JP3249646B2 - Machine structural steel with excellent machinability and cold forgeability - Google Patents

Machine structural steel with excellent machinability and cold forgeability

Info

Publication number
JP3249646B2
JP3249646B2 JP17648293A JP17648293A JP3249646B2 JP 3249646 B2 JP3249646 B2 JP 3249646B2 JP 17648293 A JP17648293 A JP 17648293A JP 17648293 A JP17648293 A JP 17648293A JP 3249646 B2 JP3249646 B2 JP 3249646B2
Authority
JP
Japan
Prior art keywords
mass
machinability
graphite
steel
graphitization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17648293A
Other languages
Japanese (ja)
Other versions
JPH0734190A (en
Inventor
俊幸 星野
岩本  隆
明博 松崎
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP17648293A priority Critical patent/JP3249646B2/en
Publication of JPH0734190A publication Critical patent/JPH0734190A/en
Application granted granted Critical
Publication of JP3249646B2 publication Critical patent/JP3249646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、産業機械および自動車
等の機械部品の素材として用いられる機械構造用炭素鋼
に関し、特にその被削性および冷間鍛造性の向上を意図
したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon steel for machine structural use used as a material for machine parts such as industrial machines and automobiles, and more particularly, to improve its machinability and cold forgeability.

【0002】[0002]

【従来の技術】産業機械および自動車等の機械部品は、
一般に、機械構造用炭素鋼や合金鋼を素材とし、冷間鍛
造や切削工程を経て所定形状に成形された後、機械部品
としての強度を確保するために焼入れ、焼戻し処理が施
されて製品とされる。従って、この種の鋼材に対して
は、被削性と同時に冷間鍛造性が要求される。
2. Description of the Related Art Machine parts of industrial machines and automobiles are
Generally, carbon steel or alloy steel for machine structure is used as a material, and after being formed into a predetermined shape through cold forging or cutting process, it is quenched and tempered to secure the strength as a machine part, and the product and Is done. Therefore, this type of steel material is required to have not only machinability but also cold forgeability.

【0003】鋼材の被削性を改善する方法としては、鋼
材にPb、S、Bi、TeおよびCa等の快削性元素を添加し、
鋼中に非金属介在物を形成させる方法が公知である。他
方、冷間鍛造性、特に冷間鍛造時における変形能を改善
する手段としては、被削性の場合とは反対に鋼中の非金
属介在物を低減することが行われている。従って、被削
性と冷間鍛造性は、産業機械や自動車部品等の機械構造
用鋼材に対して常に要求されている特性でありながら、
これらを両立させることは極めて難しく、どちらかの特
性を犠牲にせざるを得ないという問題があった。
[0003] As a method of improving the machinability of steel, a free-machining element such as Pb, S, Bi, Te and Ca is added to steel.
Methods for forming non-metallic inclusions in steel are known. On the other hand, as a means for improving cold forgeability, particularly deformability during cold forging, reduction of non-metallic inclusions in steel is performed, contrary to the case of machinability. Therefore, machinability and cold forgeability are properties that are always required for steel materials for machine structures such as industrial machines and automobile parts,
It is extremely difficult to achieve both, and there is a problem that one of the characteristics must be sacrificed.

【0004】上記の問題の解決策として、特開昭51-576
21号公報では、鋼中のセメンタイトを黒鉛化することに
より冷間鍛造性と被削性とを同時に向上させた鋼材を提
案している。しかし、本発明者らの検討によれば、以下
に述べる問題を残している。すなわち、上記の方法で
は、Si含有量が 1.9〜3.0 mass%と高いので、鋼中のセ
メンタイトは比較的早く黒鉛化が完了するものの、Siは
フェライト相中に固溶してフェライトの変形能を低下さ
せるために、冷間鍛造時の変形能が低下し、またSiの固
溶強化作用により冷間鍛造時の変形抵抗も高い。また、
この方法では、黒鉛化後の黒鉛粒径が大きくため、冷間
鍛造における変形能および被削性の改善は比較的低位に
留まっている。さらに、工業的規模での生産を考える
と、黒鉛化のためにまた長時間の焼なまし処理を必要と
し、熱処理コストが高い。
As a solution to the above problem, Japanese Patent Laid-Open Publication No. 51-576
No. 21 proposes a steel material in which cold forgeability and machinability are simultaneously improved by graphitizing cementite in steel. However, according to the study of the present inventors, the following problems remain. That is, in the above method, since the Si content is as high as 1.9 to 3.0 mass%, the cementite in the steel can be graphitized relatively quickly, but the Si forms a solid solution in the ferrite phase to reduce the deformability of the ferrite. Because of this, the deformability during cold forging decreases, and the deformation resistance during cold forging is also high due to the solid solution strengthening effect of Si. Also,
In this method, since the graphite particle size after graphitization is large, the improvement in deformability and machinability in cold forging remains relatively low. Further, considering production on an industrial scale, a long-time annealing treatment is required for graphitization, and the heat treatment cost is high.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述したよ
うな従来法における問題を有利に克服したもので、Siの
含有量を低減しても、黒鉛化時間の短縮のみならず、黒
鉛化後における黒鉛粒の微細化を可能ならしめ、もって
優れた被削性と冷間鍛造性とを兼備させた機械構造用炭
素鋼を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously overcomes the above-mentioned problems of the conventional method. Even if the Si content is reduced, not only the graphitization time can be shortened, but also the graphitization can be shortened. An object of the present invention is to propose a carbon steel for machine structural use which enables finer graphite particles to be refined later, and which has both excellent machinability and cold forgeability.

