONSTITUTION:A bias magnetic field generating means is constituted of an auxiliary coil 5, a variable resistor 6 and a DC power source 7. In order to generate a magnetic field in the direction opposite to that of a main magnetic field B generated by a current I to be detected and having intensity not entering a saturation region, a current is made to flow to the coil 5 at first from the power source 7 through the resistor 6 in such a state that no current I flows. Then, the current flowing to the coil 5 is changed while the resistor 6 is adjusted and a bias magnetic field D is generated so as to obtain a main magnetic field -B4 generated when the current I is -I3. Since the current generating said magnetic field D is always supplied to the coil 5 even in such a state that the current I flows, the magnetic sensor 3 detected from an output lead 4, for example, the output voltage of a Hall element is not saturated even when the current I changes and output voltage proportional to the current can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、磁界センサを用いた直流電流センサに関し
、同一磁心で電流の検出範囲を拡大化する直流電流セン
サに関するものである。
The present invention relates to a DC current sensor using a magnetic field sensor, and more particularly to a DC current sensor that expands the current detection range with the same magnetic core.

【従来の技術】[Conventional technology]

第5図は例えば「センサ技術(1982年11月号)」
に記載された従来の電流センサを示す斜視図である。 図において、1は被検出電流1 (A)が流れる電線で
ある。2は電線lの一部を取り囲む磁心であり、被検出
電流1 (A)によって発生する主磁界Bの導磁路とな
っている。3は磁心2の端面2a。 2b間にエアギャップGを介して配置された磁界センサ
、4は磁界センサ3の出力リードである。 従来のセンサは上記のように構成されており、電線1に
被検出電流1 (A)が流れると、被検出電流1 (A
)に比例した電圧V (V)が発生し、出力リード4か
ら取り出される。 第6図は被検出電流I(^)と磁界センサ3、例えばホ
ール素子から得られる出力電圧V (V) との関係を
示す特性図であり、理想的には原点Oを通る直!v!a
のような特性となる。 しかし、磁心2のB −H特性は、第7図の線すに示さ
れるような飽和特性を持っているため、磁界センサ3、
例えばホール素子から得られる出力電圧■(v)も、第
8図の線Cのような特性となる。 即ち、被検出電流I(^)が11の時、第7図の主磁界
B (G)はB、であり、第8図の出力電圧V (V)
は■1となり、被検出電流1 (A)の11とは比例し
ているが、被検出電流! (A)が12の時ニハ第7図
のbに示した磁心2のB−H特性は飽和領域に入ってい
るため、主磁界B (G)はB3とはならずにB2とな
り、第8図に示した磁界センサ3、例えばホール素子の
出力電圧V (V)はvlとはならずにv2となり、従
って、被検出電流+ (A)に1゛・ 比例した出力電圧V mが得られない。この場合、磁心
3のB−H特性が被検出電流1 (A)が12でも飽和
しないようにするため、磁心3の材質を性能の良いもの
にするか、磁心3を大形化して断面積を大きくする必要
がある。
Figure 5 is an example of "Sensor Technology (November 1982 issue)"
FIG. 2 is a perspective view showing a conventional current sensor described in FIG. In the figure, 1 is an electric wire through which a detected current 1 (A) flows. A magnetic core 2 surrounds a part of the electric wire 1, and serves as a magnetic conduction path for the main magnetic field B generated by the detected current 1 (A). 3 is an end surface 2a of the magnetic core 2. A magnetic field sensor 4 is an output lead of the magnetic field sensor 3 arranged between the magnetic field sensors 2b and 2b with an air gap G interposed therebetween. The conventional sensor is configured as described above, and when a detected current 1 (A) flows through the electric wire 1, the detected current 1 (A
) is generated and taken out from the output lead 4. FIG. 6 is a characteristic diagram showing the relationship between the detected current I(^) and the output voltage V (V) obtained from the magnetic field sensor 3, for example, a Hall element. v! a
The characteristics are as follows. However, since the B-H characteristic of the magnetic core 2 has a saturation characteristic as shown by the line in FIG.
For example, the output voltage (v) obtained from the Hall element also has a characteristic as shown by line C in FIG. That is, when the detected current I(^) is 11, the main magnetic field B (G) in FIG. 7 is B, and the output voltage V (V) in FIG.
is 1, which is proportional to 11 of the detected current 1 (A), but the detected current! When (A) is 12, the B-H characteristic of the magnetic core 2 shown in Fig. 7b is in the saturation region, so the main magnetic field B (G) becomes B2 instead of B3, and the 8th The output voltage V (V) of the magnetic field sensor 3 shown in the figure, for example a Hall element, is not vl but v2, and therefore an output voltage V m proportional to the detected current + (A) by 1° is obtained. do not have. In this case, in order to prevent the B-H characteristic of the magnetic core 3 from becoming saturated even when the detected current 1 (A) is 12, the material of the magnetic core 3 should be made of a high-performance material, or the magnetic core 3 should be made larger so that the cross-sectional area needs to be made larger.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

