JPH0244261A - Current detection method and power supply device - Google Patents

Current detection method and power supply device

Info

Publication number
JPH0244261A
JPH0244261A JP19498288A JP19498288A JPH0244261A JP H0244261 A JPH0244261 A JP H0244261A JP 19498288 A JP19498288 A JP 19498288A JP 19498288 A JP19498288 A JP 19498288A JP H0244261 A JPH0244261 A JP H0244261A
Authority
JP
Japan
Prior art keywords
current
magnetic field
voltage
circuit
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19498288A
Other languages
Japanese (ja)
Inventor
Toshiyuki Taniguchi
俊幸 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19498288A priority Critical patent/JPH0244261A/en
Publication of JPH0244261A publication Critical patent/JPH0244261A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To insulate a detection circuit and a circuit to be detected by providing a magnetoelectric transducer having magnetoresistance and allowing a current to be measured to flow to winding to detect magnetically generated output voltage. CONSTITUTION:A magnetoelectric transducer has magnetoresistance effect having anisotropy and is formed by applying winding 3 to a magnetic core 2. Two current passages are formed from the ferromagnetic membranes arranged so as to cross each other at a right angle on the same plane. Herein, when a current to be measured is allowed to flow to the winding 3, a magnetic field is generated in the magnetic core 2 to form a magnetic circuit. One of the above mentioned two current passages is always arranged so as to be right- angled to the magnetic field of the magnetic circuit and the other current passage is made parallel and the intensity of the magnetic field is changed to detect the voltage change at an output terminal 9. When the output voltage of the transducer 4 is detected by this method, the value corresponding to the current to be measured is obtained and a current can be simply detected. Further, since the magnetic field is interposed, a detection circuit and a circuit to be detected can be insulated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁電変換素子を用いて電流を検出する電流検出
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a current detection method for detecting current using a magnetoelectric conversion element.

従来の技術 従来この種の電流検出方法は、第7図に示すような構成
であり、また電流検出方法を用いた電源装置は、第8図
のような構成であった。第7図において、1−1′は被
測定電流端子で検出しようとする電流を磁心2に施した
巻線3に流し、磁心2にはギャップを設け、そのギャッ
プ中に入力端子6−6′に接続されたホール素子41L
を挿入する。5は直流電源で電池もしくは交流電圧を整
流平滑することで構成され、前記入力端子6−6′を介
して、前記ホール素子41Lに電流を供給する。
2. Description of the Related Art Conventionally, this type of current detection method has a configuration as shown in FIG. 7, and a power supply device using the current detection method has a configuration as shown in FIG. In FIG. 7, 1-1' indicates a current to be detected at the current terminal to be measured through a winding 3 provided on a magnetic core 2, a gap is provided in the magnetic core 2, and an input terminal 6-6' is inserted into the gap. Hall element 41L connected to
Insert. Reference numeral 5 is constructed by rectifying and smoothing a battery or alternating current voltage with a DC power supply, and supplies current to the Hall element 41L via the input terminal 6-6'.

前記ホール素子4aは前記磁心2のギャップ中において
発生する磁界が加わるように配置され、その磁界の加わ
る面と、前記直流電源6が接続される面とに直角な面に
、温度補償回路21を介し誤差増幅器7を介して出力端
子9を接続する。
The Hall element 4a is arranged so that a magnetic field generated in the gap of the magnetic core 2 is applied thereto, and a temperature compensation circuit 21 is provided on a surface perpendicular to the surface to which the magnetic field is applied and the surface to which the DC power source 6 is connected. The output terminal 9 is connected via the error amplifier 7.

