JPH07188850A - Graphite free-cutting steel excellent in machinability - Google Patents

Graphite free-cutting steel excellent in machinability

Info

Publication number
JPH07188850A
JPH07188850A JP33787993A JP33787993A JPH07188850A JP H07188850 A JPH07188850 A JP H07188850A JP 33787993 A JP33787993 A JP 33787993A JP 33787993 A JP33787993 A JP 33787993A JP H07188850 A JPH07188850 A JP H07188850A
Authority
JP
Japan
Prior art keywords
machinability
steel
graphitization
graphite
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33787993A
Other languages
Japanese (ja)
Inventor
Atsumi Kawasaki
充実 河崎
Toshiyuki Hoshino
俊幸 星野
Kenichi Amano
虔一 天野
Akihiro Matsuzaki
明博 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33787993A priority Critical patent/JPH07188850A/en
Publication of JPH07188850A publication Critical patent/JPH07188850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a graphite free-cutting steel excellent in machinability without using Pb, as a machinability-improving element, by adding small amounts of B to a carbon steel. CONSTITUTION:B is added by 0.0003-0.0150%, by weight, to a carbon steel containing 0.1-1.5% C, 0.5-2.0% Si, 0.1-2.0% Mn, 0.0015-0.0150% N, and <0.0030% O, or further, one or >=2 kinds among 0.1-3.0% Ni, 0.1-3.0% Cu, and 0.005-0.10% Ti and one or >=2 kinds among 0.05-1.0% Cr, 0.05-0.5% Mo, 0.05-0.5% V, and 0.005-0.05% Nb are further incorporated, independently or in combination. B and N in this carbon steel form BN, which becomes the nucleus of graphitization at the time of annealing of this steel and acts as an element for accelerating the graphitization of C by the decomposition of cementite. As a result, the carbon steel excellent in machinability by graphite can be obtained without using machinability-improving elements such as Pb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、産業機械および自動車
部品等の素材として用いられる黒鉛快削鋼に関し、とく
にその被削性の向上を意図したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphite free-cutting steel used as a raw material for industrial machines and automobile parts, and is particularly intended to improve its machinability.

【0002】[0002]

【従来の技術】産業機械および自動車部品等に用いられ
る鋼材のうち、切削加工によって所望の形状を得るもの
については、優れた被削性が要求される。かような鋼材
についてはこれまで、機械構造用炭素鋼にPb,Te,Bi,
P,CaおよびS等の被削性元素を単独および複合で添加
することにより、被削性の向上が図られてきた。なかで
も、Pbはその添加によって鋼材の機械的性質を劣化しな
いだけでなく、TeやBi等に比較して経済的であるとの理
由から、改削性元素として多用されている。しかしなが
ら、Pbは人体に極めて有害であることから、鋼材の製造
工程、さらにはそれを用いた機械部品の製造工程におい
て、大がかりな排気設備を必要するばかりでなく、鋼材
のリサイクルの上からも多大の問題があった。このため
従来から、Pbを添加せずに、Pb添加鋼と同等程度の被削
性を有する鋼材の開発が望まれていた。
2. Description of the Related Art Among steel materials used for industrial machines and automobile parts, those having a desired shape by cutting are required to have excellent machinability. For such steels, carbon steels for machine structure have been used for Pb, Te, Bi,
The machinability has been improved by adding machinability elements such as P, Ca and S individually or in combination. Above all, Pb is widely used as a machinability element because it does not deteriorate the mechanical properties of steel by its addition and is more economical than Te and Bi. However, since Pb is extremely harmful to the human body, not only is a large-scale exhaust facility required in the manufacturing process of steel products, and also in the manufacturing process of mechanical parts using it, it is also very important in terms of recycling steel products. There was a problem. Therefore, it has been conventionally desired to develop a steel material having the same machinability as Pb-added steel without adding Pb.

【0003】上記の要請に応えるものとして、例えば特
開昭49-67816号、特開昭49−103817号および特開昭50-9
6416号各公報には、鋼中のCを黒鉛として存在させ、こ
の黒鉛の切欠潤滑効果を利用することによって、Pbを用
いることなしに被削性を改善する方法が提案されてい
る。しかしこれらの方法はいずれも、鋼中のCを黒鉛化
するために、その前処理として焼入れが不可欠であり、
必ずしも経済的な方法とは言えなかった。
In order to meet the above demands, for example, JP-A-49-67816, JP-A-49-103817 and JP-A-50-9.
Japanese Patent No. 6416 proposes a method of improving machinability without using Pb by allowing C in steel to exist as graphite and utilizing the notch lubrication effect of this graphite. However, in all of these methods, quenching is indispensable as a pretreatment for graphitizing C in steel,
It was not always an economical method.

【0004】[0004]

【発明が解決しようとする課題】本発明は、Pbを用いる
ことなしに従来のPb複合添加快削鋼と同等またはそれ以
上の被削性を有し、また、黒鉛化処理も容易にでき、し
かも、切削加工後の強度確保も容易な機械構造用鋼を提
案することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has machinability equal to or higher than that of conventional Pb composite-added free-cutting steel without using Pb, and can be easily graphitized. Moreover, it is an object of the present invention to propose a steel for machine structure, which can easily secure the strength after cutting.

