JPS6212862B2 - - Google Patents

Info

Publication number
JPS6212862B2
JPS6212862B2 JP9669179A JP9669179A JPS6212862B2 JP S6212862 B2 JPS6212862 B2 JP S6212862B2 JP 9669179 A JP9669179 A JP 9669179A JP 9669179 A JP9669179 A JP 9669179A JP S6212862 B2 JPS6212862 B2 JP S6212862B2
Authority
JP
Japan
Prior art keywords
transformer
secondary winding
winding
detector
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9669179A
Other languages
Japanese (ja)
Other versions
JPS5621076A (en
Inventor
Okuki Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP9669179A priority Critical patent/JPS5621076A/en
Publication of JPS5621076A publication Critical patent/JPS5621076A/en
Publication of JPS6212862B2 publication Critical patent/JPS6212862B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 本発明は、差動変成器方式による磁気検知器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic detector using a differential transformer method.

かかる磁気検知器は、地球磁場等の微少磁気変
化を検知するために用いられており、従来は第1
図の回路図に示す構成が使用されていた。
Such magnetic detectors are used to detect minute magnetic changes such as the earth's magnetic field, and conventionally the first
The configuration shown in the circuit diagram in Figure was used.

すなわち、各々が1次巻線Pおよび2次巻線S
を有し、かつ、パーマロイ等の高導磁率鉄芯を用
いた同一巻線比の第1および第2変成器T1,T2
を設け、第1変成器T1の1次巻線P1に対し第2
変成器T2の1次巻線P2を逆極性として直列に接
続すると共に、各変成器T1,T2の各2次巻線
S1,S2を同極性として直列に接続のうえ、各2次
巻線S1,S2による直列回路の両端へ、検波器とし
てのダイオードD1〜D4からなるプリツジ回路を
介し、抵抗器Rが接続されており、一方、各1次
巻線P1,P2による直列回路の両端には、各変成器
T1,T2の鉄芯が飽和する直前のピーク電流を通
ずる特定周波数の交流電源Gが接続されている。
That is, each has a primary winding P and a secondary winding S
The first and second transformers T 1 and T 2 have the same winding ratio and use high magnetic permeability iron cores such as permalloy.
and the second transformer T1 is connected to the primary winding P1 of the first transformer
The primary winding P 2 of transformer T 2 is connected in series with opposite polarity, and the secondary windings of each transformer T 1 and T 2 are connected in series.
S 1 and S 2 are connected in series with the same polarity, and a resistor is connected to both ends of the series circuit formed by each secondary winding S 1 and S 2 through a prism circuit consisting of diodes D 1 to D 4 as a detector. A transformer R is connected to the transformer R, and each transformer is connected to both ends of the series circuit formed by each primary winding P 1 and P 2
An alternating current power supply G of a specific frequency is connected which passes the peak current just before the iron cores of T 1 and T 2 are saturated.

したがつて、各1次巻線P1,P2には矢印で示す
極性の電流i1,i2が通じ、これによつて各2次巻
線S1,S2には矢印で示す互に逆極性の電圧e1,e2
が誘起され、各変成器T1,T2が同一巻線数のた
めe1=e2であり、合成電圧Eは次式のとおり零と
なつている。
Therefore, currents i 1 , i 2 of the polarities indicated by the arrows flow through the respective primary windings P 1 , P 2 , and thereby the currents i 1 , i 2 having the polarities indicated by the arrows flow through the respective secondary windings S 1 , S 2 . voltages of opposite polarity e 1 , e 2
is induced, and since each transformer T 1 and T 2 have the same number of windings, e 1 =e 2 , and the combined voltage E is zero as shown in the following equation.

E=e1−e2=0 …(1) しかし、大矢印で示す方向から検知すべき磁気
変化Hが与えられると、第1図Aに示すとおり、
交流電源Gによる正の半サイクルAにおいては、
電流i1A,i2Aが各1次巻線P1,P2へ通じ、第1
変成器T1では電流i1Aによる励磁方向と磁気変
化Hの方向とが逆方向となり、これの鉄芯が非飽
和方向へ励磁され、1次巻線P1と2次巻線S1との
相互誘導係数M1が増大方向へ変化し、これに応
じて2次巻線S2の電圧e1が変化分Δe1だけ増加す
る。
E=e 1 -e 2 = 0...(1) However, when the magnetic change H to be detected from the direction indicated by the large arrow is given, as shown in Figure 1A,
In the positive half cycle A by AC power supply G,
Currents i 1A , i 2A pass through each primary winding P 1 , P 2 , and the first
In the transformer T 1 , the direction of excitation by the current i 1A and the direction of the magnetic change H are opposite to each other, and its iron core is excited in the non-saturation direction . The mutual induction coefficient M 1 changes in the increasing direction, and the voltage e 1 of the secondary winding S 2 increases by the amount of change Δe 1 accordingly.