従来の電流センサは以上のように、被検出電流■(A)
がI2でも磁心2のB −H特性が飽和しないように、
磁心2の断面積を大きくするために大形化しており、ま
た磁心2の材質を性能の良いものにしているため、コス
トが高くなっているという問題があった。 この発明は上記のような問題点を解決するためになされ
たもので、磁心2に被検出電流I (A)により発生す
る磁界とは逆の磁界を常に印加して、同一磁心2で電流
の検出範囲を拡大化することを目的としている。
As described above, the conventional current sensor detects the detected current (A)
In order to prevent the B-H characteristics of the magnetic core 2 from being saturated even when the voltage is I2,
Since the size of the magnetic core 2 is increased to increase its cross-sectional area, and the material of the magnetic core 2 is made of a material with good performance, there is a problem in that the cost is high. This invention was made in order to solve the above-mentioned problems, and by constantly applying a magnetic field opposite to the magnetic field generated by the current to be detected I (A) to the magnetic core 2, the current is generated in the same magnetic core 2. The purpose is to expand the detection range.

【問題点を解決するための手段】[Means to solve the problem]

この発明に係る直流電流センサは、磁心にバイアス磁界
を発生させるためのバイアス磁界発生手段を磁心に設け
たものである。
The DC current sensor according to the present invention includes a magnetic core provided with bias magnetic field generating means for generating a bias magnetic field in the magnetic core.

【作 用】[For use]