【0005】[0005]

【課題を解決するための手段】さて、発明者らは、上述
した問題を解決すべく鋭意検討を行った結果、鋼材にB
を添加することにより、BNが析出し、さらにこのBN
が焼鈍時の黒鉛化の核となって黒鉛化が促進され、かく
して被削性が向上することを新たに見出した。本発明
は、上記の知見に立脚するものである。
Means for Solving the Problems Now, as a result of intensive studies to solve the above-mentioned problems, the inventors have found that B
BN is precipitated by the addition of
It has been newly found that is used as a nucleus of graphitization during annealing to promote graphitization and thus improve machinability. The present invention is based on the above findings.

【0006】すなわち本発明の要旨構成は次のとおりで
ある。 (1) C:0.1 〜1.5 wt%(以下は単に「%」で示す)、
Si:0.5 〜2.0 %、 Mn:0.1 〜2.0 %、B:0.00
03〜0.0150%、 N:0.0015〜0.0150%、O:0.0030%
以下を含有し、残部はFeおよび不可避的不純物の組成に
なり、しかも金属組織が主としてフェライトおよび黒鉛
からなる被削性に優れた黒鉛快削鋼(第1発明)。
That is, the gist of the present invention is as follows. (1) C: 0.1 to 1.5 wt% (the following is simply indicated as "%"),
Si: 0.5-2.0%, Mn: 0.1-2.0%, B: 0.00
03-0.0150%, N: 0.0015-0.0150%, O: 0.0030%
A graphite free-cutting steel (1st invention) containing the following, the balance being Fe and inevitable impurities, and having a metal structure mainly composed of ferrite and graphite and having excellent machinability.

【0007】(2) 第1発明において、さらにNi:0.1 〜
3.0 %、 Cu:0.1 〜3.0 %、Ti:0.005 〜0.10%
のうちから選んだ1種または2種以上を含有させた被削
性に優れた黒鉛快削鋼(第2発明)。
(2) In the first invention, Ni: 0.1-
3.0%, Cu: 0.1-3.0%, Ti: 0.005-0.10%
Graphite free-cutting steel excellent in machinability containing one or more selected from the above (second invention).

【0008】(3) 第1発明において、さらにCr:0.05〜
1.0 %、 Mo:0.05〜0.5 %、V:0.05〜0.5 %、
Nb:0.005 〜0.05%のうちから選んだ1種または
2種以上を含有させた被削性に優れた黒鉛快削鋼(第3
発明)。
(3) In the first invention, Cr: 0.05 to
1.0%, Mo: 0.05-0.5%, V: 0.05-0.5%,
Nb: Graphite free-cutting steel that contains one or more selected from 0.005 to 0.05% and has excellent machinability (3rd
invention).

【0009】(4) 第1発明において、さらにNi:0.1 〜
3.0 %、 Cu:0.1 〜3.0 %、Ti:0.005 〜0.10%
のうちから選んだ1種または2種以上と、Cr:0.05〜1.
0 %、 Mo:0.05〜0.5 %、V:0.05〜0.5 %、
Nb:0.005 〜0.05%のうちから選んだ1種または2
種以上とを含有させた被削性に優れた黒鉛快削鋼(第4
発明)。
(4) In the first invention, Ni: 0.1-
3.0%, Cu: 0.1-3.0%, Ti: 0.005-0.10%
One or more selected from the above, and Cr: 0.05 to 1.
0%, Mo: 0.05 to 0.5%, V: 0.05 to 0.5%,
Nb: 1 or 2 selected from 0.005 to 0.05%
Graphite free-cutting steel containing at least one kind and having excellent machinability (4th
invention).

【0010】[0010]

【作用】本発明によれば、熱間圧延後そのまま黒鉛化処
理することが可能であり、黒鉛化促進のための焼入れ処
理は不要である。というのは、一般にセメンタイトの黒
鉛化は、セメンタイトの分解、フェライト中のC原子の
拡散、黒鉛の結晶化およびFe原子の拡散の過程から成り
立っていることが知られていて、Sがフェライト中に固
溶した場合には、C原子の拡散速度が遅くなると考えら
れてきたが、Sの添加によってMnSが形成されると、C
のフェライト中における拡散速度の低下が補われるどこ
ろか、逆にBN析出物の形成が促進され、ひいては黒鉛
の形成が容易に進行することも判った。
According to the present invention, it is possible to perform the graphitization treatment as it is after the hot rolling, and the quenching treatment for promoting the graphitization is unnecessary. It is known that the graphitization of cementite generally consists of the processes of decomposition of cementite, diffusion of C atoms in ferrite, crystallization of graphite and diffusion of Fe atoms. It has been thought that when solid solution occurs, the diffusion rate of C atoms slows down. However, when MnS is formed by the addition of S, C
It was also found that the formation of BN precipitates was promoted rather than the decrease in the diffusion rate in the ferrite of No. 1 was compensated, and that the formation of graphite was facilitated.

【0011】高速度工具鋼(ハイス)による比較的低速
の切削時に、被削性に対する黒鉛の効果が顕著である。
この理由は、黒鉛がチップブレーカーとして作用すると
共に、黒鉛の潤滑作用により切削時の工具の温度上昇が
抑制されることによるものと推察される。
The effect of graphite on machinability is remarkable when cutting at a relatively low speed with high speed tool steel (high speed steel).
It is presumed that this is because graphite acts as a chip breaker and the temperature rise of the tool during cutting is suppressed by the lubricating action of graphite.