一方、第2変成器T2では、電流i2Aによる励
磁方向と磁気変化Hの方向とが同方向となり、こ
れの鉄芯が飽和方向へ励磁され、1次巻線P2と2
次巻線S2との相互誘導係数M2が減少方向へ変化
し、これに応じて2次巻線S2の電圧e2が変化分Δ
e2だけ減少するものとなり、このときの合成電圧
Eは、e1=e2=eおよびΔe1=Δe2=Δeの条件
を前提とし、e1の方向を正とすれば、次式のもの
となる。
On the other hand, in the second transformer T 2 , the direction of excitation by the current i 2A and the direction of the magnetic change H are the same, the iron core of this is excited in the saturation direction, and the primary windings P 2 and 2
The mutual induction coefficient M 2 with the secondary winding S 2 changes in the decreasing direction, and accordingly, the voltage e 2 of the secondary winding S 2 changes by the amount Δ
The resultant voltage decreases by e 2 , and the combined voltage E at this time is given by the following equation, assuming the conditions e 1 = e 2 = e and Δe 1 = Δe 2 = Δe, and assuming that the direction of e 1 is positive. Become something.

E=(e1+Δe1)+(−e2+Δe2) =(e+Δe)+(−e+Δe)=2Δe …(2) したがつて、磁気変化Hによる電圧変化分が2
Δeとして得られる。
E=(e 1 +Δe 1 )+(−e 2 +Δe 2 )=(e+Δe)+(−e+Δe)=2Δe…(2) Therefore, the voltage change due to magnetic change H is 2
It is obtained as Δe.

また、第1図Bに示すとおり、交流電源Gによ
る負の半サイクルBにおいても、同様の原理によ
り、このときの合成電圧Eは次式により与えられ
る。
Furthermore, as shown in FIG. 1B, in the negative half cycle B of the AC power supply G, the combined voltage E at this time is given by the following equation based on the same principle.

E=(−e1+Δe1)+(e2+Δe2) =(−e1+Δe)+(e+Δe)=2Δe …(3) したがつて、交流電源Gの正負各半サイクル毎
に磁気変化Hによる電圧変化分2Δeが得られ
る。
E = (-e 1 + Δe 1 ) + (e 2 + Δe 2 ) = (-e 1 + Δe) + (e + Δe) = 2Δe...(3) Therefore, the magnetic change H occurs every positive and negative half cycle of the AC power supply G. A voltage change of 2Δe is obtained.

このため、(2),(3)式によつて示される合成電圧
EをダイオードD1〜D4により検波すれば、これ
の検波出力として2Δeに比例した直流電圧Ed
が得られ、これによつて磁気変化Hを検知するこ
とができる。
Therefore, if the combined voltage E shown by equations (2) and (3) is detected by the diodes D 1 to D 4 , the detected output will be a DC voltage E d proportional to 2Δe.
is obtained, and thereby the magnetic change H can be detected.

ただし、ダイオードD1〜D4の順方向電圧は一
般に約0.6Vとなつており、これ以上の順方向電
圧を印加しないと順方向電流が通じないため、微
少な合成電圧Eに対してはオフ状態であり、微弱
な磁気変化Hは検知不可能となる欠点を生じてい
た。
However, the forward voltage of diodes D 1 to D 4 is generally about 0.6 V, and unless a forward voltage higher than this is applied, forward current will not flow, so they are turned off for a small composite voltage E. The problem was that the weak magnetic change H could not be detected.