【0006】[0006]

【課題を解決するための手段】さて本発明者らは、上記
の課題を解決するために、鋼中セメンタイトの黒鉛化挙
動について検討したところ、以下の知見を得るに至っ
た。すなわち、セメンタイトの黒鉛化は、セメンタイト
の分解→フェライト中のCの拡散→黒鉛の結晶化の過程
により進行する。セメンタイトの分解に対しては、Si、
Ni、CuおよびCo等、セメンタイトよりもむしろフェライ
ト中に固溶する元素の添加が有効である。また、黒鉛の
結晶化に対しては、ALNやBN等の窒化物が有効であ
り、これらを核として黒鉛化が促進される。そして、か
ような黒鉛の結晶化の核となる窒化物を多数形成させて
おけば、セメンタイトの分解を促進するSi等の合金元素
を低減したとしても、黒鉛化は著しく促進される。これ
らの窒化物が黒鉛の結晶化の核として作用する理由は、
まだ明確には解明されていないけれども、結晶構造が黒
鉛と類似しているためと推定している。
Means for Solving the Problems The inventors of the present invention have studied the graphitization behavior of cementite in steel in order to solve the above problems, and have obtained the following knowledge. That is, the graphitization of cementite proceeds in the process of decomposition of cementite → diffusion of C in ferrite → crystallization of graphite. For the decomposition of cementite, Si,
It is effective to add elements such as Ni, Cu, and Co that dissolve in ferrite rather than cementite. For crystallization of graphite, nitrides such as ALN and BN are effective, and using these as nuclei promotes graphitization. If a large number of nitrides serving as nuclei for crystallization of such graphite are formed, graphitization is remarkably promoted even if alloy elements such as Si that promote the decomposition of cementite are reduced. The reason that these nitrides act as nuclei for crystallization of graphite is that
Although it has not been clarified yet, it is presumed that the crystal structure is similar to graphite.

【0007】また、このような窒化物をあらかじめ形成
させておくことによって、黒鉛化が促進されるだけでな
く、黒鉛化後の黒鉛粒径が著しく細粒化されることも併
せて見出された。しかも、黒鉛の粒径と冷間鍛造性およ
び被削性との関係について検討したところ、黒鉛の粒径
が微細なほど冷間鍛造性および被削性とも向上すること
の知見を得た。本発明は、上記の知見に立脚するもので
ある。
Further, it has been found that, by forming such a nitride in advance, not only the graphitization is promoted, but also the graphite particle size after the graphitization is remarkably reduced. Was. Moreover, when the relationship between the particle size of graphite and the cold forgeability and machinability was examined, it was found that the finer the graphite particle size, the better both the cold forgeability and machinability. The present invention is based on the above findings.

【0008】すなわち、本発明の要旨構成は次のとおり
である。 1) C:0.1 〜1.5 mass%、 Si:0.5 mass%未満、 Mn:0.1 〜2.0 mass%、 Al:0.01〜0.5 mass%、 B:0.0003〜0.0150mass%、N:0.0015〜0.0150mass%、 O:0.0030mass%以下 を含み、かつ Ni:0.1 〜3.0 mass%、 Cu:0.1 〜3.0 mass%、 Co:0.1 〜3.0 mass% のうちから選んだ1種または2種以上を含有し、残部は
実質的にFeの組成になり、しかも金属組織がフェライト
および黒鉛よりなることを特徴とする被削性および冷間
鍛造性に優れた機械構造用鋼(第1発明)。
That is, the gist of the present invention is as follows. 1) C: 0.1 to 1.5 mass%, Si: less than 0.5 mass%, Mn: 0.1 to 2.0 mass%, Al: 0.01 to 0.5 mass%, B: 0.0003 to 0.0150 mass%, N: 0.0015 to 0.0150 mass%, O : 0.0030 mass% or less, and one or more selected from Ni: 0.1 to 3.0 mass%, Cu: 0.1 to 3.0 mass%, Co: 0.1 to 3.0 mass%, with the balance being substantially to become a composition of Fe, moreover metallographic gaff ferrite and machinability, characterized in that consists of graphite and cold forging excellent in mechanical structural steel (first invention).

【0009】2)上記の第1発明において、さらにCr:
0.05〜1.0 mass%、 Mo:0.05〜0.5 mass%のうちか
ら選んだ1種または2種を含有させた被削性および冷間
鍛造性に優れた機械構造用鋼(第2発明)。
2) In the above-mentioned first invention, Cr:
A steel for machine structural use having excellent machinability and cold forgeability containing one or two selected from 0.05 to 1.0 mass% and Mo: 0.05 to 0.5 mass% (second invention).

【0010】3)上記の第1発明において、さらにV:
0.05〜0.5 mass%、 Nb:0.005 〜0.05mass%Ti:0.
005 〜0.05mass%のうちから選んだ少なくとも1種を含
有させた被削性および冷間鍛造性に優れた機械構造用鋼
(第3発明)。
3) In the above first invention, V:
0.05-0.5 mass%, Nb: 0.005-0.05mass% Ti: 0.
Steel for machine structural use containing at least one selected from 005 to 0.05 mass% and having excellent machinability and cold forgeability (third invention).

【0011】4)上記の第1発明において、さらにCr:
0.05〜1.0 mass%、 Mo:0.05〜0.5 mass%のうちか
ら選んだ1種または2種と、V:0.05〜0.5 mass%、
Nb:0.005 〜0.05mass%Ti:0.005 〜0.05mass%のう
ちから選んだ少なくとも1種とを含有させた被削性およ
び冷間鍛造性に優れた機械構造用鋼(第4発明)。
4) In the above-mentioned first invention, Cr:
0.05 to 1.0 mass%, Mo: one or two selected from 0.05 to 0.5 mass%, V: 0.05 to 0.5 mass%,
Nb: 0.005 to 0.05 mass% Ti: at least one selected from 0.005 to 0.05 mass%, which is excellent in machinability and cold forgeability (fourth invention).

【0012】5) 第1発明〜第4発明のいずれか1つに
記載の鋼に対し、さらに、S:0.005 〜0.25mass%、
P:0.005 〜0.15mass%、Se:0.003 〜0.10mass%、C
a:0.0002〜0.30mass%、Te:0.002 〜0.5 mass%、P
b:0.03〜0.30mass%、およびBi:0.01〜0.3 mass%の
うちから選ばれる1種または2種以上の被削性向上元素
を含有させてなる被削性および冷間鍛造性に優れた機械
構造用鋼(第5発明)。
5) The steel according to any one of the first to fourth inventions is further provided with S: 0.005 to 0.25 mass%,
P: 0.005 to 0.15 mass%, Se: 0.003 to 0.10 mass%, C
a: 0.0002 to 0.30 mass%, Te: 0.002 to 0.5 mass%, P
b: A machine excellent in machinability and cold forgeability containing one or more machinability improving elements selected from 0.03 to 0.30 mass% and Bi: 0.01 to 0.3 mass%. Structural steel (fifth invention).