【0012】以下、本発明において、鋼材の成分組成を
前記の範囲に限定した理由について説明する。 C:0.1 〜1.5 % Cは、黒鉛相を形成する上で不可欠なだけでなく、機械
部品の強度を確保する上でも重要な元素であるが、含有
量が0.1 %に満たないとその効果が小さく、一方1.5 %
を超えて添加してもその効果は飽和に達するので、 0.1
〜1.5 %の範囲に限定した。
The reason why the composition of the steel material is limited to the above range in the present invention will be described below. C: 0.1 to 1.5% C is an element which is not only essential for forming a graphite phase but also important for securing the strength of mechanical parts. However, if the content is less than 0.1%, its effect is not obtained. Small, while 1.5%
The effect reaches saturation even if added over 0.1%, so 0.1
Limited to ~ 1.5%.

【0013】Si:0.5 〜2.0 % Siは、脱酸のために必要な元素であり、また鋼中のセメ
ンタイトを不安定にして黒鉛化を促進させる元素として
も有用であるので、積極的に添加するが、含有量が 0.5
%未満ではその効果に乏しく、一方 2.0%を超えて含有
させても黒鉛化促進の効果は飽和に達し、また液相の発
生する温度領域が低下して熱間圧延時の適正温度領域が
狭まるので、 0.5〜2.0 %の範囲とした。
Si: 0.5 to 2.0% Si is an element necessary for deoxidation, and is also useful as an element for destabilizing cementite in steel and promoting graphitization, so it is positively added. However, the content is 0.5
If the content is less than 2.0%, the effect is poor. On the other hand, if the content exceeds 2.0%, the effect of promoting graphitization reaches saturation, and the temperature range in which the liquid phase is generated decreases and the appropriate temperature range during hot rolling narrows. Therefore, the range is 0.5 to 2.0%.

【0014】Mn:0.1 〜 2.0% Mnは、鋼材の強度を確保する上で必要なだけでなく、S
と結合してMnSを形成し、これがBNの析出核として作
用し、黒鉛化の促進に有効に寄与するので、積極的に活
用するが、 0.1%未満の添加では、強度およびMnS形成
に対する寄与が少なく、一方 2.0%を超えて添加すると
靭性の劣化を招くので、 0.1〜2.0 %の範囲に限定し
た。
Mn: 0.1-2.0% Mn is not only necessary for securing the strength of the steel material, but also S
It combines with MnS to form MnS, which acts as a precipitation nucleus of BN and contributes effectively to the promotion of graphitization. Therefore, it is positively utilized. However, if it is added less than 0.1%, it contributes to the strength and the formation of MnS. However, if added in excess of 2.0%, toughness will be deteriorated, so the content was limited to 0.1-2.0%.

【0015】B:0.0003〜0.0150% Bは、BNを形成し、黒鉛の結晶化の核となると同時
に、焼入れ性を高めることから積極的に添加するが、0.
0003%に満たないとその添加効果に乏しく、一方0.0150
%を超えて含有させてもその効果は飽和に達するだけで
なく、熱間加工性を低下させるので0.0003〜0.0150%の
範囲に限定した。
B: 0.0003 to 0.0150% B forms BN and serves as a nucleus for crystallization of graphite, and at the same time, it is positively added because it enhances hardenability.
If it is less than 0003%, its effect is poor, while 0.0150
If it is contained in excess of 0.1%, not only the effect reaches saturation but also the hot workability deteriorates, so the content was limited to 0.0003 to 0.0150%.

【0016】N:0.0015〜0.0150% Nは、Bと結合しBNを形成することにより、これを核
として黒鉛の結晶化が進行するので積極的に用いる。B
Nを形成させるためには、化学量論的にはBとほぼ当量
を添加すればよいわけであるが、BNを均一分散させる
ためにはNを化学量論的な値よりも幾分過剰側に設定し
た方が好ましい。また、Nは動的な歪時効により切削時
における切り屑の生成を容易にするので、その意味でも
Bに対して化学量論的当量よりも過剰となる量を添加し
た方が良い。さらに、後述するようにV、Nbの析出硬化
により機械的強度を確保する上でも、NをBに対して過
剰側に設定することが好ましい。上記の点を考慮する
と、含有量が0.0015%未満ではその効果が小さく、一方
0.0150%を超えて含有させてもその効果は飽和に達する
ので、0.0015〜0.0150%の範囲で含有させるものとし
た。
N: 0.0015 to 0.0150% N is positively used because it combines with B to form BN, and crystallization of graphite proceeds with this as a nucleus. B
In order to form N, stoichiometrically, it suffices to add approximately the same amount as B, but in order to uniformly disperse BN, N should be slightly over the stoichiometric value. It is preferable to set to. Further, N facilitates generation of chips during cutting due to dynamic strain aging, and therefore, in that sense, it is better to add an amount that is more than stoichiometric equivalent to B. Further, as will be described later, it is preferable to set N on the excess side with respect to B also in order to secure mechanical strength by precipitation hardening of V and Nb. Considering the above points, if the content is less than 0.0015%, its effect is small, while
Even if the content exceeds 0.0150%, the effect reaches saturation, so the content was made 0.0015 to 0.0150%.

【0017】O:0.0030%以下 Oは、硬質な酸化物系非金属介在物を形成し、これが切
削時に切削工具を損傷することにより被削性が低下する
ので、極力低減することが望ましいが、0.0030%までの
含有は許容される。
O: 0.0030% or less O forms a hard oxide type non-metallic inclusion, which damages the cutting tool at the time of cutting and reduces the machinability, so it is desirable to reduce it as much as possible. Content up to 0.0030% is acceptable.