この発明においては、バイアス磁界発生手段が、被検出
電流により発生する磁界とは方向が逆の磁界が発生する
ようなバイアス磁界を磁心に印加し、磁心のB−H特性
の負の領域も利用して直′jafil域を拡げ、同一磁
心により電流の検出範囲を拡大する。
In this invention, the bias magnetic field generating means applies a bias magnetic field to the magnetic core that generates a magnetic field in the opposite direction to the magnetic field generated by the current to be detected, and also utilizes the negative region of the B-H characteristic of the magnetic core. By doing so, the direct jafil area is expanded, and the current detection range is expanded using the same magnetic core.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。第1
図はこの発明の実施例を示す斜視図であり、1〜4、I
、B及びGは従来の電流センサと同様のものである。 5は磁心2の一部に巻かれ、磁心2内にバイアス磁界り
を発生させるための補助コイル、6は補助コイル5の一
端に接続された可変抵抗、7は可変抵抗6と補助コイル
5の他端との間に挿入され、補助コイル5を励磁するた
めの直流電源であり、これら補助コイル5、可変抵抗6
及び直流電源7はバイアス磁界発生手段を構成している
。 次に、第2図から第4図に示した被検出電流I(^)と
主磁界B (G)および出力電圧V (V)との特性図
を参照しながら、この発明の実施例の動作について説明
する。 被検出電流I(^)と主磁界B (G)との関係が第2
図に示す特性dになっている。ここで、被検出電流I(
^)により発生する主磁界B (G)の方向とは逆で、
飽和領域に入らない程度の磁界を発生させるため、まず
被検出電流1 (A)が流れていない状態で、直流電源
7により可変抵抗6を介して補助コイル5に電流を流す
。そして、可変抵抗6を調整しながら補助コイル5に流
れる電流を変化させ、第2図に破線eで示すような被検
出電流1 (A)が−I、の時に発生する主磁界−84
が得られるようなバイアス磁界りを発生させる。 こうして得られたバイアス磁界りにより、被検出電流I
(^)がI2であっても、第3図に示したfの特性の主
磁界B (G)は飽和せずv6となり、同様に第4図に
示したgの特性の出力電圧V (V)も被検出電流1 
(A)に比例した■6が得られる。 このバイアス磁界りを発生させる電流は、被検出電流1
 (A)が流れている状態でも常に補助コイル5に供給
されているので、出力リード4から検出される磁界セン
サ3、例えばホール素子の出力電圧V (V)は第4図
に示したgの特性となり、被検出電流1 (A)が12
であっても飽和することなく、電流に比例した出力電圧
V(V)V、を得ることができる。 具体的には、例えば、破線Cで示した特性では、被検出
電流I(^)が12に対して出力電圧V (V)が■2
となり、被検出電流1(A)Itに比例していないが、
バイアス磁界りを印加した実線gによれば、出力電圧V
 (V)がv6となり、v2のように飽和しておらず、
被検出電流に比例した出力電圧V(V)V6が得られる
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a perspective view showing an embodiment of the present invention.
, B and G are similar to conventional current sensors. 5 is an auxiliary coil wound around a part of the magnetic core 2 to generate a bias magnetic field within the magnetic core 2; 6 is a variable resistor connected to one end of the auxiliary coil 5; 7 is a variable resistor between the variable resistor 6 and the auxiliary coil 5. It is a DC power supply inserted between the other end and for exciting the auxiliary coil 5, and the auxiliary coil 5 and the variable resistor 6.
and the DC power supply 7 constitute bias magnetic field generating means. Next, while referring to the characteristic diagrams of the detected current I(^), the main magnetic field B(G), and the output voltage V(V) shown in FIGS. 2 to 4, the operation of the embodiment of the present invention will be explained. I will explain about it. The relationship between the detected current I(^) and the main magnetic field B(G) is the second
It has the characteristic d shown in the figure. Here, the detected current I(
The direction of the main magnetic field B (G) generated by ^) is opposite to that of
In order to generate a magnetic field that does not enter the saturation region, first, a current is caused to flow through the auxiliary coil 5 by the DC power supply 7 via the variable resistor 6 while the current to be detected 1 (A) is not flowing. Then, the current flowing through the auxiliary coil 5 is changed while adjusting the variable resistor 6, and the main magnetic field -84 generated when the detected current 1 (A) is -I, as shown by the broken line e in FIG.
A bias magnetic field is generated to obtain . Due to the bias magnetic field obtained in this way, the detected current I
Even if (^) is I2, the main magnetic field B (G) with the characteristic of f shown in Fig. 3 is not saturated and becomes v6, and similarly the output voltage V (V ) is also the detected current 1
■6 proportional to (A) is obtained. The current that generates this bias magnetic field is the detected current 1
(A) is always supplied to the auxiliary coil 5 even when current is flowing, so the output voltage V (V) of the magnetic field sensor 3, such as a Hall element, detected from the output lead 4 is as shown in Fig. 4. The characteristic is that the detected current 1 (A) is 12
Even if the output voltage V(V)V is proportional to the current, it is possible to obtain the output voltage V(V)V without saturation. Specifically, for example, in the characteristic shown by the broken line C, the detected current I (^) is 12 and the output voltage V (V) is 2
Although it is not proportional to the detected current 1 (A) It,
According to the solid line g where the bias magnetic field is applied, the output voltage V
(V) becomes v6 and is not saturated like v2,
An output voltage V(V)V6 proportional to the current to be detected is obtained.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば、磁心にバイアス磁界
を発生させるためのバイアス磁界発生手段を設け、この
バイアス磁界発生手段が、被検出電流による発生する主
磁界とは逆の方向の磁界を発生するようなバイアス磁界
を磁心に印加して、磁心のB−H特性を右にシフトさせ
、直線領域を拡げるように構成したので、同−磁心で電
流の検出範囲を拡大することができ、磁心の大形化や、
B−H特性の良い材質にする必要がなく、安価な直流電
流センサが得られる効果がある。
As described above, according to the present invention, the bias magnetic field generating means for generating a bias magnetic field in the magnetic core is provided, and the bias magnetic field generating means generates a magnetic field in the opposite direction to the main magnetic field generated by the current to be detected. By applying a bias magnetic field to the magnetic core, the B-H characteristic of the magnetic core is shifted to the right and the linear region is expanded, so the current detection range can be expanded with the same magnetic core. Increasing the size of the magnetic core,
There is no need to use a material with good B-H characteristics, and an inexpensive DC current sensor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す斜視図、第2図は第
1図の直流電流センサのバイアス磁界の特性図、第3図
は第1図の直流電流センサによる被検出電流と主磁界と
の関係を示す特性図、第4図は第1図の直流電流センサ
による被検出電流と出力電圧との関係を示す特性図、第
5図は従来の直流電流センサの斜視図、第6図は従来の
直流電流センサによる磁界センサの理想特性を示す特性
図、第7図は従来の直流電流センサによる被検出電流と
主磁界との関係を示す特性図、第8図は従来の直流電流
センサによる被検出電流と出力電圧との関係を示す特性
図である。 1・・・電線、2・・・磁心、3・・・磁界センサ(ホ
ール素子)、5・・・補助コイル、6・・・可変抵抗、
7・・・直流電源、■・・・被検出電流、B・・・主磁
界、D・・・バイアス磁界。 なお、図中同一符号は同−又は相当部分を示す。 代理人  大君 増jj!<ほか 2名)第1図 第3 図 ヤ 第4図 第5図 θ     櫂よ辷か4ヒ4し工(ハ2第7図 第8図 り艷す(れ1ζげヒエ(ハ2 手3売釘11正書(方式) %式%( 1、事件の表示 2、発明の名称 直流電流センサー 3、補正をする者 事件との関係     特許出願人 4、代理人 5、補正命令の日付 昭和61年9月30日(発送日)
7、補正の内容 ■) 明細書の発明の名称が゛、「直流電流センサ」と
あるを「直流電流センサー」と補正する。
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a characteristic diagram of the bias magnetic field of the DC current sensor shown in FIG. 1, and FIG. FIG. 4 is a characteristic diagram showing the relationship between the current detected by the DC current sensor in FIG. 1 and the output voltage. FIG. 5 is a perspective view of the conventional DC current sensor. The figure is a characteristic diagram showing the ideal characteristics of a magnetic field sensor using a conventional DC current sensor. Figure 7 is a characteristic diagram showing the relationship between the detected current and the main magnetic field by a conventional DC current sensor. Figure 8 is a characteristic diagram showing the relationship between the detected current and the main magnetic field using a conventional DC current sensor. FIG. 3 is a characteristic diagram showing the relationship between the current detected by the sensor and the output voltage. 1... Electric wire, 2... Magnetic core, 3... Magnetic field sensor (Hall element), 5... Auxiliary coil, 6... Variable resistance,
7...DC power supply, ■...Detected current, B...Main magnetic field, D...Bias magnetic field. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Daikun Masujj! <2 other people) Figure 1 Nail 11 Official Book (Method) % Formula % ( 1. Indication of the case 2. Name of the invention DC current sensor 3. Person making the amendment. Relationship to the case. Patent applicant 4. Agent 5. Date of amendment order. 1985. September 30th (shipping date)
7. Contents of the amendment ■) The name of the invention in the specification is amended from "DC current sensor" to "DC current sensor."