【0013】[0013]

【表1】 [Table 1]

【0014】Si:0.5 mass%未満 Siは、セメンタイトの黒鉛化を促進する元素であり、ま
た脱酸材としても有効ではあるが、その反面、黒鉛化後
のフェライト相の延性を低下させ、冷間鍛造性を低下さ
せる不利があるので、冷間鍛造性の改善の面からはあま
りに多量の添加は好ましくなく、上記の利益、不利益を
勘案して、本発明では 0.5mass%未満の範囲で含有させ
るものとした。
Si: less than 0.5 mass% Si is an element that promotes the graphitization of cementite and is also effective as a deoxidizing material, but on the other hand, it reduces the ductility of the ferrite phase after graphitization, and Since there is a disadvantage of lowering the forgeability, it is not preferable to add an excessively large amount from the viewpoint of improving the cold forgeability. It was to be contained.

【0015】Mn:0.1 〜2.0 mass% Mnは、機械部品としての強度を確保する上で有効な成分
であるが、 0.1mass%未満の添加では満足いくほどの強
度が得られず、一方 2.0mass%を超えると黒鉛化後の変
形抵抗が上昇するので、 0.1〜2.0 mass%の範囲に限定
した。
Mn: 0.1 to 2.0 mass% Mn is an effective component for securing the strength as a mechanical part. However, if less than 0.1 mass% is added, a satisfactory strength cannot be obtained. %, The deformation resistance after graphitization increases, so the range was limited to 0.1 to 2.0 mass%.

【0016】Al:0.01〜0.5 mass% Alは、強力な脱酸材であると同時に、Nと結合してAlN
を形成し、黒鉛の結晶化の核として有効に作用するので
積極的に用いるが、0.01mass%未満ではその効果に乏し
く、一方 0.5mass%を超えて添加してもその効果は飽和
に達するので、0.01〜0.5 mass%の範囲で含有させるも
のとした。
Al: 0.01 to 0.5 mass% Al is a strong deoxidizing material and, at the same time, combines with N to form AlN.
Is formed, which is used effectively as a nucleus for crystallization of graphite.However, if the content is less than 0.01 mass%, its effect is poor. On the other hand, if it exceeds 0.5 mass%, its effect reaches saturation. , 0.01 to 0.5 mass%.

【0017】B:0.0003〜0.0150mass% Bは、Nと結合してBNを形成することにより、これが
黒鉛結晶化の核となり黒鉛化を促進するので積極的に添
加する。またBは、焼入れ性の向上にも寄与する元素で
あり、、焼入れ・焼戻し処理によって機械部品としての
強度を確保する上でも有用である。しかしながら、含有
量が0.0003mass%未満ではその添加効果に乏しく、一方
0.0150mass%を超えて添加すると連続鍛造時に鋳片の割
れが助長されるので、0.0003〜0.0150mass%の範囲に限
定した。
B: 0.0003 to 0.0150 mass% B is added positively because it combines with N to form BN, which becomes a nucleus for graphite crystallization and promotes graphitization. B is an element that also contributes to the improvement of hardenability, and is also useful for securing the strength as a mechanical part by quenching and tempering. However, if the content is less than 0.0003 mass%, the effect of the addition is poor.
Addition exceeding 0.0150 mass% promotes cracking of the slab during continuous forging, so the content was limited to the range of 0.0003 to 0.0150 mass%.

【0018】O:0.0030mass%以下 Oは、鋼中に硬質な非金属介在物を形成し冷間鍛造性お
よび被削性を劣化させるので、極力低減することが望ま
しいが、0.0030mass%までなら許容される。
O: 0.0030 mass% or less O forms hard nonmetallic inclusions in steel and deteriorates cold forgeability and machinability. Therefore, it is desirable to reduce O as much as possible. Permissible.

【0019】Ni:0.1 〜3.0 mass%、Cu:0.1 〜3.0 ma
ss%、Co:0.1 〜3.0 mass% Ni、CuおよびCoは、いずれもセメンタイトの分解を促進
することにより黒鉛化の促進に有利に寄与するだけでな
く、フェライト相中に固溶してもSiのようにフェライト
相の延性を阻害せず、また固溶強化作用もSiよりも弱い
ので冷間鍛造性を害しない利点があるので、積極的に添
加する。しかしながら、いずれも含有量が 0.1mass%に
満たないとその添加効果に乏しく、一方 3.0mass%を超
えて含有させてもその効果は飽和に達するので、それぞ
れ 0.1〜3.0 mass%の範囲で含有させるものとした。
Ni: 0.1 to 3.0 mass%, Cu: 0.1 to 3.0 ma
ss%, Co: 0.1 to 3.0 mass% Ni, Cu and Co not only contribute to the promotion of graphitization by promoting the decomposition of cementite, but also contribute to the formation of Si in the ferrite phase. As described above, since it has the advantage that the ductility of the ferrite phase is not hindered and the solid solution strengthening action is weaker than that of Si, it does not impair the cold forgeability. However, if the content is less than 0.1 mass%, the effect of the addition is poor. On the other hand, even if the content exceeds 3.0 mass%, the effect reaches saturation, so that each content is in the range of 0.1 to 3.0 mass%. It was taken.