【0018】以上、本発明の基本成分組成について説明
したが、本発明では必要に応じてさらに、黒鉛化促進元
素としてNi,Cu,Tiのうちから選んだ少なくとも一種
を、また焼入れ性向上元素としてCr,Mo,V,Nbのうち
から選んだ少なくとも一種をそれぞれ添加することもで
きる。以下に各元素の限定理由について説明する。
The basic component composition of the present invention has been described above. However, in the present invention, at least one selected from Ni, Cu, and Ti as a graphitization-promoting element, and as a hardenability-improving element are further added as necessary. At least one selected from Cr, Mo, V, and Nb can be added. The reasons for limiting each element will be described below.

【0019】Ni:0.1 〜3.0 % Niは、黒鉛化を促進すると同時に鋼の焼入れ性を向上さ
せる元素であるので、焼入れ・焼戻し処理によってより
高い強度を確保する場合に用いられるが、 0.1%未満で
はその添加効果が小さく、また高価な元素であるため
3.0%を超える添加は経済的不利を招くので、 0.1〜 3.
0%の範囲に限定した。
Ni: 0.1-3.0% Ni is an element that promotes graphitization and at the same time improves the hardenability of the steel, so it is used to secure higher strength by quenching and tempering treatment, but less than 0.1% Since its addition effect is small and it is an expensive element,
Addition of more than 3.0% causes economic disadvantage, so 0.1 to 3.
The range was limited to 0%.

【0020】Cu:0.1 〜3.0 % Cuは、黒鉛化の促進に有効なだけでなく、鋼の焼入れ性
を高め、さらには析出強化により強度の上昇にも有効に
寄与するが、 0.1%未満ではその添加効果が小さく、一
方 3.0%を超えて添加してもその効果は飽和に達するの
で、 0.1〜3.0%の範囲に限定した。
Cu: 0.1-3.0% Cu is not only effective in promoting graphitization, but also enhances the hardenability of steel and contributes to the increase in strength by precipitation strengthening, but if less than 0.1%, The effect of addition is small, while the effect reaches saturation even if added over 3.0%, so the range was limited to 0.1-3.0%.

【0021】Ti:0.005 〜0.10% Tiは、Siと共に黒鉛化を促進させる作用があり、この効
果を得るには少なくとも 0.005%の添加が必要である
が、0.10%を超えると粗大なTiNを形成し、工具寿命を
減少させるので、 0.005〜0.10%の範囲に限定した。
Ti: 0.005 to 0.10% Ti has an action of promoting graphitization together with Si. To obtain this effect, at least 0.005% must be added, but if it exceeds 0.10%, coarse TiN is formed. However, the tool life is reduced, so the range is limited to 0.005 to 0.10%.

【0022】Cr:0.05〜1.0 % Crは、鋼の焼入れ性を向上させる元素であるので、焼入
れ・焼戻し処理により強度の確保が必要な場合に用い
る。しかし一方で、黒鉛化を阻害する元素でもあるので
多量の添加は好ましくない。ここに含有量が、0.05%未
満では焼入れ性の向上効果に乏しく、一方 1.0%を超え
て含有させると鋼中の鉄炭化物を著しく安定化し、黒鉛
化を遅らせるので、0.05〜1.0 %の範囲に限定した。
Cr: 0.05 to 1.0% Cr is an element that improves the hardenability of steel, so it is used when it is necessary to secure the strength by quenching and tempering. However, on the other hand, addition of a large amount is not preferable because it is an element that inhibits graphitization. If the content is less than 0.05%, the hardenability improvement effect is poor, while if it exceeds 1.0%, the iron carbide in the steel is significantly stabilized and the graphitization is delayed, so the content should be within the range of 0.05 to 1.0%. Limited

【0023】Mo:0.05〜0.5 % Moは、鋼の焼入れ性を向上させる元素であるので、焼入
れ・焼戻し処理により強度を上昇させる必要のある場合
に用いる。しか一方で、黒鉛化を阻害する元素でもある
ので、多量の添加は好ましくない。ここに含有量が、0.
05%未満では焼入れ性の向上効果が小さく、一方 0.5%
を超えて含有されると黒鉛化速度が低下するので、0.05
〜0.5 %の範囲に限定した。
Mo: 0.05 to 0.5% Since Mo is an element that improves the hardenability of steel, it is used when it is necessary to increase the strength by quenching and tempering. On the other hand, it is also an element that inhibits graphitization, so addition of a large amount is not preferable. The content here is 0.
If it is less than 05%, the effect of improving hardenability is small, while it is 0.5%.
If it is contained in excess of 0.05%, the graphitization rate will decrease.
The range is limited to 0.5%.

【0024】V:0.05〜0.5 % Vは、鋼の焼入れ性を向上させると共に、微細なV炭窒
化物を析出しその析出強化によって鋼の焼入れ・焼戻し
による強度を上昇させるので、必要に応じて添加する。
また、焼入れ・焼戻しに限らずとも鋼の強度を高めるに
は有効であるが、黒鉛化を阻害する元素でもあるので多
量の添加は好ましくない。ここに含有量が0.05%未満の
添加ではその効果は小さく、一方 0.5%を超えて添加す
ると黒鉛化が遅れるので、0.05〜0.5 %の範囲に限定し
た。
V: 0.05 to 0.5% V improves the hardenability of the steel and also precipitates fine V carbonitrides to increase the strength of the steel by quenching and tempering due to the precipitation strengthening thereof. Added.
Further, it is effective not only for quenching and tempering but also for increasing the strength of the steel, but it is also an element that hinders graphitization, so addition of a large amount is not preferable. If the content is less than 0.05%, the effect is small. On the other hand, if the content exceeds 0.5%, graphitization is delayed, so the content is limited to 0.05 to 0.5%.