本発明は、従来のかかる欠点を一挙に解決する
目的を有し、1次巻線および2次巻線を有しこの
1次巻線と2次巻線との相互誘導係数が検知すべ
き磁気変化に応じて変化する第1変成器と、この
第1変成器と同一巻線比の1次巻線および2次巻
線を有しこの1次巻線と2次巻線との相互誘導係
数が前記磁気変化に応じて第1変成器とは反対方
向に変化する第2変成器と、第1および第2変成
器の各1次巻線による直列回路の両端へ接続され
た交流電源とを備える磁気検知器において、第1
変成器の1次巻線に対し1次巻線を逆極性として
直列に接続すると共に第1変成器の2次巻線に対
し2次巻線を逆極性として直列に接続した第2変
成器と、第1および第2変成器の各2次巻線によ
る直列回路の両端へ接続されこの両端間に生ずる
交流電圧を検波する検波器と、この検波器の検波
出力へ接続された互に等しい抵抗値の第1および
第2抵抗器からなる分圧回路とを設け、各2次巻
線の接続点と分圧回路における各抵抗器の接続点
とから検知出力を取り出し、検波器へ印加される
合成電圧を常に十分なものとすることにより、微
弱な磁気変化も確実に検知できる極めて効果的
な、磁気検知器を提供するものである。
The present invention has an object of solving the conventional drawbacks at once, and has a primary winding and a secondary winding, and the mutual induction coefficient between the primary winding and the secondary winding is the magnetic field to be detected. It has a first transformer that changes according to the change in temperature, a primary winding and a secondary winding having the same turns ratio as the first transformer, and a mutual induction coefficient between the primary winding and the secondary winding. a second transformer whose magnetic flux changes in a direction opposite to that of the first transformer in response to the magnetic change; and an AC power supply connected to both ends of a series circuit formed by the respective primary windings of the first and second transformers. In the magnetic detector provided, the first
A second transformer is connected in series with the primary winding of the transformer with the primary winding having opposite polarity, and is connected in series with the secondary winding of the first transformer with the secondary winding having opposite polarity. , a detector connected to both ends of the series circuit formed by the secondary windings of the first and second transformers to detect the alternating current voltage generated between the ends, and mutually equal resistors connected to the detection output of the detector. A voltage divider circuit consisting of first and second resistors of different values is provided, and a detection output is extracted from the connection point of each secondary winding and the connection point of each resistor in the voltage divider circuit and applied to the detector. The present invention provides an extremely effective magnetic detector that can reliably detect even weak magnetic changes by always maintaining a sufficient combined voltage.

以下、実施例を示す第2図の回路図により本発
明の詳細を説明する。
The details of the present invention will be explained below with reference to the circuit diagram of FIG. 2 showing an embodiment.

同図において、第1変成器T1の2次巻線S1
対し、第2変成器T2の2次巻線S2も逆極性とし
て直列に接続されており、この各巻線S1,S2によ
る直列回路の両端には、この両端間に生ずる交流
電圧を検波するため、検波器としてのダイオード
D1〜D4によるブリツジ回路が接続され、これの
検波出力へ互に等しい抵抗値の第1および第2抵
抗器R1,R2からなる分圧回路が接続されたう
え、各2次巻線S1,S2を接続した点と、第1およ
び第2抵抗器R1,R2の接続点との間へ負荷抵抗
器Rsを接続し、これの端子電圧により検知出力
pを取り出している。
In the same figure, the secondary winding S 2 of the second transformer T 2 is also connected in series with the secondary winding S 1 of the first transformer T 1 with opposite polarity, and each winding S 1 , A diode is installed at both ends of the series circuit using S2 as a detector to detect the alternating current voltage generated between the two ends.
A bridge circuit consisting of D 1 to D 4 is connected, and a voltage divider circuit consisting of first and second resistors R 1 and R 2 having the same resistance value is connected to the detection output of this bridge circuit, and each secondary winding A load resistor Rs is connected between the connection point of the wires S 1 and S 2 and the connection point of the first and second resistors R 1 and R 2 , and the detection output E p is obtained by the terminal voltage of this. ing.

なお、コンデンサC1,C2は、交流電源Gの特
定周波数に対し各2次巻線S1,S2を共振させるも
のであり、これによつて検知感度を向上させるこ
とができる。
Note that the capacitors C 1 and C 2 cause the respective secondary windings S 1 and S 2 to resonate at a specific frequency of the AC power supply G, thereby improving detection sensitivity.

したがつて、合成電圧Eは電圧e1とe2との和と
なり、次式によつて示される。
Therefore, the composite voltage E is the sum of the voltages e 1 and e 2 and is expressed by the following equation.

E=e1+e2=e+e=2e …(4) すなわち、(2),(3)式に比し合成電圧Eが大とな
り、ダイオードD1〜D4の順方向電圧より十分に
高く、これらが常にオン状態となるため、ダイオ
ードD1〜D4の損失を無視することができる。
E=e 1 +e 2 =e+e=2e...(4) That is, the combined voltage E is larger than the equations (2) and (3), and is sufficiently higher than the forward voltage of the diodes D 1 to D 4 . is always on, so the loss of diodes D 1 to D 4 can be ignored.

第3図は、ダイオードD1〜D4の損失を無視し
た第2図の等価回路であり、これは、一般的な変
成器を含むブリツジ回路を構成しており、第2図
において大矢印により示す方向から磁気変化Hが
与えられると、第1図と同様の原理により合成電
圧は次式のものとなる。
Figure 3 is an equivalent circuit of Figure 2, ignoring the loss of diodes D 1 to D 4. This constitutes a bridge circuit including a general transformer, and is indicated by the large arrow in Figure 2. When a magnetic change H is applied from the direction shown, the combined voltage is expressed by the following equation based on the same principle as in FIG.

E=(e1+Δe1)+(e2−Δe2) =(e+Δe)+(e−Δe)=2e …(5) また、負荷抵抗器Rsへ通ずる電流Δiは、第
1および第2抵抗器R1,R2へ通ずる電流iS1
S2とし、ダイオードD1〜D4を無視すると、 Δi=iS1−iS2S1=(e1+Δe1)/R1S2=(e2−Δe2)/R2 たゞし、e1=e2=e、Δe1=Δe2=Δe、R1
R2の条件であるため、 Δi=e+Δe/R−e−Δe/R=2Δe/R…(6
) Ep=Δi・R3=2Δe/R・R3 …(7) したがつて、ダイオードD1〜D4をオン状態と
したうえ、磁気変化Hに比例した検知出力電圧E
pを取り出すことができるため、順方向電圧特性
による影響を受けず、微弱な磁気変化Hも確実に
検知できる。
E = (e 1 + Δe 1 ) + (e 2 - Δe 2 ) = (e + Δe) + (e - Δe) = 2e (5) In addition, the current Δi flowing to the load resistor Rs is Current i S1 flowing to the devices R 1 and R 2 ,
i S2 and ignoring diodes D 1 to D 4 , Δi = i S1 − i S2 i S1 = (e 1 + Δe 1 )/R 1 i S2 = (e 2 − Δe 2 )/R 2 , e 1 = e 2 = e, Δe 1 = Δe 2 = Δe, R 1 =
Since the condition is R 2 , Δi=e+Δe/R−e−Δe/R=2Δe/R…(6
) E p =Δi・R 3 =2Δe/R・R 3 …(7) Therefore, in addition to turning on the diodes D 1 to D 4 , the detection output voltage E proportional to the magnetic change H
Since p can be taken out, even weak magnetic changes H can be reliably detected without being affected by forward voltage characteristics.

このほか、条件によつてはコンデンサC1,C2
を省略してもよく、検波器として他の方向性素子
を用い、あるいはダイオードブリツジ回路によら
ず他の検波回路としても同様であり、第1および
第2抵抗器R1,R2の中間へポテンシヨメータを
挿入し、平衡調整を可能とする等、種々の変形が
自在である。
In addition, depending on conditions, capacitors C 1 and C 2
may be omitted, or other directional elements may be used as the detector, or other detection circuits other than the diode bridge circuit may be used . Various modifications can be made, such as inserting a potentiometer to enable balance adjustment.

以上の説明により明らかなとおり本発明によれ
ば、特に順方向電圧の低いダイオードを用いずと
も、微弱な磁気変化を十分かつ確実に検知できる
ため、各種用途の磁気検知器として多大の効果が
得られる。
As is clear from the above explanation, according to the present invention, weak magnetic changes can be sufficiently and reliably detected without using a diode with a particularly low forward voltage, so that it can be highly effective as a magnetic detector for various uses. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の回路図、第2図は本発明の実
施例を示す回路図、第3図は第2図の等価回路で
ある。 T1……第1変成器、T2……第2変成器、P1
P2……1次巻線、S1,S2……2次巻線、D1〜D4
……ダイオード(検波器)、R1……第1抵抗器、
R2……第2抵抗器、G……交流電源、Ep……検
知出力。
FIG. 1 is a circuit diagram of a conventional example, FIG. 2 is a circuit diagram showing an embodiment of the present invention, and FIG. 3 is an equivalent circuit of FIG. T 1 ...first transformer, T 2 ...second transformer, P 1 ,
P 2 ...Primary winding, S 1 , S 2 ...Secondary winding, D 1 to D 4
...Diode (detector), R 1 ...First resistor,
R 2 ... Second resistor, G ... AC power supply, E p ... detection output.

Claims (1)

【特許請求の範囲】[Claims] 1 1次巻線および2次巻線を有しこの1次巻線
と2次巻線との相互誘導係数が検知すべき磁気変
化に応じて変化する第1変成器と、この第1変成
器と同一巻線比の1次巻線および2次巻線を有し
この1次巻線と2次巻線との相互誘導係数が前記
磁気変化に応じて前記第1変成器とは反対方向に
変化する第2変成器と、前記第1および第2変成
器の各1次巻線による直列回路の両端へ接続され
た交流電源とを備える磁気検知器において、前記
第1変成器の1次巻線に対し1次巻線を逆極性と
して直列に接続すると共に前記第1変成器の2次
巻線に対し2次巻線を逆極性として直列に接続し
た前記第2変成器と、前記第1および第2変成器
の各2次巻線による直列回路の両端へ接続され該
両端間に生ずる交流電圧を検波する検波器と、該
検波器の検波出力へ接続された互に等しい抵抗値
の第1および第2抵抗器からなる分圧回路とを設
け、前記第1および第2変成器の各2次巻線を接
続した点と前記分圧回路の第1および第2抵抗器
の接続点とから検知出力を得ることを特徴とした
磁気検知器。
1. A first transformer having a primary winding and a secondary winding, in which a mutual induction coefficient between the primary winding and the secondary winding changes in accordance with a magnetic change to be detected, and the first transformer. has a primary winding and a secondary winding with the same winding ratio, and the mutual induction coefficient between the primary winding and the secondary winding is in the opposite direction to that of the first transformer in response to the magnetic change. A magnetic detector comprising a second transformer that changes, and an AC power source connected to both ends of a series circuit formed by primary windings of the first and second transformers, wherein the primary winding of the first transformer the second transformer, the second transformer having a primary winding connected in series to the line with a reverse polarity, and a secondary winding connected in series to the secondary winding of the first transformer with a secondary winding having a reverse polarity; and a detector connected to both ends of the series circuit formed by each secondary winding of the second transformer to detect the alternating current voltage generated between the ends, and a detector having equal resistance values connected to the detection output of the detector. a voltage divider circuit consisting of a first and second resistor; a point connecting each secondary winding of the first and second transformers and a connection point of the first and second resistors of the voltage divider circuit; A magnetic detector characterized by obtaining detection output from.
JP9669179A 1979-07-31 1979-07-31 Magnetism detector Granted JPS5621076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9669179A JPS5621076A (en) 1979-07-31 1979-07-31 Magnetism detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9669179A JPS5621076A (en) 1979-07-31 1979-07-31 Magnetism detector

Publications (2)

Publication Number Publication Date
JPS5621076A JPS5621076A (en) 1981-02-27
JPS6212862B2 true JPS6212862B2 (en) 1987-03-20

Family

ID=14171799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9669179A Granted JPS5621076A (en) 1979-07-31 1979-07-31 Magnetism detector

Country Status (1)

Country Link
JP (1) JPS5621076A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413833B2 (en) * 2009-09-01 2014-02-12 学校法人金沢工業大学 Magnetic detector
JP5630660B2 (en) * 2011-07-22 2014-11-26 村田機械株式会社 Magnetic displacement sensor and displacement detection method

Also Published As

Publication number Publication date
JPS5621076A (en) 1981-02-27

Similar Documents

Publication Publication Date Title
EP2924450B1 (en) Current detecting device
US4276510A (en) Apparatus for sensing current transformer primary current as a function of differential core inductance
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
US5345169A (en) Current measuring device
JPH0829456A (en) Current sensor based on compensation principle
KR20020027491A (en) Ac current detection device
EP0124967B1 (en) D.c. current transformer circuits
US4286211A (en) Direct current detecting device using saturable reactors
JPS6212862B2 (en)
US3260930A (en) Magnetic field detecting device
JPH0315710B2 (en)
JPS6212646B2 (en)
JP2008014921A (en) Direct-current detecting method and dc detector
JPH0687073B2 (en) Leakage detector
JPH0742143Y2 (en) Single power supply circuit method of magnetic balance type Hall element type current sensor
JPH038566B2 (en)
KR102039272B1 (en) A DC Power Current Detection Circuit
KR102039271B1 (en) A Earth Leakage Current Detection Circuit
WO2019181543A1 (en) Ct-type current sensor
JPH0244261A (en) Current detection method and power supply device
JPS6017746Y2 (en) metal detector
RU2138824C1 (en) Current transducer
SU885904A1 (en) Device for comparing two alternative voltages
GB2137764A (en) Polarity-Sensitive D.C. Current Transformer
JPH0529167A (en) Current transformer