第8図において、10は前記と同様に直流電源で電池も
しくは交流電圧を整流平滑することで構成されるもので
、入力端子12−12’に電圧を及び被測定電施工。供
給し正電圧を入力端子12に接続し、負電圧を入力端子
12′を介し、電流検出抵抗19を介して負の出力端子
13′に接続している。11は制御部でアシ、一端は入
力端子12に、他の一端は正の出力端子13に接続され
、出力端子13−13’間の出力電圧V。UT  を一
定に制御するか、もしくは入出力間を遮断する動作を行
う。8は基準電圧で正電極を前記負の出力端子13′に
接続し、一方の負電極を誤差増幅器7の入力端子の一端
に接続している。7は誤差増幅器であシ、2つの入力端
子12−12’のうちの1端子は前述のように基準電圧
8の負電極に、他の入力端子は前記電流検出抵抗19の
負の入力電圧側にそれぞれ接続され、電流検出抵抗19
の電位降下を検出し、前記制御部11へ伝達する。
In FIG. 8, numeral 10 is constructed by rectifying and smoothing a battery or alternating current voltage using a DC power supply as described above, and supplies voltage to input terminals 12-12' to the electrical work to be measured. A positive voltage is connected to the input terminal 12, and a negative voltage is connected through the input terminal 12' and through the current detection resistor 19 to the negative output terminal 13'. 11 is a control unit, one end of which is connected to the input terminal 12, the other end of which is connected to the positive output terminal 13, and an output voltage V between the output terminals 13-13'. Either control the UT to a constant level, or perform an operation to cut off input and output. 8 is a reference voltage whose positive electrode is connected to the negative output terminal 13', and one negative electrode is connected to one end of the input terminal of the error amplifier 7. 7 is an error amplifier, one of the two input terminals 12-12' is connected to the negative electrode of the reference voltage 8 as described above, and the other input terminal is connected to the negative input voltage side of the current detection resistor 19. are respectively connected to the current detection resistors 19
detects the potential drop and transmits it to the control section 11.

以下に従来例の動作について説明する。The operation of the conventional example will be explained below.

第7図において、磁心2に施された巻a3に被測定電流
端子より被測定電流電。を流すと、ギャップ中に磁界が
発生する。磁心2の磁路長を4゜断面積S、透磁率μ、
ギャップの長さをl /  、断面積S。、空気の透磁
率をμ。1巻線3の巻数をNとすると、発生する磁束密
度B。は次式で表わ一方ホール素子4aに直流電源5よ
り電圧v0を印加して前記ホール素子4aに電流を流し
、この電流と直角方向に磁界B。を加えると、電流及び
磁界の両方に直角な方向に電位差vHが発生し、その関
係は次式で表わされる。
In FIG. 7, the current to be measured is applied to the winding a3 of the magnetic core 2 from the current to be measured terminal. When flowing, a magnetic field is generated in the gap. The magnetic path length of magnetic core 2 is 4° cross-sectional area S, magnetic permeability μ,
The length of the gap is l / , the cross-sectional area S. , the magnetic permeability of air is μ. When the number of turns in one winding 3 is N, the generated magnetic flux density B is. On the other hand, a voltage v0 is applied to the Hall element 4a from the DC power supply 5 to flow a current through the Hall element 4a, and a magnetic field B is generated in a direction perpendicular to this current. When VH is added, a potential difference vH is generated in a direction perpendicular to both the current and the magnetic field, and the relationship is expressed by the following equation.

V  =4  、v−B          ・・・・
・・(2)II      Ho。
V=4, v-B...
...(2) II Ho.

ただしに、は積感度と呼ばれ、使用される半導体材料の
特性により決まる定数である。
However, is called the product sensitivity and is a constant determined by the characteristics of the semiconductor material used.

よって(1) 、 (2)式よシ となり、被測定電流電。に応じた電位差vHを得ること
ができ、この電位差Vヨを誤差増幅器7にて検出し、出
力端子9より出力信号を得るものである。磁心2が円筒
状であった場合、磁心2の透磁率μは空気の透磁率μ。
Therefore, formulas (1) and (2) are obtained, and the current to be measured is It is possible to obtain a potential difference VH corresponding to VH, this potential difference VY is detected by an error amplifier 7, and an output signal is obtained from an output terminal 9. When the magnetic core 2 is cylindrical, the magnetic permeability μ of the magnetic core 2 is the magnetic permeability μ of air.