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも被検出電流が流れる電線と、この電線
の一部を取り囲む磁心と、この磁心の一部に配置され前
記被検出電流により前記磁心に発生する主磁界を検出す
る磁界センサと、前記磁心に設けられ、前記被検出電流
により前記磁心に発生する主磁界とは方向が逆のバイア
ス磁界を発生させるバイアス磁界発生手段とを備えたこ
とを特徴とする直流電流センサ。
(1) an electric wire through which at least a current to be detected flows, a magnetic core surrounding a part of the electric wire, a magnetic field sensor arranged in a part of the magnetic core to detect a main magnetic field generated in the magnetic core by the current to be detected; A direct current sensor comprising: bias magnetic field generating means provided on a magnetic core and generating a bias magnetic field having a direction opposite to a main magnetic field generated in the magnetic core by the current to be detected.
(2)バイアス磁界発生手段が、磁心に巻かれた補助コ
イルと、この補助コイルに電流を供給するための直流電
源と、この直流電源からの供給電流を調整するための可
変抵抗とからなることを特徴とする特許請求の範囲第1
項記載の直流電流センサ。
(2) The bias magnetic field generating means consists of an auxiliary coil wound around a magnetic core, a DC power supply for supplying current to the auxiliary coil, and a variable resistor for adjusting the current supplied from the DC power supply. Claim 1 characterized by
DC current sensor described in section.
JP61155293A 1986-07-02 1986-07-02 Direct current sensor Pending JPS6311866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155293A JPS6311866A (en) 1986-07-02 1986-07-02 Direct current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155293A JPS6311866A (en) 1986-07-02 1986-07-02 Direct current sensor

