JPS63118054A - High-speed tool steel having superior toughness - Google Patents

High-speed tool steel having superior toughness

Info

Publication number
JPS63118054A
JPS63118054A JP26483486A JP26483486A JPS63118054A JP S63118054 A JPS63118054 A JP S63118054A JP 26483486 A JP26483486 A JP 26483486A JP 26483486 A JP26483486 A JP 26483486A JP S63118054 A JPS63118054 A JP S63118054A
Authority
JP
Japan
Prior art keywords
toughness
tool steel
speed tool
hardness
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26483486A
Other languages
Japanese (ja)
Inventor
Shuji Tanogami
田ノ上 修二
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26483486A priority Critical patent/JPS63118054A/en
Publication of JPS63118054A publication Critical patent/JPS63118054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To obtain a high-speed tool steel having high toughness in conventional melting and gas atomization processes by specifying the amts. of Cr, Mo, W and V and the relation between the amts. of C and V and adding a specified amt. of Al in relation to the amt. of N. CONSTITUTION:The compsn. of a high-speed tool steel is composed of, by weight, 0.8-3.4% C, <=2% Si, <=1.0% Mn, 3-8% Cr, 0.1-10% Mo, 0.1-10% W (8<=W+2Mo<=30), 4-10% V (C>=0.2XV), 0.01-0.2% N, >0.6%Al (0.5<=Al-2N<=2) and the balance Fe with inevitable impurities. The high-speed tool steel ensures satisfactory toughness in the presence of N and has superior machinability and durability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、A1により靭性を高めた高速度工具鋼に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-speed tool steel whose toughness is increased by A1.

〔従来の技術〕[Conventional technology]

高速度工具鋼は高度の耐摩耗性を持たなければならない
ことから、多くの場合、MOlW、Vが含有される。M
OlW、■はCと結合して橿めて硬い炭化物を形成し、
これらが耐摩耗性の向上に寄与しているわけであるが、
MOlW、■の含有量が増加してくると、通常の溶解法
では、析出炭化物が粗大化し靭性低下等の弊害を生じ、
製造が困難になってくる。
Since high-speed tool steel must have a high degree of wear resistance, MOLW and V are often contained. M
OlW, ■ combines with C to form a hard carbide,
These contribute to improving wear resistance, but
When the content of MOLW,
Manufacturing becomes difficult.

そこで、高速度工具の分野でも粉末冶金による製造化が
進み、粉末化法としてはガスコスト等の点で有利なNt
ガスアトマイズ法が主流を占めている。粉末化された金
属はいわゆるHIP法等により真密度の状態に固められ
る。
Therefore, manufacturing using powder metallurgy has progressed even in the field of high-speed tools, and Nt
Gas atomization method is the mainstream. The powdered metal is solidified to a true density state by a so-called HIP method or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、N2ガスアトマイズ法では金属マトリンクス
中にNが多量(通常は0.05%以上)に固溶すること
は避けられない。このNについて従来は硬度や耐摩耗性
の向上に寄与するといわれていたが、本発明者らの調査
によるとNが0.03%以上の令M域では硬度や耐摩耗
性に対する効果は少な(、むしろ靭性を低下させる原因
になっていることが判明した。
However, in the N2 gas atomization method, it is inevitable that a large amount of N (usually 0.05% or more) forms a solid solution in the metal matrix. It has been said that this N contributes to improving hardness and wear resistance, but according to the research conducted by the present inventors, in the M range where N is 0.03% or more, the effect on hardness and wear resistance is small ( However, it was found that this actually caused a decrease in toughness.

すなわち、高速度工具鋼にあってNは固溶強化の働きを
することから、0.02%以下の微量合作の場合には硬
度や耐摩耗性の向上につながらないこともないが、例え
ばN2ガスアトマイズ法の場合に含有される0、05%
以上の多量含有レベルでは、硬度の上昇は飽和傾向にあ
り、靭性の低下が著しくなるのである。
In other words, since N acts as solid solution strengthening in high-speed tool steel, a small amount of 0.02% or less will not lead to improvements in hardness and wear resistance, but for example, N2 gas atomization 0.05% contained in case of law
At higher content levels, the increase in hardness tends to be saturated, and the decrease in toughness becomes significant.

言うまでもなく、靭性は高速度工具鋼においては強度や
耐摩耗性とともに重要な特性であり、靭性を高めること
はNtガスアトマイズ法を行う場合ばかりでなく、通常
の溶解法を行う場合にも非常に重要である。
Needless to say, toughness is an important property in high-speed tool steel, along with strength and wear resistance, and increasing toughness is extremely important not only when using the Nt gas atomization method, but also when using the normal melting method. It is.

本発明は、通常の溶解法を行う場合は勿論のこと、N2
ガスアトマイズ法を行う場合にも、高度の靭性が具備さ
れる高速度工具鋼を提供するものである。
The present invention is applicable not only to ordinary dissolution methods but also to N2
The present invention provides a high-speed tool steel that has a high degree of toughness even when subjected to gas atomization.

〔問題点を解決するための手段〕[Means for solving problems]

前述したとおり、Nはマトリックス中に固溶し、その含
有量によっては硬度や耐摩耗性に対する効果が薄<、靭
性低下の原因となる。このことからすれば、マトリック
ス中に固溶したNを取り除くことが、一つの靭性向上対
策になり得る。固溶Nを除去するものとして、Ti、Z
r、A1等の窒化物形成元素の添加が考えられるが、T
i、Zrは高価である上に、炭化物も形成するので、高
速度工具鋼のような高C材においては、粗大な炭窒化物
を生じ、靭性を重視するならその使用は許されない。
As mentioned above, N is dissolved in the matrix, and depending on its content, it has little effect on hardness and wear resistance, and may cause a decrease in toughness. Considering this, removing N dissolved in the matrix can be one measure to improve toughness. Ti and Z are used to remove solid solution N.
It is possible to add nitride-forming elements such as r, A1, etc., but T
In addition to being expensive, Zr also forms carbides, so in high-C materials such as high-speed tool steel, coarse carbonitrides are formed, and its use is not allowed if toughness is important.

そこで、本発明者らは残ったA1に着目し、靭性に与え
るA7!の影響を子細に調査研究した結果、A1は、■
Nと結びついてA I Nを形成し、固溶Nを少なくし
て靭性の向上をもたらす以外に、■マトリックス中にも
固溶して靭性改善に寄与することが判明した。すなわち
、Afの添加により靭性が■、■の両面から改善され、
全体として大巾な靭性改善効果の得られることが明らか
になったのである。■の理由については、Alの固溶に
よりMs点が上昇し、残留オーステナイト組織が減少し
て、マルテンサイト組織が靭性に有利な形態に変化する
ためと考えられる。
Therefore, the present inventors focused on the remaining A1, and A7! As a result of detailed investigation and research into the influence of
It has been found that in addition to combining with N to form A I N and improving toughness by reducing the amount of N dissolved in solid solution, it also dissolves in solid solution in the matrix and contributes to improving toughness. In other words, the addition of Af improves the toughness in terms of both ■ and ■.
It has become clear that a large effect on improving toughness can be obtained as a whole. The reason for (2) is considered to be that the Ms point increases due to the solid solution of Al, the retained austenite structure decreases, and the martensitic structure changes to a form that is advantageous for toughness.

本発明は斯かる知見を基礎に、■、■の両作用を効果的
に発現させるAl量を調査特定することにより完成され
たもので、その要旨とするところは、重量比でC:0.
8〜3.4%かつC20,2■、Si:2%以下、Mr
zl、0%以下、Cr:3〜8%、Mo:0.1〜10
%、W:091〜10%かつ8≦W + 2 M O≦
30、■=4〜lO%、N:0、O1〜0.2%、Aj
!:Q、5%超で0.5≦A7!=2N≦2を含有し、
更に必要に応してCo:6%以下を含有し、残部Feお
よび不可避的不純物からなる靭性のすくれた高速度工具
鋼にある。
The present invention was completed based on this knowledge by investigating and specifying the amount of Al that effectively exerts both the effects (1) and (2).The gist of this invention is that the weight ratio of C:0.
8 to 3.4% and C20,2■, Si: 2% or less, Mr
zl, 0% or less, Cr: 3-8%, Mo: 0.1-10
%, W: 091-10% and 8≦W + 2 M O≦
30, ■=4~1O%, N:0, O1~0.2%, Aj
! :Q, 0.5≦A7 for more than 5%! =2N≦2,
Furthermore, if necessary, it contains Co: 6% or less, and the balance is Fe and unavoidable impurities, making it a high-speed tool steel with low toughness.

本発明の高速度工具鋼においては、特にANを0.6%
超でかつ0.5≦、1〜2N≦2含有させたことにより
、靭性が上記した■、■の両面から効果的に改善され、
全体として高度の靭性が確保される。また、硬度や耐摩
耗性についてもV等の含有により優れた性能を確保して
いる。
In the high speed tool steel of the present invention, especially AN is 0.6%.
By containing 0.5≦, 1 to 2N≦2, the toughness is effectively improved from both of the above-mentioned (1) and (2).
A high degree of toughness is ensured as a whole. Furthermore, excellent performance in terms of hardness and wear resistance is ensured due to the inclusion of V and the like.

なお、Aj!とNとを複合添加した高速度工具鋼は、特
開昭53−14691号公報により公知である。しかる
に、この鋼はA1とNとの複合添加によりVC炭化物の
微細化を狙ったものもので、本発明鋼とは含有の目的が
全く異なる。またAβ含有量自体も、この公知鋼では最
大で0.6%であり、このような少量のA1では本発明
の狙いとする■、■両面からの靭性改善効果は得られな
い。
In addition, Aj! A high-speed tool steel with a composite addition of N and N is known from JP-A-53-14691. However, this steel aims to refine the VC carbide by the combined addition of A1 and N, and the purpose of the addition is completely different from that of the steel of the present invention. In addition, the Aβ content itself is 0.6% at maximum in this known steel, and with such a small amount of A1, the toughness improvement effect from both (1) and (2) which is the aim of the present invention cannot be obtained.

以下、本発明鋼における成分組成の限定理由を述べる。The reason for limiting the composition of the steel of the present invention will be described below.

C:炭化物形成元素として、またマトリックスの強化元
素として有用である。VC炭化物析出のため必要量は、
V1%につき0.2%であり、炭化物析出の面からは少
なくとも0.2 x V相当量が必要である。一方、マ
トリックス中のC固溶量としては、マトリックスの硬度
と靭性のバランスを考えると、044〜0.5%が最適
範囲である。これらのことより、■を炭化物として有効
に働かせかつマトリックス中に最適量のCを固溶させる
のに必要なclは、■の下限値である4%に対し0.8
%、上限値である10%に対し2.0%となるが、MO
lWも炭化物を生成することからW当量が最大の30で
は必要なC量は3.4%となり、これがCの上限となる
C: Useful as a carbide-forming element and as a matrix-strengthening element. The amount required for VC carbide precipitation is:
It is 0.2% per 1% of V, and from the viewpoint of carbide precipitation, an amount equivalent to at least 0.2 x V is required. On the other hand, considering the balance between hardness and toughness of the matrix, the optimum range of the solid solution amount of C in the matrix is 0.44 to 0.5%. From these facts, the Cl required to make ■ work effectively as a carbide and to dissolve an optimum amount of C in the matrix is 0.8% for the lower limit of 4% for ■.
%, 2.0% against the upper limit of 10%, but MO
Since lW also generates carbides, when the W equivalent is 30, which is the maximum, the required amount of C is 3.4%, which is the upper limit of C.

したがって、Cは0.8〜3.4%とし、同時にC≧0
.2 X Vを規定した。0.8%未満では、マトリッ
クス硬度が低下して耐摩耗性が悪くなり、3.4%超で
は靭性が悪化する。
Therefore, C should be 0.8 to 3.4%, and at the same time C≧0
.. 2×V was defined. If it is less than 0.8%, matrix hardness decreases and wear resistance deteriorates, and if it exceeds 3.4%, toughness deteriorates.

Si:脱酸剤として使用されるが、0.8%付近で焼戻
し硬化抵抗を高める働きがある。しかし、W当量が高い
場合にはこの効果も少なく、また一方でSiは酸化物の
介在物等を生じ、靭性を低下させる原因になるので、2
%を上限とした。下限については少量のSiは硬度、靭
性に与える影響が小さいので特に規定しないが、脱酸に
必要な量が含有されることは言うまでもない。
Si: Used as a deoxidizing agent, Si has the effect of increasing temper hardening resistance at around 0.8%. However, when the W equivalent is high, this effect is small, and on the other hand, Si produces oxide inclusions, etc., which causes a decrease in toughness.
The upper limit was %. The lower limit is not particularly specified because a small amount of Si has little effect on hardness and toughness, but it goes without saying that the amount necessary for deoxidation is contained.

Mn : S iと同様、脱酸剤として使用されるが、
1.0%を超えるとオースティト組織を安定化、拡大し
て残留オーステナイト量が増大し、硬度、靭性を低下さ
せる原因になるので、1.0%以下に規定した。なお、
下限については少量のMnは硬度、靭性に与える影響が
小さいので、特に規定しないが脱酸に必要な量が含有さ
れることは言うまでもない。
Mn: Like Si, it is used as a deoxidizer, but
If it exceeds 1.0%, the austite structure will be stabilized and expanded and the amount of retained austenite will increase, causing a decrease in hardness and toughness, so it is specified to be 1.0% or less. In addition,
Regarding the lower limit, since a small amount of Mn has a small effect on hardness and toughness, it is not particularly specified, but it goes without saying that the amount necessary for deoxidation is contained.

Cr:主に焼入性を向上させる元素であるが、3%未満
ではこのような効果が少な(、逆に8%を超えて添加す
ると、炭化物を粗大化させ、脆化しやすくするので、3
〜8%の範囲とした。
Cr: It is an element that mainly improves hardenability, but if it is less than 3%, this effect is small (on the contrary, if it is added in excess of 8%, it will coarsen the carbide and make it more likely to become brittle.
The range was set to 8%.

MOlW:Cと結合してMbC型、MtC型炭化炭化物
成し、耐摩耗性を向上させる。また、焼戻しによる二次
硬化を大きくする。更に、耐熱性も付与する。これらの
硬化を十分に発揮させるには、Mo、Wとも0.1%以
上の含有を必要とし、かつW当量(W’+ 2 M o
 )が8以上でなければならない、ただし、MOlWが
10%を超えると、AILにより靭性改善効果を打消す
結果になるので、それぞれ10%を上限とし、W当量に
ついては熱間加工性を確保する意味から、30を上限と
した。
MOlW: Combines with C to form MbC type and MtC type carbides, improving wear resistance. Further, secondary hardening due to tempering is increased. Furthermore, it also imparts heat resistance. In order to fully exhibit these hardening effects, it is necessary to contain Mo and W in an amount of 0.1% or more, and the W equivalent (W'+ 2 Mo
) must be 8 or more. However, if MOLW exceeds 10%, the toughness improvement effect will be canceled by AIL, so the upper limit for each should be 10%, and hot workability should be ensured for W equivalent. For the sake of meaning, the upper limit was set at 30.

なお、W当量が20未満であれば溶製材でも間4を 題はないが、20以上に/ると析出炭化物が粗大化して
靭性の低下が大きいので、W当!20以上ならば粉末材
の方が好ましい。
Note that if the W equivalent is less than 20, there is no problem with the ingot material, but if it is more than 20, the precipitated carbides will become coarse and the toughness will decrease significantly, so the W equivalent! If it is 20 or more, powder material is preferable.

■:銅鋼中Cと結びついて、硬いVC炭化物を形成し、
耐摩耗性向上に大きく寄与する。しかし、4%未満では
析出炭化物量が少なく耐摩耗性に与える効果が小さいの
で、4%を下限とする。上限については10%を超えて
添加しても析出炭化物が粗大化して耐摩耗性への効果が
飽和し、また熱間加工性も低下してくるので、10%と
する。
■: Combines with C in copper steel to form hard VC carbide,
It greatly contributes to improving wear resistance. However, if it is less than 4%, the amount of precipitated carbides is small and the effect on wear resistance is small, so 4% is set as the lower limit. The upper limit is set at 10% because even if it is added in excess of 10%, the precipitated carbides will become coarse and the effect on wear resistance will be saturated, and hot workability will also decrease.

N:基本的にはマトリックスの硬度や耐摩耗性に対して
有効であるので、0.01%以上含有させる。
N: Basically, it is effective for improving the hardness and wear resistance of the matrix, so it is contained in an amount of 0.01% or more.

しかしながら、固溶N量が増加してくると、硬度や耐摩
耗性に与える効果は小さくなり、むしろ靭性に対して悪
影響を与え始める。本発明高速度工具鋼の特長的作用の
1つは、固溶N量の増加を抑制することにあるが、この
作用もNが0.2%を超える場合には十分と言えなくな
り、また熱間加工性も悪化する。したがって、N鼠は0
.01〜0.2%の範囲とする。なお、N2ガスアトマ
イズ法を採用する場合は望むと望まざるとにかかわらず
0゜05〜0.2%程度のNは含有されることになる。
However, as the amount of solid solute N increases, the effect on hardness and wear resistance becomes smaller, and rather starts to have an adverse effect on toughness. One of the characteristic effects of the high-speed tool steel of the present invention is to suppress the increase in the amount of solid solute N, but this effect becomes insufficient when N exceeds 0.2%, and Machinability also deteriorates. Therefore, N rat is 0
.. The range is 0.01 to 0.2%. In addition, when employing the N2 gas atomization method, about 0.05 to 0.2% of N will be contained whether desired or not.

Co:必要に応じて添加することにより、耐熱性と焼戻
し硬化抵抗を増大させることができる。ただし、6%を
超えて添加してもこれらの効果は飽和し、逆に焼入れ性
や熱間鍛造性を低下させるので、6%を上限とする。下
限についてはCoが少量であっても相応の効果が期待で
きるので特に規定しない。
Co: By adding Co as necessary, heat resistance and temper hardening resistance can be increased. However, even if added in excess of 6%, these effects will be saturated and the hardenability and hot forgeability will deteriorate, so the upper limit is set at 6%. The lower limit is not particularly stipulated since a corresponding effect can be expected even with a small amount of Co.

Al−本発明の高速度工具鋼を特長づける元素である。Al--An element that characterizes the high-speed tool steel of the present invention.

このA7!は一部がNと結びつき、AIN窒化物を形成
する。しかし、全部のNがA1と結合するのではなく、
一部は固溶Nとなる。その結果、硬度や耐摩耗性の向上
に有効な若干量の固溶Nが生じることとなる。Nと結合
しなかった残りのAlはマトリックス中に固溶し、Mi
織面から靭性を改善する。すなわち、Alの固溶により
Ms点が上り、残留オーステナイトを減少させ、靭性発
現に有利な形態のマルテンサイト組織を生じるのである
。本発明者らの調査によれば、これら2つの靭性改善作
用を顕著に発現させるには、Alが0゜6%を超え、か
つ固78Aflと考えられる(Al−2N)が0.5以
上であることが必要である。ただし、(八1〜2N)が
2を超えるとフェライト組織を生し、逆に靭性を低下さ
せることも明らかとなっている。したがって、Allに
ついては0゜6%超で、0.5≦A7!−2N≦2とし
た。
This A7! A part of the ions combine with N to form AIN nitride. However, instead of all N combining with A1,
A portion becomes solid solution N. As a result, a certain amount of solid solution N is generated, which is effective in improving hardness and wear resistance. The remaining Al that did not bond with N is dissolved in the matrix, and Mi
Improves toughness from the woven surface. That is, solid solution of Al raises the Ms point, reduces retained austenite, and produces a martensitic structure that is advantageous for developing toughness. According to the research conducted by the present inventors, in order to significantly exhibit these two toughness-improving effects, Al must exceed 0°6% and (Al-2N), which is considered to be hard 78Afl, must be 0.5 or more. It is necessary that there be. However, it has been found that when (81-2N) exceeds 2, a ferrite structure is formed and the toughness is conversely reduced. Therefore, for All, more than 0°6% and 0.5≦A7! −2N≦2.

〔実施例〕〔Example〕

○ 第1表に示すW当量が約8の供試fi11ml〜4
、W当量が約10の供試鋼1lk15〜1O1W当量が
約18の供試鋼&11〜16をそれぞれ溶解法により製
造した。そして、各供試鋼を1230℃で焼入れし、5
75℃で3回焼戻した後、各供試鋼の硬度および靭性と
しての抗折力を測定した。抗折試験は5n厚×10f1
幅×55鶴長のテストピースを用い、標点間距離40薦
鳳で行った。結果を第2表に示す。また、第1図は同結
果を当量別に図示したものである。第1図からも明らか
なように、本発明の高速度工具鋼は・靭性に優れ、また
硬度も高く、比較鋼との差は歴然である。
○ Sample fi11ml~4 with a W equivalent of about 8 as shown in Table 1
, test steels 1lk15 with a W equivalent of about 10 to test steels 11 to 16 with a 1O1W equivalent of about 18 were manufactured by a melting method, respectively. Then, each test steel was quenched at 1230°C, and
After tempering three times at 75°C, the hardness and transverse rupture strength as toughness of each sample steel were measured. The bending test is 5n thickness x 10f1
A test piece of width x 55 length was used and the distance between gauges was 40. The results are shown in Table 2. Moreover, FIG. 1 illustrates the same results by equivalent weight. As is clear from FIG. 1, the high-speed tool steel of the present invention has excellent toughness and high hardness, and is clearly different from comparative steels.

第2表 O第1表に示した陽1〜16の供試鋼を1230°Cで
焼入れした後、硬度の抗折力に及ぼす影響を取り除くた
め、焼戻し硬度をHRC65,0±0゜5に揃え、前記
と同一の抗折試験を行った。結果を第3表に示す。また
、第2図は同結果をAl−2Nとの関係で示したもので
ある。第2図から明らかなように、靭性は0.5≦/1
〜2N≦2の範囲内で顕著に改善される。
Table 2 O After quenching the test steels numbered 1 to 16 shown in Table 1 at 1230°C, the tempering hardness was adjusted to HRC65.0 ± 0°5 in order to eliminate the influence of hardness on transverse rupture strength. The same bending test as above was performed. The results are shown in Table 3. Moreover, FIG. 2 shows the same results in relation to Al-2N. As is clear from Figure 2, the toughness is 0.5≦/1
It is significantly improved within the range of ~2N≦2.

第3表 ○ 第4表に示すW当量が約18の供試鋼隘17〜21
、W当量が約25の供試調律22〜26を粉末冶金法に
より製造した。粉末化にはN2ガスアトマイズ法、固形
化にはHIP法(1150℃X1hr  at2000
kg/cm”)を用いた。製造された各供試鋼に前記と
同様の硬度試験および抗折試験を行った結果を第5表、
第6表に示す。
Table 3 ○ Test steels 17 to 21 with a W equivalent of approximately 18 shown in Table 4
, and test tunings 22 to 26 having a W equivalent of about 25 were manufactured by powder metallurgy. N2 gas atomization method is used for powdering, and HIP method is used for solidification (1150℃ x 1hr at 2000℃).
kg/cm") was used. Table 5 shows the results of the hardness test and bending test conducted on each of the produced test steels in the same manner as above.
It is shown in Table 6.

第6表は硬度をI(RC65,0±0.5に揃えたとき
の結果である。これらの結果から明らかなように、本発
明の高速度工具鋼は15)末冶金法によって製造された
場合にあっても高い硬度と靭性を保存するものである。
Table 6 shows the results when the hardness was adjusted to I (RC65,0±0.5).As is clear from these results, the high speed tool steel of the present invention was manufactured by the 15) advanced metallurgy method. It retains high hardness and toughness even in extreme cases.

第5表 第6表 〔発明の効果〕 以上の説明から明らかなように、本発明の高速度工具鋼
はNが合作された状態にあって靭性の改善を図り、また
硬度や耐摩耗性を犠牲にすることもないので、溶解法で
製造可能な鋼種は勿論のこと、N2ガスアトマイズ法で
しか製造できないような高硬度な鋼種にあっても、十分
な靭性が確保され、切削性と耐久性の両面に著しく優れ
た高品質な高速度工具鋼となるものである。
Table 5 Table 6 [Effects of the Invention] As is clear from the above explanation, the high-speed tool steel of the present invention is in a state where N is co-produced to improve toughness and hardness and wear resistance. Since there is no sacrifice, sufficient toughness, machinability and durability are ensured, not only for steel types that can be manufactured using the melting method, but also for high-hardness steel types that can only be manufactured using the N2 gas atomization method. This is a high-quality high-speed tool steel that is extremely superior in both aspects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は供試鋼の硬度と抗折力との関係をW当量別に示
した図表、第2図は供試鋼の抗折力をAff−2Nとの
関係で示した図表□である。 7s 2 (71 Al−2(N) #L竹力(kq/m♂) yL竹力(kl/1m’) 1図 a中iカ(kg/エリ
Fig. 1 is a chart showing the relationship between the hardness and transverse rupture strength of the test steel by W equivalent, and Fig. 2 is a chart □ showing the transverse rupture strength of the test steel in relation to Aff-2N. 7s 2 (71 Al-2(N) #L bamboo force (kq/m♂) yL bamboo force (kl/1m')

Claims (2)

【特許請求の範囲】[Claims] (1)重量比でC:0.8〜3.4%かつC≧0.2V
、Si:2%以下、Mn:1.0%以下、Cr:3〜8
%、Mo:0.1〜10%、W:0.1〜10%かつ8
≦W+2Mo≦30、V:4〜10%、N:0.01〜
0.2%、Al:0.6%超で0.5≦Al−2N≦2
を含有し、残部Feおよび不可避的不純物からなる靭性
のすくれた高速度工具鋼。
(1) C: 0.8-3.4% by weight and C≧0.2V
, Si: 2% or less, Mn: 1.0% or less, Cr: 3 to 8
%, Mo: 0.1-10%, W: 0.1-10% and 8
≦W+2Mo≦30, V: 4-10%, N: 0.01-
0.2%, Al: more than 0.6%, 0.5≦Al-2N≦2
A high-speed tool steel with low toughness, the balance being Fe and unavoidable impurities.
(2)重量比でC:0.8〜3.4%かつC≧0.2V
、Si:2%以下、Mn:1.0%以下、Cr:3〜8
%、Mo:0.1〜10%、W:0.1〜10%かつ8
≦W+2Mo≦30、V:4〜10%、N:0.01〜
0.2%、Co:6%以下、Al:0.6%超で0.5
≦Al−2N≦2を含有し、残部Feおよび不可避的不
純物からなる靭性のすくれた高速度工具鋼。
(2) C: 0.8-3.4% by weight and C≧0.2V
, Si: 2% or less, Mn: 1.0% or less, Cr: 3 to 8
%, Mo: 0.1-10%, W: 0.1-10% and 8
≦W+2Mo≦30, V: 4-10%, N: 0.01-
0.2%, Co: 6% or less, Al: 0.5 over 0.6%
A high-speed tool steel with low toughness, containing ≦Al-2N≦2, with the balance being Fe and inevitable impurities.
JP26483486A 1986-11-06 1986-11-06 High-speed tool steel having superior toughness Pending JPS63118054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26483486A JPS63118054A (en) 1986-11-06 1986-11-06 High-speed tool steel having superior toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26483486A JPS63118054A (en) 1986-11-06 1986-11-06 High-speed tool steel having superior toughness

Publications (1)

Publication Number Publication Date
JPS63118054A true JPS63118054A (en) 1988-05-23

Family

ID=17408854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26483486A Pending JPS63118054A (en) 1986-11-06 1986-11-06 High-speed tool steel having superior toughness

Country Status (1)

Country Link
JP (1) JPS63118054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578773A (en) * 1991-08-07 1996-11-26 Erasteel Kloster Aktiebolag High-speed steel manufactured by powder metallurgy
AT504331B1 (en) * 2006-10-27 2008-05-15 Boehler Edelstahl STEEL ALLOY FOR TORQUE TOOLS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578773A (en) * 1991-08-07 1996-11-26 Erasteel Kloster Aktiebolag High-speed steel manufactured by powder metallurgy
AT504331B1 (en) * 2006-10-27 2008-05-15 Boehler Edelstahl STEEL ALLOY FOR TORQUE TOOLS
US7655101B2 (en) 2006-10-27 2010-02-02 Boehler Edelstahl Gmbh Steel alloy for cutting tools

Similar Documents

Publication Publication Date Title
JP5380892B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JPH1129839A (en) Spring steel with high toughness
KR20060049390A (en) A thick steel plate having superior roughness in high input heat welding joint
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
CN114423880B (en) High-strength ultra-thick steel material having excellent low-temperature impact toughness and method for producing same
JP4013549B2 (en) High strength and high toughness seamless steel pipe for line pipe and method for producing the same
JP7016345B2 (en) Microalloy steel and its steel production method
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
US6344093B1 (en) High tensile strength steel product for high heat input welding, having excellent toughness in heat-affected zone
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
US4420335A (en) Materials for rolls
JP2019044206A (en) Thick walled antifriction steel sheet, manufacturing method thereof, and manufacturing method of antifriction member
JPH0555585B2 (en)
US3834897A (en) Low-carbon,high-strength structural steel with good weldability
JPS63118054A (en) High-speed tool steel having superior toughness
JP3572152B2 (en) Low Cr ferritic cast steel with excellent high temperature strength and weldability
JP3249646B2 (en) Machine structural steel with excellent machinability and cold forgeability
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JPH05239590A (en) Steel excellent in wear resistance
JPH0317245A (en) High strength non-magnetic stainless steel having excellent machinability
KR100433250B1 (en) Structural ferritic stainless steel with good weldability