よりはるかに大きくl−e′ 、1と=1と考えること
ができるため(3)式は v11=KM−v。・トエ・μo/l・・・・・・(4
)と表すことができる。
Since it can be considered that le-e' is much larger than 1 and = 1, equation (3) is v11=KM-v.・Toe・μo/l・・・・・・(4
)It can be expressed as.

第8図の電流検出を用いた電源装置について、電流検出
抵抗19に被測定電流電。が流れると電位差vRI9 
 が発生し、このvRI9  と基準電圧V。
Regarding the power supply device using current detection shown in FIG. 8, the current to be measured is connected to the current detection resistor 19. flows, the potential difference vRI9
is generated, and this vRI9 and the reference voltage V.

の差、つまDvb”=vi+p−vFの電位差を誤差増
幅器7で検出し、前記誤差増幅器7の出力信号を制御部
11へ伝達し、制御部11にて出力電圧を一定に制御さ
せたり、垂下させて過電流時の保護機能を持たせるもの
である。
The error amplifier 7 detects the difference between Dvb''=vi+p−vF, and transmits the output signal of the error amplifier 7 to the control unit 11, which controls the output voltage to be constant or to control the voltage drop. This provides a protection function in the event of overcurrent.

発明が解決しようとする課題 このような従来の構成では、ホール素子41Lを用いて
電流検出をする方法は、素子自体のバラツキが大きく、
キャリアの数及び移動度の温度変化が大きく、温度特性
が悪いために温度補償用の外部回路を必要とし、出力電
圧が小さいという問題があり、また電流検出を用いた電
源装置においては、検出部に抵抗を使用しているために
検出精度は良いものの、被測定電流容量が大きくなると
電流検出抵抗19で消費される電力が増大し、効率の低
下や発熱が問題となり、さらには被検出回路と検出回路
が絶縁できないという問題があった。
Problems to be Solved by the Invention In such a conventional configuration, the method of detecting current using the Hall element 41L has large variations in the element itself.
The number and mobility of carriers change greatly with temperature, and the temperature characteristics are poor, so an external circuit for temperature compensation is required, and the output voltage is small. Although the detection accuracy is good because a resistor is used in the circuit, as the current capacity to be measured increases, the power consumed by the current detection resistor 19 increases, causing problems such as decreased efficiency and heat generation, and furthermore, There was a problem that the detection circuit could not be insulated.

本発明はこのような課題を解決するためのもので、簡単
な構成で温度特性の良好な、素子のバラツキの少ない電
流検出方法を提供するものであり、電源装置における電
流検出部の損失を低減させ、被検出回路と検出回路を絶
縁すること全可能とするものである。
The present invention is intended to solve these problems, and provides a current detection method with a simple configuration, good temperature characteristics, and less variation in elements, and reduces loss in the current detection section in a power supply device. This makes it possible to isolate the circuit to be detected and the detection circuit.

課題を解決するための手段 この課題を解決するために本発明は、磁気抵抗効果を有
する磁電変換素子と、巻線を施した磁心全有し、巻線に
被測定電流を流すことによって磁界を発生する磁気回路
の磁界により磁電変換素子の出力電圧を検出するように
したものである。また、上記電流検出方法を用いて電源
装置を構成するものである。
Means for Solving the Problem In order to solve this problem, the present invention includes a magnetoelectric transducer having a magnetoresistive effect and a magnetic core having a winding, and generates a magnetic field by passing a current to be measured through the winding. The output voltage of the magnetoelectric conversion element is detected by the magnetic field of the generated magnetic circuit. Further, a power supply device is configured using the above-described current detection method.

作用 この構成により、被検出電流に応じた磁界を磁気回路で
発生させ、その発生した磁界によって磁電変換素子の出
力電圧を変化させ、その出力電圧を検出することによっ
て簡単に電流検出をすることができる。
Effect: With this configuration, a magnetic field is generated in the magnetic circuit according to the current to be detected, the output voltage of the magnetoelectric transducer is changed by the generated magnetic field, and the current can be easily detected by detecting the output voltage. can.