【0020】以上、基本成分について説明したが、本発
明では以下の元素をさらに添加することもできる。 Cr:0.05〜1.0 mass%、Mo:0.05〜0.5 mass% CrおよびMoは、焼入れ性の向上元素として均等であり、
機械部品としての強度を焼入れ・焼戻し処理によって確
保する場合に有用である。しかしながら、これらの元素
は、セメンタイトを安定化して黒鉛化を遅延させる働き
もある。従って、これらの元素の添加に際しては、焼入
れ性向上に効果があり、一方で黒鉛化を阻害しない範囲
で添加する必要があり、かかる観点からそれぞれCr:0.
05〜1.0mass%、Mo:0.05〜0.5 mass%の範囲に限定し
た。
Although the basic components have been described above, the following elements can be further added in the present invention. Cr: 0.05-1.0 mass%, Mo: 0.05-0.5 mass% Cr and Mo are uniform as hardenability improving elements,
This is useful when securing the strength as a mechanical part by quenching and tempering. However, these elements also function to stabilize cementite and delay graphitization. Therefore, when these elements are added, they are effective in improving the hardenability, but on the other hand, they need to be added in a range that does not inhibit graphitization.
It was limited to the range of 05 to 1.0 mass% and Mo: 0.05 to 0.5 mass%.

【0021】V:0.05〜0.5 mass%、Nb:0.005 〜0.05
mass%、Ti:0.005 〜0.05mass% V、NbおよびTiはいずれも、Nと結合して窒化物を形成
し、これらが黒鉛化時に黒鉛結晶化の核として作用する
ことによって黒鉛化の促進を図ると同時に、黒鉛の微細
化を促進する作用もある。また、これら元素は微細な炭
化物を形成し、その析出強化により強度の向上にも寄与
する。そこで、これらの元素は、黒鉛化速度をより速く
する必要のある場合、黒鉛粒をより微細にする必要のあ
る場合、または機械部品としての強度を焼入れ・焼戻し
処理によらずに確保する場合、あるいは大型の機械部品
に要求される強度をQTで確保する場合に、硬化しにくい
部材中心部の強度を一層増加させる必要のある場合に利
用する。含有量はそれぞれ、V:0.05〜0.5 mass%、N
b:0.005 〜0.05mass%、Ti:0.005 〜0.05mass%の範
囲とするが、各元素の下限値は上記した効果を得るため
に必要な最低量より規定され、一方上限値は、添加によ
って炭化物の形成量が多くなる結果、鋼中に形成される
黒鉛量が減少し、被削性の低下を招くことのない許容上
限より規定される。
V: 0.05-0.5 mass%, Nb: 0.005-0.05
mass%, Ti: 0.005 to 0.05mass% V, Nb, and Ti all combine with N to form nitrides, which act as nuclei for graphite crystallization during graphitization to promote graphitization. At the same time, it has the effect of promoting the miniaturization of graphite. In addition, these elements form fine carbides, and contribute to improvement in strength by precipitation strengthening. Therefore, these elements, when it is necessary to increase the graphitization rate, when it is necessary to make the graphite grains finer, or when securing the strength as a mechanical part without quenching and tempering, Alternatively, when securing the strength required for large mechanical parts by QT, it is used when it is necessary to further increase the strength of the central part of the member that is hard to cure. The contents are respectively V: 0.05 to 0.5 mass%, N
b: 0.005 to 0.05 mass%, Ti: 0.005 to 0.05 mass%, the lower limit of each element is defined by the minimum amount necessary to obtain the above-mentioned effects, while the upper limit is determined by adding As a result, the amount of graphite formed in the steel decreases, and the amount is defined by an allowable upper limit that does not cause a decrease in machinability.

【0022】なお、本発明では、一般に被削性向上元素
として知られるS, P, Se, Ca, Te, Pb等をさらに添加
することができる。 P:0.005 〜0.15mass% Pは、フェライト層を硬化させることによって被削性を
向上させる有用元素であるが、一方で黒鉛化を阻害する
元素でもある。被削性向上のためには、少なくとも0.00
5 mass%の添加が必要であり、一方0.15mass%を超えて
添加すると黒鉛化が阻害され、その結果、逆に被削性の
低下を招くので、0.15mass%未満の範囲に限定した。
In the present invention, S, P, Se, Ca, Te, Pb, etc., which are generally known as machinability improving elements, can be further added. P: 0.005 to 0.15 mass% P is a useful element that improves machinability by hardening the ferrite layer, but is also an element that inhibits graphitization. To improve machinability, at least 0.00
Addition of 5 mass% is required, while addition of more than 0.15 mass% inhibits graphitization and consequently lowers machinability. Therefore, the content is limited to less than 0.15 mass%.

【0023】S:0.005 〜0.25mass% Sは、MnSを形成し、これが切削時のチップブレーカー
として作用して被削性を向上させると共に、黒鉛化の核
になることにより黒鉛化を促進する。その結果、被削性
を一層向上させるので積極的に添加するが、0.005 mass
%未満ではその添加効果に乏しく、一方、0.25mass%を
超えて含有させても効果が飽和するので、0.005 〜0.25
mass%の範囲に限定した。
S: 0.005 to 0.25 mass% S forms MnS, which acts as a chip breaker at the time of cutting to improve machinability and promotes graphitization by becoming a core of graphitization. As a result, it is added positively to further improve machinability, but 0.005 mass
%, The effect is poor. On the other hand, if the content exceeds 0.25 mass%, the effect is saturated.
It was limited to the range of mass%.

【0024】Se:0.003 〜0.10mass% Seは、Mnと結合し、MnSeを形成することによりこれがチ
ップブレーカーとして作用して被削性を向上させると同
時に、MnSeが黒鉛化の核となり黒鉛化を促進することに
よりさらに被削性を向上させるので、積極的に添加す
る。しかし、その添加量が0.003 mass%未満では上記の
効果が小さく、一方、0.10mass%を超えるとその効果が
飽和するので、0.003 〜0.10mass%の範囲に限定した。
Se: 0.003 to 0.10 mass% Se combines with Mn to form MnSe, which acts as a chip breaker to improve machinability, and at the same time, MnSe becomes a nucleus for graphitization and becomes graphitized. Since the machinability is further improved by accelerating, it is added positively. However, if the addition amount is less than 0.003 mass%, the above effect is small, while if it exceeds 0.10 mass%, the effect is saturated. Therefore, the content is limited to the range of 0.003 to 0.10 mass%.