Publications (1)

Publication Number Publication Date
JPS6311866A true JPS6311866A (en) 1988-01-19

Family

ID=15602725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155293A Pending JPS6311866A (en) 1986-07-02 1986-07-02 Direct current sensor

Country Status (1)

Country Link
JP (1) JPS6311866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121869U (en) * 1988-02-12 1989-08-18
US5412323A (en) * 1990-07-02 1995-05-02 Nippondenso Co., Ltd. Battery condition detecting apparatus and charge control apparatus for automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121869U (en) * 1988-02-12 1989-08-18
US5412323A (en) * 1990-07-02 1995-05-02 Nippondenso Co., Ltd. Battery condition detecting apparatus and charge control apparatus for automobile

Similar Documents

Publication Publication Date Title
US5041761A (en) Magnetic automotive lamp current sensor
JPS6070071U (en) Probe for current measurement
JPH0829456A (en) Current sensor based on compensation principle
CA2234507A1 (en) Auto-zeroing current sensing element
KR950014895A (en) DC current sensor
JP4007464B2 (en) Magnetic detector
JPS6311866A (en) Direct current sensor
JPS61134601A (en) Magnetic type displacement sensor
JP2002082149A (en) Element, and device for magnetic sensor and current sensor device
JP2000193729A (en) Driving circuit for magnetic impedance effect element
JP2608498B2 (en) Magnetostrictive torque sensor
JPS62163974A (en) Electric current sensor
JPH03179270A (en) Current/voltage detector
JP2521330Y2 (en) DC current detector
JPH0244261A (en) Current detection method and power supply device
JPH08201061A (en) Thin film magnetic sensor
JPH0315177Y2 (en)
JP2582132B2 (en) Magnetic field sensor
JPH04175622A (en) Temperature detecting circuit
JPS59132181A (en) Current/voltage conversion element
JPS5989231U (en) Torque detection device
JPS5870156A (en) Magnetic detecting device
JPS63193365U (en)
JPS61100627A (en) Vibration type strain sensor
JPH09292413A (en) Current sensor