実施例 以下、本発明の実施例を添付の図面第1図〜第6図を用
いて説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings, FIGS. 1 to 6.

第1図は本発明の一実施例による電流検出方法の構造図
である。第1図において、第7図と同じものは同一の付
号を記し説明は省略する。1−1′は被測定電流端子で
あり、2は磁心であり、3は巻線であり、6は直流電源
であり、6−6′は入力端子であシ、7は誤差増幅器で
あり、8は基準電圧であり、9は出力端子である。
FIG. 1 is a structural diagram of a current detection method according to an embodiment of the present invention. In FIG. 1, the same parts as in FIG. 7 are denoted by the same reference numerals, and the description thereof will be omitted. 1-1' is a current terminal to be measured, 2 is a magnetic core, 3 is a winding, 6 is a DC power supply, 6-6' is an input terminal, 7 is an error amplifier, 8 is a reference voltage, and 9 is an output terminal.

4は磁電変換素子であり、電流供給端子a、cと出力端
子bl有した3端子構成のもので、電流供給端子a、c
は入力端子6−6′に接続し、出力端子すは誤差増幅器
7の1入力端子に接続し、前記誤差増幅器7の他の入力
端子は基準電圧8の正電極に接続し、前記基準電圧8の
負電極は負の入力端子6′に接続し、磁電変換素子4の
出力電圧と前記基準電圧8とを前記誤差増幅器7で検出
し、増幅して出力端子9より信号を取り出すものである
4 is a magnetoelectric conversion element, which has a three-terminal configuration having current supply terminals a, c and an output terminal bl;
is connected to the input terminal 6-6', the output terminal is connected to one input terminal of the error amplifier 7, and the other input terminal of the error amplifier 7 is connected to the positive electrode of the reference voltage 8, and the output terminal is connected to the positive electrode of the reference voltage 8. The negative electrode of is connected to the negative input terminal 6', and the output voltage of the magnetoelectric conversion element 4 and the reference voltage 8 are detected by the error amplifier 7, amplified, and a signal is taken out from the output terminal 9.

磁電変換素子4の動作原理を簡単に説明すると、素子の
構造は特公昭57−50θ7号公報に説明されているよ
うに、夫々異方性のある磁気抵抗効果を有し、同一平面
上に互いに直交するように配された強磁性体膜からなる
2つの電流通路において、2つの電流通路の流接点に出
力端子b、各々の他端側に電流供給端子a、cが設けら
れ、電流供給端子に電圧v0を印加し、電流通路の膜面
に平行に磁界を加える検出方法は特公昭57−6067
号公報においては、磁界強度を一定にして加える角度を
変化させ、2つの抵抗値の和ヲー定にしながらこれら抵
抗値の各々が変化し、この変化に伴なう前記出力端子の
電圧の変化を検出するのに対し、本発明においては、直
交するように配された2つの電流通路のうちの一方を常
に磁界方向と部内に配し、他方を平向とし、磁界強度を
変化させて前記出力端子の電圧の変化を検出するもので
ある。
To briefly explain the operating principle of the magnetoelectric transducer 4, as explained in Japanese Patent Publication No. 57-50θ7, the structure of the element has an anisotropic magnetoresistive effect, and two elements are arranged on the same plane. In two current paths made of ferromagnetic films arranged orthogonally to each other, an output terminal b is provided at the current contact point of the two current paths, and current supply terminals a and c are provided at the other end of each current path. The detection method of applying voltage v0 to
In the publication, the magnetic field strength is kept constant and the angle at which it is applied is changed, each of these resistance values is changed while the sum of the two resistance values is fixed, and the change in the voltage at the output terminal due to this change is calculated. In contrast, in the present invention, one of the two current paths arranged perpendicularly is always placed in the direction of the magnetic field, and the other is placed in the direction parallel to the magnetic field, and the magnetic field strength is varied to detect the output. It detects changes in terminal voltage.