【0025】Ca:0.0002〜0.30mass% Caは、Ca系の酸化物を形成し、これが黒鉛化の核として
作用し黒鉛化を促進する。また、MnSと結合し、MnSの
析出形態を紡錘形にすることによって被削性の向上に寄
与するので積極的に添加する。しかし、その添加量が0.
0002mass%未満ではその添加効果に乏しく、一方、0.30
mass%を超えて添加すると酸化物系非金属物が多く形成
され、これが機械部品としての疲労強度を低下させるの
で、0.0003〜0.30mass%の範囲に限定した。
Ca: 0.0002-0.30 mass% Ca forms Ca-based oxides, which act as nuclei for graphitization and promote graphitization. In addition, since MnS is combined with MnS and the form of precipitation of MnS is made into a spindle shape, which contributes to improvement of machinability, it is positively added. However, its addition amount is 0.
If it is less than 0002 mass%, the effect of the addition is poor.
When added in excess of mass%, a large amount of oxide-based nonmetallic material is formed, which lowers the fatigue strength as a mechanical part. Therefore, the content was limited to the range of 0.0003 to 0.30 mass%.

【0026】Te:0.002 〜0.5 mass% Teは、MnTeを形成し、これがチップブレーカーとして作
用し、被削性を向上させるので積極的に用いるが、一方
で黒鉛化を阻害する元素であるので、多量に添加すると
被削性を逆に劣化させる。そこで、被削性向上への寄与
が認められると同時に黒鉛化への阻害が顕著に認められ
ない0.002 〜0.5 mass%の範囲内で含有させることとし
た。
Te: 0.002 to 0.5 mass% Te forms MnTe, which acts as a chip breaker and improves the machinability. Therefore, Te is actively used. However, since Te is an element that inhibits graphitization, When added in a large amount, machinability is adversely deteriorated. Therefore, the content is set in the range of 0.002 to 0.5 mass%, which contributes to the improvement of machinability and at the same time, does not significantly inhibit the graphitization.

【0027】Pb:0.03〜0.3 mass% Pbは、融点が低いため、切削時の鋼材の発熱により溶融
し、液体潤滑効果により被削性を向上させる元素である
が、一方で黒鉛化を阻害し逆に被削性を低下させる作用
もあるので、両特性を勘案して0.03〜0.30mass%の範囲
に限定した。
Pb: 0.03 to 0.3 mass% Pb is an element that has a low melting point and is melted by the heat generated by the steel material during cutting to improve machinability by a liquid lubrication effect, but impairs graphitization. Conversely, since it also has the effect of reducing machinability, the range is limited to 0.03 to 0.30 mass% in consideration of both characteristics.

【0028】Bi:0.01〜0.30mass% Biは、Pbと同様に融点が低いため、切削時の鋼材の発熱
により溶融し、液体潤滑効果により被削性を向上させる
作用があるが、一方で黒鉛化を阻害し逆に被削性を低下
させるので、両特性を勘案して0.01〜0.30mass%の範囲
に限定した。
Bi: 0.01 to 0.30 mass% Since Bi has a low melting point like Pb, it is melted by the heat generated by the steel material during cutting, and has the effect of improving the machinability by the liquid lubrication effect. In view of both properties, the range is limited to 0.01 to 0.30 mass%, since the formation of the material is hindered and the machinability is reduced.

【0029】また本発明では、成分組成のみならず、金
属組織が重要であり、主にフェライトと黒鉛の組織とす
る必要がある。というのは、黒鉛の潤滑作用により切削
時に切削工具の温度上昇を抑制し、それにより切削工具
の寿命を向上させようとするのが、本発明に必須の条件
だからである。ここに、鋼中における黒鉛量の好適含有
量は、0.1 〜1.2 %である。そのためには、黒鉛化処理
として 600〜750 ℃の温度領域において5〜20時間保持
する処理が必要である。なおかかる黒鉛化処理におい
て、前処理としての焼入れは必要ない。
Further, in the present invention, not only the component composition but also the metal structure is important, and it is necessary to mainly make the structure of ferrite and graphite. This is because it is an essential condition of the present invention to suppress the temperature rise of the cutting tool during cutting by the lubricating action of graphite and thereby to improve the life of the cutting tool. Here, the preferred content of graphite in the steel is 0.1 to 1.2%. For this purpose, it is necessary to carry out a graphitization treatment in a temperature range of 600 to 750 ° C for 5 to 20 hours. In the graphitizing treatment, quenching as a pretreatment is not necessary.

【0030】なお、上記被削性向上元素を添加した場合
には、熱間加工性が劣化するので、約1000℃以上の加熱
および 850℃以上の熱間圧延を行うことが好ましい。そ
して、黒鉛化の熱処理としては、Ac1点以下の温度領域
に5〜30時間程度保持するのみで充分に黒鉛化させるこ
とが可能であるが、かかる被削性向上元素として、とく
にTe, P,Bi, Pb等の黒鉛化を阻害する元素が単独で添
加される場合には、上記範囲内で処理時間を長くした方
が好ましい。
When the machinability improving element is added, the hot workability deteriorates. Therefore, it is preferable to perform heating at about 1000 ° C. or more and hot rolling at 850 ° C. or more. As a heat treatment for graphitization, it is possible to sufficiently graphitize only by holding in a temperature range of less than Ac 1 point for about 5 to 30 hours. As such machinability improving elements, particularly, Te, P When elements which inhibit graphitization, such as Bi, Pb, and Pb, are added alone, it is preferable to extend the treatment time within the above range.