【0025】Nb:0.005 〜0.05% Nbは、鋼の焼入れ性を向上させると共に、微細なNb炭窒
化物を析出しその析出強化によって鋼の焼入れ・焼戻し
による強度を上昇させるので、必要に応じて添加する。
またVと同様、焼入れ・焼戻しに限らずとも鋼の強度を
高めるには有効であるが、黒鉛化を阻害する元素でもあ
るので多量の添加は好ましくない。ここに含有量が 0.0
05%未満の添加ではその効果は小さく、一方0.05%を超
えて添加すると黒鉛化が遅もるので、 0.005〜0.05%の
範囲に限定した。
Nb: 0.005 to 0.05% Nb improves the hardenability of the steel and also precipitates fine Nb carbonitrides to increase the strength of the steel by quenching and tempering by precipitation strengthening. Added.
Further, similar to V, it is effective not only for quenching and tempering but also for increasing the strength of steel, but it is also an element that hinders graphitization, so addition of a large amount is not preferable. Here the content is 0.0
The effect was small when the content was less than 05%, while the graphitization was delayed when the content was more than 0.05%, so the range was limited to 0.005 to 0.05%.

【0026】なお、以上の本発明鋼に以下に示す快削性
元素を必要に応じて添加することもできる。 Pb:0.03〜0.50% Pbは、融点が低いため、切削時の鋼材の発熱により溶融
し、液体潤滑効果により被削性を著しく向上させる元素
であるが、他方で黒鉛化を阻害し逆に被削性を低下させ
るので、両特性を満足させるために、0.03〜0.50wt%の
範囲内で添加する。
If desired, the following free-cutting elements may be added to the above steels of the present invention. Pb: 0.03 to 0.50% Pb has a low melting point, so it is an element that melts due to the heat generation of the steel material during cutting and significantly improves machinability due to the liquid lubrication effect, but on the other hand, it inhibits graphitization and conversely Since it reduces the machinability, it is added within the range of 0.03 to 0.50 wt% in order to satisfy both characteristics.

【0027】Te:0.002 〜0.50wt% Teは、MnTeを形成し、これがチップブレーカーとして作
用することにより被削性を向上させる。一方で、黒鉛化
を阻害する元素でもあるので、多量に添加すると被削性
は却って劣化する。したがって、その適正量は0.002 〜
0.50wt%である。
Te: 0.002-0.50 wt% Te forms MnTe, which acts as a chip breaker to improve machinability. On the other hand, since it is also an element that inhibits graphitization, if added in a large amount, machinability rather deteriorates. Therefore, the proper amount is 0.002-
It is 0.50 wt%.

【0028】P:0.03〜0.15wt% Pは、フェライト相を硬化させることにより被削性を向
上させる元素であるが、他方で黒鉛化を阻害する元素で
もある。被削性を向上させるためには、少なくとも0.03
wt %以上の添加が必要である。しかし、0.15wt%を超
えて添加すると黒鉛化を阻害して逆に被削性を低下させ
ることになるので、0.15wt%を上限として添加する。
P: 0.03 to 0.15 wt% P is an element that improves the machinability by hardening the ferrite phase, but is also an element that inhibits graphitization. To improve machinability, at least 0.03
It is necessary to add more than wt%. However, if added in excess of 0.15 wt%, graphitization will be hindered and machinability will be adversely reduced, so 0.15 wt% is added as the upper limit.

【0029】Ca:0.0002〜0.30wt% Caは、Ca−Al系の酸化物を形成し、これが黒鉛化の核と
して作用し黒鉛化を促進することにより被削性を改善す
る。このような作用は、0.0002wt%未満の添加では明確
に顕れず、一方0.30wt%を越えて添加すると酸化物系非
金属物が多くなり、これが機械部品としての疲労強度を
低下させるので、このCaの添加量は0.0002〜0.30wt%の
範囲とする。
Ca: 0.0002 to 0.30 wt% Ca forms a Ca-Al type oxide, which acts as a nucleus of graphitization and promotes graphitization, thereby improving machinability. Such an effect does not clearly appear when added in an amount of less than 0.0002 wt%, whereas when added in excess of 0.30 wt%, oxide-based non-metallic substances increase, which reduces the fatigue strength of machine parts. The amount of Ca added is in the range of 0.0002 to 0.30 wt%.

【0030】Bi:0.01〜0.30wt% Biは、Pbと同様に融点が低いため、切削時の鋼材の発熱
により溶融し、液体潤滑効果により被削性を著しく向上
させる元素であるが、他方で黒鉛化を阻害し逆に被削性
を低下させるので、両特性を満足させるために0.01〜0.
30wt%の範囲内で添加する。
Bi: 0.01 to 0.30 wt% Bi has a low melting point similar to Pb, so it is an element that melts due to the heat generation of the steel material during cutting and significantly improves machinability due to the liquid lubrication effect. It inhibits graphitization and conversely reduces machinability.
Add within the range of 30wt%.

【0031】Se:0.003 〜0.10wt% Seは、Mnと結合し、MnSeを形成することによりこれがチ
ップブレーカーとして作用することにより被削性を改善
する。同時に、このMnSeが黒鉛化の核となり黒鉛化を促
進することにより被削性を向上させる。この効果は0.00
3wt %未満ではその効果が小さく、一方0.10wt%を越え
て添加してもその効果が飽和するので0.003 〜0.10wt%
の範囲内で添加する。
Se: 0.003 to 0.10 wt% Se combines with Mn to form MnSe, which acts as a chip breaker to improve machinability. At the same time, this MnSe serves as a nucleus for graphitization and promotes graphitization, thereby improving machinability. This effect is 0.00
If it is less than 3 wt%, its effect is small, while if it is added in excess of 0.10 wt%, its effect is saturated, so 0.003 to 0.10 wt%
Add within the range.

【0032】S:0.03〜0.25wt% Sは、MnSを形成し、これが切削時のチップブレーカー
として作用し被削性を向上させるとともに、黒鉛化の核
となることにより黒鉛化を促進し、その結果として被削
性を向上させる作用がある。その添加量が0.03 wt %未
満ではその効果に乏しいために0.030wt %以上添加する
が、一方で0.25wt%を越えて添加しても効果が飽和する
ので、上限を0.25wt%として添加するのがよい。
S: 0.03 to 0.25 wt% S forms MnS, which acts as a chip breaker at the time of cutting to improve machinability and promotes graphitization by becoming a core of graphitization. As a result, it has the effect of improving machinability. If the addition amount is less than 0.03 wt%, the effect is poor, so 0.030 wt% or more is added. On the other hand, if the addition amount exceeds 0.25 wt%, the effect is saturated, so the upper limit should be 0.25 wt%. Is good.

【0033】また、被削性改善のためにさらにSnの添加
を行ってもよい。ただし、Snは極めて強力な黒鉛化阻害
元素であるので、その添加量としては0.5wt %未満に制
限する必要がある。
Further, Sn may be added to improve machinability. However, Sn is an extremely strong graphitization-inhibiting element, so its addition amount must be limited to less than 0.5 wt%.

【0034】また本発明では、成分組成範囲だけでな
く、金属組織が重要であり、主にフェライトと黒鉛の組
織とする。というのは、黒鉛の潤滑作用により切削時に
切削工具の温度上昇を抑制し、それにより切削工具の寿
命を向上させようとするのが、本発明に必須の条件だか
らである。ここに鋼中における黒鉛量の好適含有量は、
90〜100 %である。そのためには、黒鉛化処理として 6
00〜Ac1 ℃の温度領域において5時間以上保持する処理
が必要である。なおかかる黒鉛化処理において、前処理
としての焼入れは必要ない。
In the present invention, not only the composition range of the components but also the metal structure is important, and the structure is mainly ferrite and graphite. This is because it is an essential condition for the present invention to suppress the temperature rise of the cutting tool during cutting due to the lubricating action of graphite and thereby to improve the life of the cutting tool. Here, the preferred content of graphite in steel is
90 to 100%. For that purpose, as a graphitization treatment,
It is necessary to carry out a treatment for holding for 5 hours or more in the temperature range of 00 to Ac 1 ° C. In this graphitization treatment, quenching as a pretreatment is not necessary.

【0035】[0035]

【実施例】表1に示す鋼材を転炉により溶製し、連続鋳
造によりブルームとした。ビレット圧延を経て52mmφの
棒鋼とした。これらに、 700℃×15hその後空冷の黒鉛
化処理を施し、黒鉛化焼なまし後の黒鉛化率、硬さおよ
び高速度工具鋼による被削性試験を実施した。被削性試
験は、高速度工具鋼SKHを用い、切込み:2mm、送
り:0.25mm/rev.切削速度:70m/minの条件下Q実施
し、切削不能となるまでの時間を工具寿命として評価し
た。得られた試験結果を表2に示す。
[Examples] The steel materials shown in Table 1 were melted by a converter and continuously cast into blooms. A 52 mmφ steel bar was obtained through billet rolling. These were subjected to graphitization treatment at 700 ° C. for 15 hours and then air cooling, and a graphitization rate after graphitization annealing, hardness and machinability test with high speed tool steel were carried out. For the machinability test, high-speed tool steel SKH was used, Q was carried out under the conditions of depth of cut: 2 mm, feed: 0.25 mm / rev. Cutting speed: 70 m / min, and the time until cutting becomes impossible is evaluated as the tool life. did. The test results obtained are shown in Table 2.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】供試鋼No.1〜21は本発明鋼である。また、
No.22 〜25はSi, Bのいずれかが本発明の範囲外にある
場合である。また、No. 26および27はSAE 12L14 および
JISS45CにPbを添加した快削鋼である。本発明鋼は、
いずれも黒鉛化率が75%以上であり、それに対応し、工
具寿命はいずれも従来鋼と同等以上となっている。一
方、比較鋼は、黒鉛化率が低くいずれもSAE 12L14 相当
鋼よりも工具寿命は短い。すなわち、本発明を用いるこ
とによりPbを用いること無しに、従来のPb複合快削鋼と
同等な被削性を得ることが可能であり、環境に悪影響を
及ぼすことなく工業的に機械部品の製造が可能となる。
Specimen steel Nos. 1 to 21 are steels of the present invention. Also,
Nos. 22 to 25 are cases where either Si or B is outside the scope of the present invention. No. 26 and 27 are SAE 12L14 and
It is a free-cutting steel in which Pb is added to JIS S45C. The steel of the present invention is
Corresponding to the graphitization rate of 75% or more, the tool life is equivalent to or higher than that of conventional steel. On the other hand, the comparative steels have low graphitization rates and both have shorter tool life than the SAE 12L14 equivalent steels. That is, by using the present invention, it is possible to obtain machinability equivalent to that of the conventional Pb composite free-cutting steel without using Pb, and to industrially manufacture mechanical parts without adversely affecting the environment. Is possible.

【0039】[0039]

【発明の効果】かくして本発明によれば、Pbを用いるこ
となく、従来のPb複合添加快削鋼と同程度の優れた被削
性を得ることができ、従って、環境に悪影響を及ぼすこ
となしに工業的に優れた機械部品の製造が可能となる。
As described above, according to the present invention, it is possible to obtain the same machinability as that of the conventional Pb composite-added free-cutting steel without using Pb, and therefore, it does not adversely affect the environment. In addition, industrially excellent mechanical parts can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 松崎 明博 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Division (72) Inventor Akihiro Matsuzaki 1 Kawasaki-cho, Chuo-ku, Chiba Address: Kawasaki Steel Corporation Technical Research Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.1 〜1.5 wt%、 Si:0.5 〜2.0
wt%、 Mn:0.1 〜2.0 wt%、 B:0.0003〜0.0150wt%、 N:0.0015〜0.0150wt%、O:0.0030wt%以下を含有
し、残部はFeおよび不可避的不純物の組成になり、しか
も金属組織が主としてフェライトおよび黒鉛からなるこ
とを特徴とする被削性に優れた黒鉛快削鋼。
1. C: 0.1-1.5 wt%, Si: 0.5-2.0
wt%, Mn: 0.1 to 2.0 wt%, B: 0.0003 to 0.0150 wt%, N: 0.0015 to 0.0150 wt%, O: 0.0030 wt% or less, and the balance is Fe and inevitable impurities. Graphite free-cutting steel with excellent machinability, characterized in that the metal structure mainly consists of ferrite and graphite.
【請求項2】C:0.1 〜1.5 wt%、 Si:0.5 〜2.0
wt%、 Mn:0.1 〜2.0 wt%、 B:0.0003〜0.0150wt%、 N:0.0015〜0.0150wt%、O:0.0030wt%以下を含み、
かつNi:0.1 〜3.0 wt%、 Cu:0.1 〜3.0 wt%、 Ti:0.005 〜0.10wt%のうちから選んだ1種または2種
以上を含有し、残部はFeおよび不可避的不純物の組成に
なり、しかも金属組織が主としてフェライトおよび黒鉛
からなることを特徴とする被削性に優れた黒鉛快削鋼。
2. C: 0.1-1.5 wt%, Si: 0.5-2.0
wt%, Mn: 0.1 to 2.0 wt%, B: 0.0003 to 0.0150 wt%, N: 0.0015 to 0.0150 wt%, O: 0.0030 wt% or less,
Also, it contains one or more selected from Ni: 0.1 to 3.0 wt%, Cu: 0.1 to 3.0 wt%, Ti: 0.005 to 0.10 wt%, and the balance is Fe and inevitable impurities. Moreover, graphite free-cutting steel with excellent machinability, characterized in that the metal structure is mainly composed of ferrite and graphite.
【請求項3】C:0.1 〜1.5 wt%、 Si:0.5 〜2.0
wt%、 Mn:0.1 〜2.0 wt%、 B:0.0003〜0.0150wt%、 N:0.0015〜0.0150wt%、O:0.0030wt%以下を含み、
かつCr:0.05〜1.0 wt%、 Mo:0.05〜0.5 wt%、 V:0.05〜0.5 wt%、 Nb:0.005 〜0.05wt%のうち
から選んだ1種または2種以上を含有し、残部はFeおよ
び不可避的不純物の組成になり、しかも金属組織が主と
してフェライトおよび黒鉛からなることを特徴とする被
削性に優れた黒鉛快削鋼。
3. C: 0.1-1.5 wt%, Si: 0.5-2.0
wt%, Mn: 0.1 to 2.0 wt%, B: 0.0003 to 0.0150 wt%, N: 0.0015 to 0.0150 wt%, O: 0.0030 wt% or less,
In addition, Cr: 0.05 to 1.0 wt%, Mo: 0.05 to 0.5 wt%, V: 0.05 to 0.5 wt%, Nb: 0.005 to 0.05 wt% and one or more selected from the rest, with the balance being Fe. A graphite free-cutting steel excellent in machinability, characterized by having an unavoidable impurity composition and having a metal structure mainly composed of ferrite and graphite.
【請求項4】C:0.1 〜1.5 wt%、 Si:0.5 〜2.0
wt%、 Mn:0.1 〜2.0 wt%、 B:0.0003〜0.0150wt%、 N:0.0015〜0.0150wt%、O:0.0030wt%以下を含み、
かつNi:0.1 〜3.0 wt%、 Cu:0.1 〜3.0 wt%、 Ti:0.005 〜0.10wt%のうちから選んだ1種または2種
以上を含有し、さらにCr:0.05〜1.0 wt%、 Mo:0.
05〜0.5 wt%、 V:0.05〜0.5 wt%、 Nb:0.005 〜0.05wt%のうち
から選んだ1種または2種以上を含有し、残部はFeおよ
び不可避的不純物の組成になり、しかも金属組織が主と
してフェライトおよび黒鉛からなることを特徴とする被
削性に優れた黒鉛快削鋼。
4. C: 0.1-1.5 wt%, Si: 0.5-2.0
wt%, Mn: 0.1 to 2.0 wt%, B: 0.0003 to 0.0150 wt%, N: 0.0015 to 0.0150 wt%, O: 0.0030 wt% or less,
In addition, it contains one or more selected from Ni: 0.1 to 3.0 wt%, Cu: 0.1 to 3.0 wt%, Ti: 0.005 to 0.10 wt%, and Cr: 0.05 to 1.0 wt%, Mo: 0.
05 to 0.5 wt%, V: 0.05 to 0.5 wt%, Nb: 0.005 to 0.05 wt%, and one or more selected from the rest, with the balance being Fe and inevitable impurities, and metal. Graphite free-cutting steel with excellent machinability, whose structure is mainly composed of ferrite and graphite.
JP33787993A 1993-12-28 1993-12-28 Graphite free-cutting steel excellent in machinability Pending JPH07188850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33787993A JPH07188850A (en) 1993-12-28 1993-12-28 Graphite free-cutting steel excellent in machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33787993A JPH07188850A (en) 1993-12-28 1993-12-28 Graphite free-cutting steel excellent in machinability

Publications (1)

Publication Number Publication Date
JPH07188850A true JPH07188850A (en) 1995-07-25

Family

ID=18312855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33787993A Pending JPH07188850A (en) 1993-12-28 1993-12-28 Graphite free-cutting steel excellent in machinability

Country Status (1)

Country Link
JP (1) JPH07188850A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751232A1 (en) * 1994-02-24 1997-01-02 Nippon Steel Corporation Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability, and method of manufacturing the same
KR20200075643A (en) * 2018-12-18 2020-06-26 주식회사 포스코 Steel wire for graphitization and graphite steel and manufacturing method thereof
WO2022131865A1 (en) * 2020-12-18 2022-06-23 주식회사 포스코 Wire rod for graphitization heat treatment, and graphite steel
WO2022131864A1 (en) * 2020-12-18 2022-06-23 주식회사 포스코 Wire rod for graphitization heat treatment, and graphite steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751232A1 (en) * 1994-02-24 1997-01-02 Nippon Steel Corporation Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability, and method of manufacturing the same
EP0751232A4 (en) * 1994-02-24 1997-05-21 Nippon Steel Corp Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability, machinability and hardenability, and method of manufacturing the same
US5830285A (en) * 1994-02-24 1998-11-03 Nippon Steel Corporation Fine graphite uniform dispersion steel excellent in cold machinability, cuttability and hardenability, and production method for the same
KR20200075643A (en) * 2018-12-18 2020-06-26 주식회사 포스코 Steel wire for graphitization and graphite steel and manufacturing method thereof
WO2022131865A1 (en) * 2020-12-18 2022-06-23 주식회사 포스코 Wire rod for graphitization heat treatment, and graphite steel
WO2022131864A1 (en) * 2020-12-18 2022-06-23 주식회사 포스코 Wire rod for graphitization heat treatment, and graphite steel
KR20220087846A (en) * 2020-12-18 2022-06-27 주식회사 포스코 Wire rod for graphitization heat treatment and graphite steel

Similar Documents

Publication Publication Date Title
TWI404808B (en) Boron steel sheet with high quenching property and manufacturing method thereof
WO2013145868A1 (en) Boron-added high strength bolt steel having excellent delayed fracture resistance and high strength bolt
JP3464356B2 (en) Boron steel gear excellent in fatigue resistance and method of manufacturing the same
JPH07188847A (en) Machine-structural carbon steel excellent in machiniability
JP4347763B2 (en) High temperature carburizing steel and method for producing the same
JP3411686B2 (en) Graphite composite free-cutting steel
JPH07188850A (en) Graphite free-cutting steel excellent in machinability
JP3249646B2 (en) Machine structural steel with excellent machinability and cold forgeability
JP3253677B2 (en) Machine structural steel with excellent machinability
JPH06279849A (en) Production of steel for machine structure excellent in machinability
JP3253702B2 (en) Carbon steel for machine structure with excellent machinability
JP3874557B2 (en) Free-cutting non-tempered steel with excellent toughness
JPH07188849A (en) Machine-structural carbon steel excellent in machinability
JP3354240B2 (en) Machine structural steel with excellent machinability
JPH07188851A (en) Graphite free-cutting steel excellent in machinability
JPH07188846A (en) Machine-structural carbon steel excellent in machinability and cold forgeability
JPH06248387A (en) Steel for machine structure excellent in machinability
JP3503163B2 (en) Machine structural steel with excellent machinability and cold forgeability
JPH06336644A (en) Steel for machine structure excellent in machinability
JP3449318B2 (en) Free cutting steel
JPH07150293A (en) Graphite composite free cutting steel
JP3247913B2 (en) Machine structural steel with excellent machinability
JP2001192762A (en) High toughness non-heat treated steel for hot forging
JPH05255803A (en) Steel for machine structural and its manufacture
KR100551588B1 (en) High temperature carburizing steel having high toughness