電流通路と直角な磁界強度による抵抗値をρ(H5) 
’磁界0における抵抗値をρ。、電流通路と直角な飽和
磁界を加えた時の抵抗値変化幅をΔρ、電流通路と直角
に加えられる磁界強度を■52強磁性体の材質・形状・
寸法で決定される飽和磁界強度をHよとすると、磁界強
度と抵抗値変化の関係は次式で表わすことができる。
The resistance value due to the magnetic field strength perpendicular to the current path is ρ (H5)
'Resistance value at 0 magnetic field is ρ. , Δρ is the resistance change width when a saturation magnetic field is applied perpendicular to the current path, and the strength of the magnetic field applied perpendicular to the current path is ■52 Material, shape, and shape of the ferromagnetic material
Letting the saturation magnetic field strength determined by the dimensions be H, the relationship between the magnetic field strength and the change in resistance value can be expressed by the following equation.

なお、磁界を電流通路と平行に加えた場合は抵抗値は変
化しない。よって端子a側の電流通路を磁界方向と直角
となるように配すると、磁界強度が強くなるにつれて出
力端子すの電圧は上昇する。
Note that when a magnetic field is applied parallel to the current path, the resistance value does not change. Therefore, if the current path on the terminal a side is arranged perpendicular to the direction of the magnetic field, the voltage at the output terminal A will increase as the magnetic field strength increases.

この電圧をvb(1,5)とすると、 vb()I3.=(ρ。/(ρ(+111 >+ρ。)
)・vo・・・・・・(4)・・・・直向 という関係になり、磁界強度に応じた出力電圧が得られ
ることになる。
If this voltage is vb(1,5), then vb()I3. =(ρ./(ρ(+111 >+ρ.)
)・vo...(4)...The relationship is that they are perpendicular to each other, and an output voltage corresponding to the magnetic field strength can be obtained.

一方、磁気回路に発生する磁界強度H8は前述の(1)
式と磁心の形状を加味して H,、、=N−I。/l       ・・・・・・(
6)で表わされるため、被測定電流電。による出力室と
なり、この電圧と基準電圧8を誤差増幅器7で検出し、
出力端子9より出力信号全得るものであるO 本発明において、特公昭5了−6067号公報のように
2つの強磁性体膜の電流通路を直列に接続したものを使
用しているのは、素子自体の温度変化をキャンセルし、
出力端子すの出力電圧の温度特性を改善するにも有効な
手段である。つまり、磁界と直角な電流通路を強磁性体
膜で構成し、平向な電流通路は単なる抵抗で構成しても
同様の結果が得られるということである。
On the other hand, the magnetic field strength H8 generated in the magnetic circuit is as described in (1) above.
Considering the formula and the shape of the magnetic core, we get H, , = N-I. /l ・・・・・・(
6), the current to be measured. This voltage and the reference voltage 8 are detected by the error amplifier 7,
In the present invention, the current paths of two ferromagnetic films are connected in series as in Japanese Patent Publication No. 5-6067. Cancels the temperature change of the element itself,
This is also an effective means for improving the temperature characteristics of the output voltage of the output terminal. In other words, the same result can be obtained even if the current path perpendicular to the magnetic field is made of a ferromagnetic film and the parallel current path is made of a simple resistor.

第2図は、第1図の構造図の具体的な回路図を示してお
り、第1図と同一であるため説明は省略する。
FIG. 2 shows a specific circuit diagram of the structural diagram of FIG. 1, and since it is the same as FIG. 1, the explanation will be omitted.

第3図は、第1図の磁電変換素子4を2個使用した実施
例である。印加する電圧に対して、磁界と直角方向に配
する電流通路を各々逆にし、磁界の変化によって一方の
出力端子の出力電圧vbが上昇し、他方のvb’ 7)
:減少するようにすることによって、電圧変化幅を(7
)式の2倍にすることができ、検出精度を向上させたも
のである。
FIG. 3 shows an embodiment in which two magnetoelectric transducers 4 shown in FIG. 1 are used. With respect to the applied voltage, the current paths arranged in the direction perpendicular to the magnetic field are reversed, and the change in the magnetic field causes the output voltage vb of one output terminal to rise and the output voltage vb' of the other to increase.7)
: By decreasing the voltage change width (7
) can be doubled, improving detection accuracy.

第4図は、本発明による電流検出方法を用いた電源装置
の一実施例を示したものである第1図。
FIG. 4 is FIG. 1 showing an embodiment of a power supply device using the current detection method according to the present invention.

第8図と同じものは同一の符号を記し説明は省略する。Components that are the same as those in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted.

第4図において、20は第1図における電流検出部で被
測定電流端子の一端1は候御部11に、他端1′と電流
供給端子aは正の出力端子13に、電流供給端子Cと基
準電圧8の負極極は負の出力端子13′に、出力端子9
は制御部11に負の入力端子12′は負の出力端子13
′にそれぞれ接続される。
In FIG. 4, reference numeral 20 denotes the current detection section in FIG. and the negative pole of the reference voltage 8 is connected to the negative output terminal 13', and the negative pole of the reference voltage 8 is connected to the output terminal 9.
is the negative input terminal 12' of the control unit 11, and the negative output terminal 13
′ respectively.

電流検出部20の動作は第1図と、制御部11の動作は
第8図と、それぞれ同等であるために説明は省略する。
The operation of the current detection section 20 is the same as that shown in FIG. 1, and the operation of the control section 11 is the same as that shown in FIG. 8, so a description thereof will be omitted.

第5図は、本発明のその他の実施例で被検出電流によっ
て出力電圧V。tlT  を垂下させるように制御する
場合のブロック図全示す。第4図にて出方電圧を垂下す
るよう制御すると、磁電変換素子4に印力aされる電圧
も垂下し、出力端子9がら得られる出力信号が被測定電
流電。にょらずに変動してしまう。よって磁電変換素子
4に印加される電圧が常に一定となるように、正の入力
端子12と電流供給端子へとを接続し、いかなる状態に
おいても、前記出力信号が被測定電流電。の変化以外の
影響で変動しないようにしたものである。
FIG. 5 shows the output voltage V according to the detected current in another embodiment of the present invention. A complete block diagram for controlling tlT to droop is shown. When the output voltage is controlled to drop as shown in FIG. 4, the voltage applied to the magnetoelectric transducer 4 also drops, and the output signal obtained from the output terminal 9 becomes the measured current voltage. It fluctuates without any hesitation. Therefore, the positive input terminal 12 and the current supply terminal are connected so that the voltage applied to the magnetoelectric conversion element 4 is always constant, so that the output signal is equal to the current to be measured in any state. This is to ensure that it does not fluctuate due to influences other than changes in .

第6図は本発明のさらなる他の実施例で1次側〜2次側
絶縁型の電源装置において、1次側に制御部を設けた場
合のブロック図を示す。第6図において、第5図と同じ
ものは同一符号を記して説明は省略する。17はトラン
スであυ、1次巻線171Lの一端を入力端子12に接
続し他端をスイッチング素子16を介して入力端子12
′に接続し、2次巻線17bのに発生する交流電圧を整
流平滑部18で直流電圧に変換し、電流検出部20を介
して出力端子13−13’に接続する。14は絶縁信号
伝達手段であり、1次〜2次間を絶縁しつつ電流検出部
20からの出力信号を発振制御部16に伝達し、発振制
御部16Fi、被測定電流電。に応じてスイッチング素
子16の発振を制御し、出力電圧V。。? を制御する
。10′は磁電変換素子4のための直流電源であり、素
子に印加する電圧を一定とするために接続する。
FIG. 6 is a block diagram showing a case where a control section is provided on the primary side in a primary-side to secondary-side isolated type power supply device according to still another embodiment of the present invention. In FIG. 6, the same parts as in FIG. 5 are denoted by the same reference numerals, and the description thereof will be omitted. 17 is a transformer υ, one end of the primary winding 171L is connected to the input terminal 12, and the other end is connected to the input terminal 12 via the switching element 16.
The AC voltage generated in the secondary winding 17b is converted into a DC voltage by the rectifying and smoothing section 18, and connected to the output terminal 13-13' via the current detecting section 20. Reference numeral 14 denotes an insulating signal transmission means, which transmits the output signal from the current detection section 20 to the oscillation control section 16 while insulating between the primary and secondary, and transmits the output signal from the current detection section 20 to the oscillation control section 16Fi, the current to be measured. The oscillation of the switching element 16 is controlled according to the output voltage V. . ? control. 10' is a DC power supply for the magnetoelectric conversion element 4, which is connected to keep the voltage applied to the element constant.