【0031】[0031]

【実施例】【Example】

実施例1 表1, 表2に示す成分組成になる鋼材を、転炉溶製し、
連続鋳造によりブルームとしたのち、棒鋼圧延により35
mmφの棒鋼とした。ついで、 700℃,19hの黒鉛化処理
を施した。かくして得られた鋼材の硬さ、黒鉛量および
黒鉛粒径を画像解析装置によって測定した。また黒鉛化
率は、測定した黒鉛量と添加したCがすべて黒鉛化した
場合の黒鉛量との比率で定義した。さらに、被削性試験
および冷間鍛造試験を行った。ここに、被削性試験は、
高速度工具鋼SKH4を用い、外周旋削の条件により行っ
た。切削時の切り込み深さおよび送り量はそれぞれ 2.0
mm、0.25mm/rev.であり、切削不能となるまでの時間を
工具寿命と定義した。また冷間鍛造試験は、15mmφ×2
2.5mmlの円柱状の試験片を用い、圧縮試験により行っ
た。圧縮時の変形荷重から変形抵抗を算出すると共に、
試験後の試験片側面に発生した割れを目視により確認
し、試験片の半数に割れが発生する圧縮率を限界圧縮率
とした。得られた試験結果を表3に示す。
Example 1 A steel material having the composition shown in Tables 1 and 2 was melted in a converter,
After blooming by continuous casting, 35 mm
mmφ steel bars. Then, it was graphitized at 700 ° C. for 19 hours. The hardness, graphite content and graphite particle size of the steel material thus obtained were measured by an image analyzer. The graphitization ratio was defined as the ratio between the measured amount of graphite and the amount of graphite when all the added C was graphitized. Further, a machinability test and a cold forging test were performed. Here, the machinability test is
Using high-speed tool steel SKH4, it was carried out under the conditions of outer periphery turning. The depth of cut and feed rate during cutting are 2.0 respectively
mm, 0.25 mm / rev., and the time until cutting became impossible was defined as tool life. The cold forging test is 15mmφ × 2
The test was performed by a compression test using a 2.5 mm 1 cylindrical test piece. While calculating the deformation resistance from the deformation load during compression,
Cracks generated on the side surfaces of the test pieces after the test were visually confirmed, and the compression ratio at which cracks occurred in half of the test pieces was defined as the critical compression ratio. Table 3 shows the obtained test results.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】表中、No.1〜12は第1〜第4発明鋼であ
る。また No.14〜26はNo.1〜12からSiを本発明の範囲外
に高めた鋼である。さらに No.26〜31は、Si以外の成分
が本発明の適正範囲を逸脱した鋼である。なお No.32お
よび33はJIS S25CおよびJIS S45CにPbを添加した快削鋼
である。表3から明らかなように、No.1〜26はいずれ
も、被削性はPb快削鋼よりも優れているが、No.1〜12
よび No.14〜26を比較すると、変形抵抗はいずれも No.
14〜26の方が高く、発明鋼であるNo.1〜12に比べると冷
間鍛造性に劣っている。また No.27〜31は、黒鉛化率が
低く、そのため変形抵抗が著しく高い。被削性は、Pb快
削鋼よりは優れているものの、本発明鋼には及ばない。
In the table, Nos. 1 to 12 are the first to fourth invention steels. Nos. 14 to 26 are steels in which Si is increased from Nos. 1 to 12 outside the scope of the present invention. Further, Nos. 26 to 31 are steels in which components other than Si deviated from the proper range of the present invention. Nos. 32 and 33 are free cutting steels with Pb added to JIS S25C and JIS S45C. As is clear from Table 3, the machinability of each of Nos. 1 to 26 is superior to that of Pb free-cutting steel, but the deformation resistance is higher when comparing No. 1 to 12 and No. 14 to 26. No.
14 to 26 is higher, and is inferior in cold forgeability to No. 1 to 12 which are inventive steels. Nos. 27 to 31 have a low graphitization rate, and therefore have extremely high deformation resistance. Machinability is superior to Pb free-cutting steel, but not as good as the steel of the present invention.

【0036】実施例2 表4, 表5に示す化学組成の鋼(被削性向上元素添加
鋼)を、実施例1と同様にして52mmφ棒鋼とした。得ら
れた鋼材の黒鉛化率, 黒鉛粒径, 硬さおよび工具寿命に
ついて調べた結果を表6にまとめて示す。供試鋼No.1〜
12(No.4欠番)は、第5発明鋼の例である。また、No.
14〜26は、発明鋼から必須成分であるPb, Bi, Teおよび
Ca等の被削性向上元素を除いたものである。No. 27〜28
は、本発明において黒鉛化のための必須添加元素が、範
囲外にあるものである。さらに、No. 29および30は、JI
S の機械構造用炭素鋼にPb, Bi, Teを添加したPb快削鋼
である。本発明鋼と比較鋼No. 14〜26を比較すると、本
発明鋼の方が、工具寿命は高いのみでなく、従来鋼と比
較すれば工具寿命は極めて向上している。さらに、本発
明鋼の黒鉛化率は、比較鋼No. 14〜26に比べて全体的に
低位であるが、これは、 700℃×10hといった比較的短
時間の処理を施したためであり、前述したように30h程
度に処理時間を延長すれば一層の寿命向上を図ることが
できる。比較鋼No. 27, 28は、黒鉛化率が低いために工
具寿命は極めて低く、被削性に劣っている。
Example 2 In the same manner as in Example 1, a steel bar having a chemical composition shown in Tables 4 and 5 was used as a 52 mmφ steel bar. Table 6 summarizes the results of a study on the graphitization rate, graphite particle size, hardness, and tool life of the obtained steel material. Test steel No.1 ~
12 (No. 4 missing number) is an example of the fifth invention steel. No.
14 to 26 are Pb, Bi, Te and
It excludes machinability improving elements such as Ca. No. 27-28
In the present invention, the element required for graphitization is out of the range. In addition, Nos. 29 and 30 are
Sb is a Pb free-cutting steel with Pb, Bi, and Te added to carbon steel for machine structural use. Comparing the steel of the present invention with comparative steels Nos. 14 to 26, the steel of the present invention not only has a longer tool life, but also has a much longer tool life than the conventional steel. Furthermore, the graphitization rate of the steel of the present invention is lower than that of the comparative steels Nos. 14 to 26 as a whole, because a relatively short time treatment such as 700 ° C. × 10 h was performed. As described above, if the processing time is extended to about 30 hours, the service life can be further improved. Comparative steel Nos. 27 and 28 have a very short tool life and poor machinability due to a low graphitization rate.