第4図、第6図、第6図において、電流検出部20を第
3図に示す構成とすることにより、被測定電流の検出精
度が向上することは明らかである。
4, FIG. 6, and FIG. 6, it is clear that the detection accuracy of the current to be measured is improved by providing the current detection section 20 with the configuration shown in FIG. 3.

発明の効果 以上のように本発明によれば、簡単な構成で温度特性の
良好な、素子のバラツキの少ない電流検出方法が実現で
き、電源装置における電流検出部の損失を大幅に低減さ
せ、さらに被検出回路と検出回路を絶縁することを可能
とさせるなどの大きな効果が得られる。
Effects of the Invention As described above, according to the present invention, a current detection method with a simple configuration, good temperature characteristics, and less variation in elements can be realized, and loss in the current detection section in a power supply device can be significantly reduced. Great effects such as making it possible to isolate the circuit to be detected and the detection circuit can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による電流検出方法を示す構
造図、第2図は本発明の第1図の構造図の具体的回路図
、第3図は本発明のその他の実施例の回路図、第4図は
本発明の一実施例による電流検出方法を用いた電源装置
を示すブロック図、第6図、第6図は本発明の他の実施
例のブロック図、第7図は従来の電流検出方法の構造図
、第8図は従来の電流検出方法を用いた電源装置のブロ
ック図である。 1−1′・・・・・・被測定電流端子、2・川・・磁心
、3・・・・・・巻線、4・・・・・・磁電変換素子、
41川・・ポール素子、6,1o・・・・・・直流電源
、6−6’、12−12′・・・・・・入力端子、7・
・・・・・誤差増幅器、8・・・・・・基準電圧、9 
、13−13’・・す・・出方端子、11・・・・・・
制御部、14・す・絶縁信号伝達手段、15・・・・・
・発振制御回路、16・・・・・・スイッチング素子、
17・・・・・・トランス、18・川・・整流平滑ブロ
ック、20・・・・・・電流検出部。 代理人の氏名 弁理士 粟 野 重 孝 はが1名1、
t゛ −横胴定1iう荒搗子 2−&&A: 3−  発   璋 4゛−穂電1攪を子 5 −  a  FILt  源 乙、6′−人t+島子 7− !ll 杢 1唱 酪 直 1 電 源 別 Wl  郡
FIG. 1 is a structural diagram showing a current detection method according to an embodiment of the present invention, FIG. 2 is a specific circuit diagram of the structural diagram of FIG. 1 of the present invention, and FIG. 3 is a structural diagram of another embodiment of the present invention. The circuit diagram, FIG. 4 is a block diagram showing a power supply device using the current detection method according to one embodiment of the present invention, FIG. 6 is a block diagram of another embodiment of the present invention, and FIG. A structural diagram of a conventional current detection method, FIG. 8 is a block diagram of a power supply device using the conventional current detection method. 1-1'... Current terminal to be measured, 2... Magnetic core, 3... Winding wire, 4... Magnetoelectric conversion element,
41 River...Pole element, 6,1o...DC power supply, 6-6', 12-12'...Input terminal, 7.
...Error amplifier, 8...Reference voltage, 9
, 13-13'... Output terminal, 11...
Control unit, 14, insulation signal transmission means, 15...
・Oscillation control circuit, 16... switching element,
17...Transformer, 18... Rectifying and smoothing block, 20... Current detection section. Name of agent: Patent attorney Shigetaka Awano, 1 person, 1 person,
t゛ - Yokodo Sho 1i Uara Akiko 2 - && A: 3- Hassho 4゛ - Hoden 1 Akiwoko 5 - a FILt Minamototsu, 6'-Hitot + Shimako 7-! ll heather 1 chant dairy direct 1 power supply Wl county

Claims (2)

【特許請求の範囲】[Claims] (1)磁気抵抗効果を有する磁電変換素子と、巻線を施
した磁心を有し、巻線に被測定電流を流すことによって
磁界を発生する磁気回路の磁界により磁電変換素子の出
力電圧を検出する電流検出方法。
(1) The output voltage of the magnetoelectric transducer is detected by the magnetic field of the magnetic circuit, which has a magnetoelectric transducer with a magnetoresistive effect and a magnetic core with a winding, and generates a magnetic field by passing the current to be measured through the winding. Current detection method.
(2)請求項1記載の電流検出方法を用いた電源装置。(2) A power supply device using the current detection method according to claim 1.
JP19498288A 1988-08-04 1988-08-04 Current detection method and power supply device Pending JPH0244261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19498288A JPH0244261A (en) 1988-08-04 1988-08-04 Current detection method and power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19498288A JPH0244261A (en) 1988-08-04 1988-08-04 Current detection method and power supply device

Publications (1)

Publication Number Publication Date
JPH0244261A true JPH0244261A (en) 1990-02-14

Family

ID=16333574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19498288A Pending JPH0244261A (en) 1988-08-04 1988-08-04 Current detection method and power supply device

Country Status (1)

Country Link
JP (1) JPH0244261A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026597A (en) * 2011-07-26 2013-02-04 Shindengen Electric Mfg Co Ltd Transformer module and dc-dc converter device
CN103575960A (en) * 2013-10-29 2014-02-12 河北工业大学 Giant magnetoresistance effect current sensor
CN104931804A (en) * 2014-03-21 2015-09-23 河北瑞萨工业自动化技术有限公司 Novel excitation-cabinet de-excitation resistor detection apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026597A (en) * 2011-07-26 2013-02-04 Shindengen Electric Mfg Co Ltd Transformer module and dc-dc converter device
CN103575960A (en) * 2013-10-29 2014-02-12 河北工业大学 Giant magnetoresistance effect current sensor
CN103575960B (en) * 2013-10-29 2016-03-02 河北工业大学 giant magnetoresistance effect current sensor
CN104931804A (en) * 2014-03-21 2015-09-23 河北瑞萨工业自动化技术有限公司 Novel excitation-cabinet de-excitation resistor detection apparatus

Similar Documents

Publication Publication Date Title
EP0356248B1 (en) A current sensor
US4596950A (en) Compensated transducer
JP3691551B2 (en) Current sensor based on compensation principle
JP4515905B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detection method, and magnetic bridge used in the sensor and detection method
US5345169A (en) Current measuring device
JP2829521B2 (en) Current detector
US5508606A (en) Direct current sensor
JP2650211B2 (en) Current sensor based on compensation principle
US9804203B2 (en) Compensation current sensor arrangement
CN111505363A (en) Closed-loop current transformer
JP2816175B2 (en) DC current measuring device
JPH0244261A (en) Current detection method and power supply device
JP2018200242A (en) Current sensor
JPH11352157A (en) Power source detecting method and device therefor
JP2007033222A (en) Current sensor
JPH0131591B2 (en)
US4347469A (en) Electronic-magnetic current isolator circuit
CN212723044U (en) Closed-loop current transformer
JP4884384B2 (en) Broadband current detector
JPH038566B2 (en)
JP2008014921A (en) Direct-current detecting method and dc detector
JPH03179270A (en) Current/voltage detector
JPH0742143Y2 (en) Single power supply circuit method of magnetic balance type Hall element type current sensor
JPH0687073B2 (en) Leakage detector
JPS6212862B2 (en)