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】[0039]

【表6】 [Table 6]

【0040】[0040]

【発明の効果】かくしてこの発明によれば、冷間鍛造時
の変形抵抗が低く、同時に被削性に優れた鋼材を容易に
得ることができ、機械部品の製造に資すること大であ
る。
As described above, according to the present invention, it is possible to easily obtain a steel material having low deformation resistance at the time of cold forging and excellent machinability, which greatly contributes to the manufacture of machine parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 平2−107742(JP,A) 特開 昭64−25946(JP,A) 特開 平1−132739(JP,A) 特開 平2−111842(JP,A) 特開 昭61−261464(JP,A) 特開 平7−3390(JP,A) 特開 平6−212351(JP,A) 特開 平6−248387(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Engineering Co., Ltd. (56) References JP-A-2-107742 (JP, A) JP-A-64-25946 (JP, A) JP-A-1-132739 (JP, A) JP-A-2-111842 (JP, A) JP-A-61-261464 (JP, A) JP-A-7-3390 (JP, A) JP, A) JP-A-6-212351 (JP, A) JP-A-6-248387 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.1 〜1.5 mass%、 Si:0.5 mass%未満、 Mn:0.1 〜2.0 mass%、 Al:0.01〜0.5 mass%、 B:0.0003〜0.0150mass%、N:0.0015〜0.0150mass%、 O:0.0030mass%以下 を含み、かつ Ni:0.1 〜3.0 mass%、 Cu:0.1 〜3.0 mass%、 Co:0.1 〜3.0 mass% のうちから選んだ1種または2種以上を含有し、残部は
Feおよび不可避的不純物よりなる組成になり、しかも金
属組織がフェライトおよび黒鉛,またはフェライト、セ
メンタイトおよび黒鉛よりなることを特徴とする被削性
および冷間鍛造性に優れた機械構造用鋼。
1. C: 0.1 to 1.5 mass%, Si: less than 0.5 mass%, Mn: 0.1 to 2.0 mass%, Al: more than 0.01 to 0.5 mass%, B: 0.0003 to 0.0150 mass%, N: 0.0015 to 0.0150 mass%, O: 0.0030 mass% or less, Ni: 0.1 to 3.0 mass%, Cu: 0.1 to 3.0 mass%, Co: 0.1 to 3.0 mass% And the rest
Fe and becomes compositions consisting of unavoidable impurities, moreover metallographic gaff ferrite and graphite or ferrite, Se
A steel for machine structural use that is excellent in machinability and cold forgeability , characterized by being made of mentite and graphite .
【請求項2】 C:0.1 〜1.5 mass%、 Si:0.5 mass%未満、 Mn:0.1 〜2.0 mass%、 Al:0.01〜0.5 mass%、 B:0.0003〜0.0150mass%、N:0.0015〜0.0150mass%、 O:0.0030mass%以下 を含み、かつ Ni:0.1 〜3.0 mass%、 Cu:0.1 〜3.0 mass% Co:0.1 〜3.0 mass% のうちから選んだ1種または2種以上を含有し、さらに Cr:0.05〜1.0 mass%、 Mo:0.05〜0.5 mass% のうちから選んだ1種または2種を含有し、残部はFeお
よび不可避的不純物よりなる組成になり、しかも金属組
がフェライトおよび黒鉛,またはフェライト、セメン
タイトおよび黒鉛よりなることを特徴とする被削性およ
び冷間鍛造性に優れた機械構造用鋼。
2. C: 0.1 to 1.5 mass%, Si: less than 0.5 mass%, Mn: 0.1 to 2.0 mass%, Al: more than 0.01 to 0.5 mass%, B: 0.0003 to 0.0150 mass%, N: 0.0015 to 0.0150 mass%, O: 0.0030 mass% or less, and Ni: 0.1 to 3.0 mass%, Cu: 0.1 to 3.0 mass% Co: 0.1 to 3.0 mass% Further, one or two selected from Cr: 0.05 to 1.0 mass% and Mo: 0.05 to 0.5 mass% are contained, and the balance is Fe and
And becomes a composition consisting of incidental impurities, moreover metallographic gaff ferrite and graphite or ferrite, cement
A machine structural steel with excellent machinability and cold forgeability characterized by being made of tight and graphite .
【請求項3】 C:0.1 〜1.5 mass%、 Si:0.5 mass%未満、 Mn:0.1 〜2.0 mass%、 Al:0.01〜0.5 mass%、 B:0.0003〜0.0150mass%、N:0.0015〜0.0150mass%、 O:0.0030mass%以下 を含み、かつ Ni:0.1 〜3.0 mass%、 Cu:0.1 〜3.0 mass% Co:0.1 〜3.0 mass% のうちから選んだ1種または2種以上を含有し、さらに V:0.05〜0.5 mass%、 Nb:0.005 〜0.05mass% Ti:0.005 〜0.05mass% のうちから選んだ少なくとも1種を含有し、残部はFeお
よび不可避的不純物よりなる組成になり、しかも金属組
がフェライトおよび黒鉛,またはフェライト、セメン
タイトおよび黒鉛よりなることを特徴とする被削性およ
び冷間鍛造性に優れた機械構造用鋼。
3. C: 0.1 to 1.5 mass%, Si: less than 0.5 mass%, Mn: 0.1 to 2.0 mass%, Al: more than 0.01 to 0.5 mass%, B: 0.0003 to 0.0150 mass%, N: 0.0015 to 0.0150 mass%, O: 0.0030 mass% or less, and Ni: 0.1 to 3.0 mass%, Cu: 0.1 to 3.0 mass% Co: 0.1 to 3.0 mass% V: 0.05 to 0.5 mass%, Nb: 0.005 to 0.05 mass%, Ti: 0.005 to 0.05 mass%, and the balance is composed of Fe and unavoidable impurities. organization Gaff ferrite and graphite or ferrite, cement
A machine structural steel with excellent machinability and cold forgeability characterized by being made of tight and graphite .
【請求項4】 C:0.1 〜1.5 mass%、 Si:0.5 mass%未満、 Mn:0.1 〜2.0 mass%、 Al:0.01〜0.5 mass%、 B:0.0003〜0.0150mass%、N:0.0015〜0.0150mass%、 O:0.0030mass%以下 を含み、かつ Ni:0.1 〜3.0 mass%、 Cu:0.1 〜3.0 mass% Co:0.1 〜3.0 mass% のうちから選んだ1種または2種以上を含有し、さらに Cr:0.05〜1.0 mass%、 Mo:0.05〜0.5 mass% のうちから選んだ1種または2種と、 V:0.05〜0.5 mass%、 Nb:0.005 〜0.05mass% Ti:0.005 〜0.05mass% のうちから選んだ少なくとも1種とを含有し、残部はFe
および不可避的不純物よりなる組成になり、しかも金属
組織がフェライトおよび黒鉛,またはフェライト、セメ
ンタイトおよび黒鉛よりなることを特徴とする被削性お
よび冷間鍛造性に優れた機械構造用鋼。
4. C: 0.1 to 1.5 mass%, Si: less than 0.5 mass%, Mn: 0.1 to 2.0 mass%, Al: more than 0.01 to 0.5 mass%, B: 0.0003 to 0.0150 mass%, N: 0.0015 to 0.0150 mass%, O: 0.0030 mass% or less, and Ni: 0.1 to 3.0 mass%, Cu: 0.1 to 3.0 mass% Co: 0.1 to 3.0 mass% Further, one or two selected from Cr: 0.05 to 1.0 mass% and Mo: 0.05 to 0.5 mass%, V: 0.05 to 0.5 mass%, Nb: 0.005 to 0.05 mass% Ti: 0.005 to 0.05 mass% At least one selected from the group consisting of
And becomes the composition consisting of incidental impurities, moreover metallographic gaff ferrite and graphite or ferrite, cementite
A steel for machine structural use that is excellent in machinability and cold forgeability , characterized by being made of graphite and graphite .
【請求項5】請求項1〜4のいずれか1つの鋼に記載し
た鋼に対し、さらに、 P:0.005 〜0.15mass%、S:0.005 〜0.25mass%、 Se:0.003 〜0.10mass%、Ca:0.0002〜0.30mass%、 Te:0.002 〜0.5 mass%、Pb:0.03〜0.30mass%、 およびBi:0.01〜0.3 mass% のうちから選ばれる1種または2種以上の被削性向上元
素を含有させてなる被削性および冷間鍛造性に優れた機
械構造用鋼。
5. The steel according to claim 1, further comprising: P: 0.005 to 0.15 mass%, S: 0.005 to 0.25 mass%, Se: 0.003 to 0.10 mass%, Ca : One or two or more machinability improving elements selected from 0.0002 to 0.30 mass%, Te: 0.002 to 0.5 mass%, Pb: 0.03 to 0.30 mass%, and Bi: 0.01 to 0.3 mass% Machine structural steel with excellent machinability and cold forgeability.
JP17648293A 1993-07-16 1993-07-16 Machine structural steel with excellent machinability and cold forgeability Expired - Fee Related JP3249646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17648293A JP3249646B2 (en) 1993-07-16 1993-07-16 Machine structural steel with excellent machinability and cold forgeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17648293A JP3249646B2 (en) 1993-07-16 1993-07-16 Machine structural steel with excellent machinability and cold forgeability

Publications (2)

Publication Number Publication Date
JPH0734190A JPH0734190A (en) 1995-02-03
JP3249646B2 true JP3249646B2 (en) 2002-01-21

Family

ID=16014443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17648293A Expired - Fee Related JP3249646B2 (en) 1993-07-16 1993-07-16 Machine structural steel with excellent machinability and cold forgeability

Country Status (1)

Country Link
JP (1) JP3249646B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7093526B2 (en) 1999-05-20 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Forming die apparatus
US7690417B2 (en) 2001-09-14 2010-04-06 Nucor Corporation Thin cast strip with controlled manganese and low oxygen levels and method for making same
JP3929035B2 (en) 2002-07-03 2007-06-13 三菱製鋼株式会社 Sulfur-containing free-cutting machine structural steel
KR101657850B1 (en) * 2014-12-26 2016-09-20 주식회사 포스코 Medium carbon free cutting steel having excellent hardenability and method for manufacturing the same
CN111394656B (en) * 2020-05-06 2022-03-18 合肥易知谷机械设计有限公司 Crystallizer

Also Published As

Publication number Publication date
JPH0734190A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
JP3764586B2 (en) Manufacturing method of case-hardened steel with excellent cold workability and low carburizing strain characteristics
JPH07188847A (en) Machine-structural carbon steel excellent in machiniability
JP3464356B2 (en) Boron steel gear excellent in fatigue resistance and method of manufacturing the same
JP3249646B2 (en) Machine structural steel with excellent machinability and cold forgeability
JPH1161351A (en) High hardness martensite-based stainless steel superior in workability and corrosion resistance
JP4289756B2 (en) High strength metastable austenitic stainless steel wire
JP3411686B2 (en) Graphite composite free-cutting steel
JP3253677B2 (en) Machine structural steel with excellent machinability
JPH0820841A (en) Rolling member
JPH07188849A (en) Machine-structural carbon steel excellent in machinability
JP2960496B2 (en) Cold tool steel
JP3253702B2 (en) Carbon steel for machine structure with excellent machinability
JPH06279849A (en) Production of steel for machine structure excellent in machinability
JP3354255B2 (en) Carbon steel for machine structure with excellent machinability and cold forgeability
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JPH07188850A (en) Graphite free-cutting steel excellent in machinability
JP3299034B2 (en) Machine structural steel with excellent cold forgeability, machinability, mechanical properties after quenching and tempering, and fatigue strength properties
JP3354256B2 (en) Carbon steel for machine structure with excellent machinability and cold forgeability
JP3503163B2 (en) Machine structural steel with excellent machinability and cold forgeability
JP2965424B2 (en) Machine structural steel with excellent cold forgeability
JP2991869B2 (en) Machine structural steel with excellent cold forgeability
JPH07188846A (en) Machine-structural carbon steel excellent in machinability and cold forgeability
JP4900251B2 (en) Manufacturing method of nitrided parts
JP3903996B2 (en) Steel bar and machine structural member for cold forging with excellent machinability, cold forgeability and fatigue strength characteristics after quenching and tempering
JP3354240B2 (en) Machine structural steel with excellent machinability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees