JPS63118043A - Al or al alloy composite material - Google Patents

Al or al alloy composite material

Info

Publication number
JPS63118043A
JPS63118043A JP26319386A JP26319386A JPS63118043A JP S63118043 A JPS63118043 A JP S63118043A JP 26319386 A JP26319386 A JP 26319386A JP 26319386 A JP26319386 A JP 26319386A JP S63118043 A JPS63118043 A JP S63118043A
Authority
JP
Japan
Prior art keywords
composite material
alloy
powder
zirconium oxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26319386A
Other languages
Japanese (ja)
Inventor
Toshiyuki Minamide
南出 俊幸
Kenichiro Ouchi
大内 権一郎
Hiroyuki Morimoto
森本 啓之
Masahiro Tsukuda
筑田 昌宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26319386A priority Critical patent/JPS63118043A/en
Publication of JPS63118043A publication Critical patent/JPS63118043A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the mechanical characteristics, heat and wear resistances of the titled composite material by producing a proper amt. of a ZrAl3 layer on the interface between Al (alloy) as a matrix and ZrO2 powder as a reinforcing material added to the matrix. CONSTITUTION:Al (alloy) powder is mixed with 2-50vol% fine ZrO2 powder and the mixture is hermetically sealed in a capsule and compacted by powder metallurgical processing with a hot isostatic press or by other process. At this time, compacting conditions such as temp. and time are properly controlled so as to regulate the amt. of fine ZrO2 powder reacted, that is, the amt. of ZrAl3 produced to >=10% of the fine ZrO2 powder mixed. The resulting composite material has superior heat and wear resistances, high strength and a high modulus of elasticity, so it is suitable for use as a piston material for an automobile or a vane material for a compressor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐熱性、耐摩耗性に優れ且つ高レベルの強度
及び弾性率を示し、自動車用ピストン、コンロッド、コ
ンプレッサー用ベーン材等として有用なAl又はAl合
金複合材料に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has excellent heat resistance and abrasion resistance, and exhibits high levels of strength and elastic modulus, and is useful as automobile pistons, connecting rods, compressor vane materials, etc. The invention relates to Al or Al alloy composite materials.

〔従来の技術〕[Conventional technology]

Al及びAl合金(以下Al合金て代表する)は軽量て
比強度か高いといった特性を有している。しかし一般に
軟質で低剛性であり、且つ耐熱性や耐摩耗性に劣るとい
う欠点がある為、適用分野は著しく制限されていた。と
ころが最近、Al合金中に微細なセラミックス粒子やセ
ラミックス繊維等の強化材を分散せしめ、強度、剛性、
耐熱性、耐摩耗性等の物性を高めたAl合金複合材料が
開発されるに及び、適用分野の大幅な拡大か期待されて
いる。
Al and Al alloys (hereinafter referred to as Al alloys) have the characteristics of being lightweight and having high specific strength. However, because they are generally soft, have low rigidity, and have poor heat resistance and abrasion resistance, their field of application has been severely limited. However, recently, reinforcing materials such as fine ceramic particles and ceramic fibers have been dispersed in Al alloys to improve strength, rigidity,
With the development of Al alloy composite materials with improved physical properties such as heat resistance and abrasion resistance, it is expected that the fields of application will expand significantly.

[発明が解決しようとする問題点コ 強化用粒子や強化用繊維の配合目的を有効に発揮させる
ためには、Al合金と強化材の接合強度を高めることが
必須の条件であると考えられる。
[Problems to be Solved by the Invention] In order to effectively achieve the purpose of blending reinforcing particles and reinforcing fibers, it is considered to be an essential condition to increase the bonding strength between the Al alloy and the reinforcing material.

ところが現在のところAl合金複合材月に関する工業化
研究は初期段階にあり、Al合金と強化材の各接触表面
に拡散層や化合物層(以下反応広ということがある)か
存在するときには、複合化り;I果が高くなるであろう
といった漠然とした推3.11かなされている程度てあ
り、前記接触表面かとの#l玉な結合状態のときに複合
化効果か最も有効に発1ボされるかといった理論的且つ
定二的研究は十分;こなされておらない。
However, industrial research on Al alloy composite materials is currently at an early stage, and when a diffusion layer or a compound layer (hereinafter referred to as reaction layer) exists on each contact surface between the Al alloy and the reinforcement, it is difficult to form a composite material. 3.11 Some vague assumptions have been made that the effect will be higher, and the compounding effect is most effectively produced when there is a good bonding state with the contact surface. Such theoretical and qualitative research has not been sufficiently conducted.

本発明はこの様な状況のもとて特に強化材として微粉末
状の酸化ジルコニウムを選択し、Al合金への好ましい
配合率を明らかにすると共に、複合効果を最も有効に発
揮し得る様な反応層の形態や厚さ等を明確にし、もって
優れた物性を有するAl合金複合材料を提供しようとす
るものである。
Under these circumstances, the present invention specifically selected fine powdered zirconium oxide as a reinforcing material, clarified the preferred blending ratio in the Al alloy, and developed a reaction method that would most effectively exhibit the composite effect. The aim is to clarify the form and thickness of the layers, thereby providing an Al alloy composite material with excellent physical properties.

[問題点を解決するための手段] 本発明に係るAl又はAl合金複合材料の構成はAl又
はAl合金よりなるマトリックス中に、微粉末状酸化ジ
ルコニウムが2〜50体積%の割合て均一に分散せしめ
られ、且つ該微粉末の10体積%以上はがZ r A 
13よりなる反応層を形成したものであるところに要旨
を有するものである。
[Means for Solving the Problems] The composition of the Al or Al alloy composite material according to the present invention is that fine powder zirconium oxide is uniformly dispersed in a matrix made of Al or Al alloy at a ratio of 2 to 50% by volume. Z r A
The gist is that a reaction layer made of 13 is formed.

[作用コ 本発明者らは、Al合金複合材料の性能に影響を及ぼす
と考えられる要因について色々研究を行なったところ、
強化材とAl合金マトリックスの各接触表面に生成する
反応層の物性が複合材料の性能に極めて大きな影響を及
ぼすという事実を確認し、こうした事実を基に、Al合
金との間で高性能の反応層を生成し得る様な強化材を種
々検索した結果、微粉末状の酸化ジルコニウムに想到し
た。即ち酸化ジルコニウム微粉末は、Al合金中へ強化
材として適量配合することによって耐熱性及び耐摩耗性
を飛躍的に高める作用があるが、こうした効果は酸化ジ
ルコニウム微粉末自体の複合効果のみによって発揮され
る訳ではなく、酸化ジルコニウム微粉末とAl合金マト
リックスとの接触面近傍に、これら両者の反応によって
生成する金属間化合物であるZrAl3が存在するとき
にはより強く発揮されることが明らかとなった。
[Function] The present inventors conducted various studies on factors that are thought to affect the performance of Al alloy composite materials, and found that
We confirmed the fact that the physical properties of the reaction layer generated on each contact surface between the reinforcing material and the Al alloy matrix have an extremely large effect on the performance of the composite material. As a result of searching for various reinforcing materials that could form layers, we came up with fine powdered zirconium oxide. In other words, zirconium oxide fine powder has the effect of dramatically increasing heat resistance and wear resistance when incorporated in an appropriate amount as a reinforcing material into an Al alloy, but these effects are exerted only by the combined effect of the zirconium oxide fine powder itself. It has become clear that the effect is stronger when ZrAl3, an intermetallic compound produced by the reaction between the zirconium oxide fine powder and the Al alloy matrix, is present near the contact surface between the zirconium oxide fine powder and the Al alloy matrix.

そして後記実施例でも明らかにする如く、酸化ジルコニ
ウム微粉末をAl合金マトリックス中に2〜50体積%
を占める様に均一に分散せしめ、且つ該微粉末の10体
積%以上がその表面でAl合金マトリックス側へ拡散し
てAlと反応してZrAl.よりなる反応層を形成して
いる様な複合材料の場合は、耐熱性及び耐摩耗性におい
て非常に優れた性能を発揮し得ることが確認された。
As will be made clear in the examples below, 2 to 50% by volume of zirconium oxide fine powder was added to the Al alloy matrix.
ZrAl. It has been confirmed that a composite material that forms a reaction layer consisting of the following can exhibit extremely excellent performance in terms of heat resistance and abrasion resistance.

しかして酸化ジルコニウム微粉末の占める体積%が2%
未満であるときは、強化材としての複合化効果か実質的
に発揮されず、一方50%を超えると複合材が硬質化す
ると共に加工性が極端に悪化し実用性を欠くものとなる
。本発明において最も好ましいのは5〜40%の範囲で
ある。また酸化ジルコニウム微粉末とAl合金の接触面
近傍に形成されるZrAl3を10%以上と定めたのは
、10%未満ではZrAl3層の介在による複合強化効
果が有効に発揮されず、ZrAl3層の存在しない単な
る酸化ジルコニウム微粉末分散複合材料との間に有意差
が認められないからである。該ZrAl3層の占める量
の上限は酸化ジルコニウム微粉末の複合材中に占める割
合によって変わってくるので一律に規定することはでき
ないが、この割合が多くなると比較的少ない反応率でも
複合材が脆化傾向を示す様になる。そこで酸化ジルコニ
ウム微粉末の占める体積率をv2ro2とし、そのα%
がAl合金と反応して両者の界面層にZrAl3が生成
されるとしたとき、(v2ro2×α) <Q、l と
なる様、酸化ジルコニウム微粉末の配合量に応じて適宜
決めればよい。尚上述の様な制御を行なう手法について
は後に詳しく述べる。
Therefore, the volume percentage occupied by zirconium oxide fine powder is 2%.
When it is less than 50%, the composite effect as a reinforcing material is not substantially exhibited, while when it exceeds 50%, the composite material becomes hard and its workability is extremely deteriorated, making it impractical. In the present invention, the most preferred range is 5 to 40%. In addition, the reason why the ZrAl3 formed near the contact surface between the zirconium oxide fine powder and the Al alloy was set to be 10% or more is because if it is less than 10%, the composite strengthening effect due to the interposition of the ZrAl3 layer will not be effectively exerted, and the presence of the ZrAl3 layer will not be effective. This is because there is no significant difference between the composite material and the simple zirconium oxide fine powder dispersed composite material. The upper limit of the amount occupied by the three ZrAl layers cannot be set uniformly because it changes depending on the proportion of the zirconium oxide fine powder in the composite material, but if this proportion increases, the composite material will become brittle even at a relatively low reaction rate. It starts to show a trend. Therefore, the volume ratio occupied by the zirconium oxide fine powder is defined as v2ro2, and its α%
When it is assumed that ZrAl3 is generated at the interface layer between the two by reacting with the Al alloy, it may be determined as appropriate according to the blending amount of the zirconium oxide fine powder so that (v2ro2×α) <Q,l. The method for performing the above-mentioned control will be described in detail later.

尚、強化材として使用する酸化ジルコニウム微粉末があ
まりに粗粒である場合は複合強化効果が有効に発揮され
ず、むしろ介在物として作用して物性を阻害することも
あるので145メツシユ以下の微粉末を使用すべきであ
る。
In addition, if the fine zirconium oxide powder used as a reinforcing material is too coarse, the composite reinforcement effect will not be effectively exhibited, and it may actually act as inclusions and impede physical properties, so fine powder of 145 mesh or less is not recommended. should be used.

本発明のAl合金複合材料は溶湯法(Al合金溶湯中に
酸化ジルコニウム微粉末を分散して鋳造する方法)ある
いは粉末冶金法(Al合金粉末と酸化ジルコニウム微粉
末を混合し、熱間静水圧プレスやホットプレス等により
所定形状に成形する方法)によって得ることができるが
、特に後者の粉末冶金法であれば、酸化ジルコニウム微
粉末の配合率の高い複合材料が得られ易く、且つ成形条
件(温度、圧力、時間等)を適正にコントロールするこ
とによって酸化ジルコニウム微粉末の反応jc(ZrA
lsの生成量)を容易に調整することができるので好ま
しい。尚粉末冶金法を採用するとぎの成形温度は580
℃以上にするのがよく、この温度未満では反応層(Zr
Al3)の生成速度が非常に遅く、殊に反応層を20体
積%以上にしようとした場合は極めて長時間の加熱を必
要とするので実用性を欠く。成形温度の好ましい上限は
Al合金の種類によって変わるが、その融点未満の温度
に抑えるべきである。
The Al alloy composite material of the present invention can be produced by the molten metal method (a method in which fine zirconium oxide powder is dispersed and cast in a molten Al alloy) or the powder metallurgy method (a method in which Al alloy powder and fine zirconium oxide powder are mixed and hot isostatically pressed. However, especially the latter powder metallurgy method, it is easy to obtain a composite material with a high blending ratio of fine zirconium oxide powder, and the molding conditions (temperature , pressure, time, etc.), the reaction of zirconium oxide fine powder jc (ZrA
This is preferable because the amount of ls produced) can be easily adjusted. In addition, the molding temperature after adopting the powder metallurgy method is 580
℃ or higher; below this temperature, the reaction layer (Zr
The production rate of Al3) is very slow, and especially when the reaction layer is intended to have a content of 20% by volume or more, heating is required for an extremely long time, making it impractical. The preferable upper limit of the forming temperature varies depending on the type of Al alloy, but it should be kept below its melting point.

また本発明の複合材料は、Al合金との界面層にZ r
 A 13が生成しておらない酸化ジルコニウム粉末強
化Al合金複合材料を熱処理することによっても製造す
ることもできる。即ち上記複合材料をAl合金マトリッ
クスの固相温度直下に加熱すると、酸化ジルコニウム粉
末とAl合金が反応してZrO2粒子周囲にZrAl3
が生成し、本発明のAl合金複合材料が得られる。
Furthermore, the composite material of the present invention has Zr in the interface layer with the Al alloy.
It can also be produced by heat treating a zirconium oxide powder-reinforced Al alloy composite material in which A13 is not produced. That is, when the above composite material is heated to just below the solidus temperature of the Al alloy matrix, the zirconium oxide powder and the Al alloy react to form ZrAl3 around the ZrO2 particles.
is produced, and the Al alloy composite material of the present invention is obtained.

また、本発明複合材料の効果は、通常のAl合金複合材
料(繊維強化複合材料1粒子分散複合材料等)中に酸化
ジルコニウム微粉末を混合しAl合金との界面層にZr
Al3を生成させることによっても得ることができる。
In addition, the effect of the composite material of the present invention is that fine zirconium oxide powder is mixed into a normal Al alloy composite material (fiber-reinforced composite material, single-particle dispersed composite material, etc.), and Zr is added to the interface layer with the Al alloy.
It can also be obtained by generating Al3.

即ち、Al合金中に1%以上の無機質炭化物(Al20
3゜5i02.TiO2等)、無機質炭化物(SiC,
TiC,84C,C等)、無機質窒化物(Si3N4.
TiN、BN等)、無機質炭化物(TiB2等)の1種
または2種以上と共に酸化ジルコニウム微粉末を混合し
、該酸化ジルコニウム微粉末とAl合金との界面層にZ
 r A 1 :+を生成させることによって、通常の
Al合金複合材料の特性とくに耐熱性、耐摩耗性をさら
に改善することができる。
That is, 1% or more of inorganic carbide (Al20
3゜5i02. TiO2, etc.), inorganic carbides (SiC,
TiC, 84C, C, etc.), inorganic nitrides (Si3N4.
Zirconium oxide fine powder is mixed with one or more of inorganic carbides (TiB2, etc.), TiN, BN, etc., and Z is added to the interface layer between the zirconium oxide fine powder and the Al alloy.
By generating r A 1 :+, the properties of ordinary Al alloy composite materials, especially the heat resistance and wear resistance, can be further improved.

但し上記無機質併用材の量が酸化ジルコニウム微粉末に
対して等量販上となると、反応層(ZrAl3)の生成
量が不足気味となって本発明の意図するZrAl3層形
成による相剰的物性改善効果が有効に発揮されなくなる
ので、酸化ジルコニウム微粉末に対して等量販下、より
好ましくは50%以下に抑えるのがよい。
However, when the amount of the above-mentioned inorganic combination material becomes equal to the amount of zirconium oxide fine powder, the amount of reaction layer (ZrAl3) produced tends to be insufficient, and the additive physical property improvement effect due to the formation of the ZrAl3 layer intended by the present invention is lost. Therefore, it is preferable to suppress the amount to an equal amount, more preferably 50% or less, to the zirconium oxide fine powder.

し実施例] 実施例1 粒径350メツシユ以下の純Al粉末に平均粒径が2〜
3μmの酸化ジルコニウム(ZrO2)粒子を体イ」1
率で20%混合し、カプセルに封入、密封した後、熱間
静水圧プレス(成形圧力=1000Kgf 70m2)
 して酸化ジルコニウム(Zr02)粒子強化アルミニ
ウム複合材ヲ得た。このとき得られた複合材中の酸化ジ
ルコニウム(ZrO2)粒子の反応量と成形温度の関係
を第1図に示す。同図から明らかなように、成形温度か
580℃を超えると酸化ジルコニウム(ZrO2)粒子
とAlの反応が急速に進むことがわかる。また、成形時
間を長くとることによっても、反応は大きく進む。
[Example] Example 1 Pure Al powder with a particle size of 350 mesh or less has an average particle size of 2~
A body of 3 μm zirconium oxide (ZrO2) particles
After mixing at a ratio of 20%, encapsulating and sealing, hot isostatic pressing (molding pressure = 1000Kgf 70m2)
A zirconium oxide (Zr02) particle reinforced aluminum composite material was obtained. FIG. 1 shows the relationship between the reaction amount of zirconium oxide (ZrO2) particles in the composite material obtained at this time and the molding temperature. As is clear from the figure, when the molding temperature exceeds 580°C, the reaction between the zirconium oxide (ZrO2) particles and Al proceeds rapidly. Furthermore, the reaction progresses significantly by increasing the molding time.

この方法によって作製した複合材の断面ミクロ組織の代
表例を第2図(図面代用顕微鏡写真)に示す。第2図に
おいて、白色の部分はAlを、黒色で分散している粒子
は酸化ジルコニウム(ZrO2)粒子を示す。また、酸
化ジルコニウム(Zr02)粒子の周囲の灰色の部分が
、酸化ジルコニウム(ZrO□)粒子とAlとの反応層
で、EPMA解析およびX線回折の結果Z r A 1
3であることが確認された。
A typical example of the cross-sectional microstructure of a composite material produced by this method is shown in FIG. 2 (micrograph in place of a drawing). In FIG. 2, the white parts represent Al, and the black dispersed particles represent zirconium oxide (ZrO2) particles. In addition, the gray area around the zirconium oxide (Zr02) particles is a reaction layer between the zirconium oxide (ZrO□) particles and Al, and as a result of EPMA analysis and X-ray diffraction, Z r A 1
It was confirmed that it was 3.

この方法によって作製した複合材の機械的特性を第1表
に示す。第1表からも明らかな様に、酸化ジルコニウム
(ZrO2)粒子の反応量が高くなるにつれ複合材の耐
力、強度、弾性率は高くなり、高温ビッカース硬さも各
温度において高くなる。しかしながら、反応量が40%
を超えた付近から当該複合材料は極めて脆弱となり、耐
力のとれない伸びの少ない材料となり、加工性も悪くな
る。従って本例の酸化ジルコニウム配合量においては、
Alとの反応量を40%以下に抑えるへきであることが
分かる。
Table 1 shows the mechanical properties of the composite material produced by this method. As is clear from Table 1, as the reaction amount of zirconium oxide (ZrO2) particles increases, the yield strength, strength, and elastic modulus of the composite material increase, and the high-temperature Vickers hardness also increases at each temperature. However, the reaction amount was 40%
The composite material becomes extremely brittle in the vicinity of exceeding this point, becomes a material with low elongation that cannot maintain its yield strength, and has poor workability. Therefore, in the amount of zirconium oxide in this example,
It can be seen that the amount of reaction with Al can be suppressed to 40% or less.

比較例として、強化粒子に炭化珪素( Sic)、アルミ1(Al2O2)、窒化珪素(S i
3 N4 )をそれぞれ体積率で20%含んだ純Al複
合材の機械的特性を第2表に示す。これらの例と比較し
ても、本発明の複合材料の特性が非常に優れたものであ
ることがわかる。
As a comparative example, silicon carbide (Sic), aluminum 1 (Al2O2), silicon nitride (Si
Table 2 shows the mechanical properties of pure Al composites each containing 20% by volume of 3N4). Even when compared with these examples, it can be seen that the properties of the composite material of the present invention are very excellent.

実施例2 粒径350メツシユ以下の純Al粉末および6061A
l合金粉末に、それぞれ平均粒径が2〜3μmの酸化ジ
ルコニウム(ZrO2)粒子を体積率で20%の割合で
混合し、カプセルに封入、密封した後、熱間静水圧ブレ
ス(成形温度・500℃、圧カニ1000にgf/am
2)シて、酸化ジルコニウム(ZrO2)粒子の反応量
が約5%の複合材を得た。この複合材を熱処理した時の
酸化ジルコニウム(ZrO2)粒子の反応量の時間的変
化を第3図に示す。
Example 2 Pure Al powder with a particle size of 350 mesh or less and 6061A
Zirconium oxide (ZrO2) particles with an average particle size of 2 to 3 μm were mixed with the l alloy powder at a volume ratio of 20%, and the mixture was encapsulated in capsules and sealed, followed by hot isostatic pressing (forming temperature: 500 µm). °C, pressure crab 1000 gf/am
2) A composite material in which the amount of reacted zirconium oxide (ZrO2) particles was about 5% was obtained. FIG. 3 shows the temporal change in the amount of zirconium oxide (ZrO2) particles reacted when this composite material was heat-treated.

第3図からも明らかな様にマトリックスAlの固相線直
下の温度で約10時間熱処理を行なえば、複合材中の酸
化ジルコニウム(Zr02)粒子の反応量がおよそ20
%となり、本発明の要件を満たす複合材料が得られる。
As is clear from Fig. 3, if heat treatment is performed for about 10 hours at a temperature just below the solidus line of matrix Al, the amount of reaction of zirconium oxide (Zr02) particles in the composite material will be approximately 20%.
%, and a composite material satisfying the requirements of the present invention is obtained.

また、第4図(A)は熱処理前の複合材の断面ミクロ組
織を、第4図(B)は熱処理後の複合材の断面ミクロ組
織を夫々示す図面代用顕微鏡写真であり、熱処理を行な
うことにより、酸化ジルコニウム(ZrO2)粒子がA
lと反応しZrO2゛拉子の周囲にZrAl3が生成し
ていることがわかる。
In addition, FIG. 4(A) is a microscopic photograph showing the cross-sectional microstructure of the composite material before heat treatment, and FIG. 4(B) is a micrograph substituted for a drawing showing the cross-sectional microstructure of the composite material after heat treatment. As a result, zirconium oxide (ZrO2) particles are
It can be seen that ZrAl3 reacts with ZrO2 and generates ZrAl3 around ZrO2.

実施例3 粒径350メツシユ以下の純Al粉末に、平均粒径が2
〜3μmの酸化ジルコニウム(ZrO2)粒子を体積率
で0〜60%の割合で混合し、カプセルに封入、密封し
た後、熱間静水圧プレス(550℃x 1000kgf
/c+n2X 1 hrまたは630℃x 1000k
gf/cm2X 1 hr) シて複合材を得た。
Example 3 Pure Al powder with a particle size of 350 mesh or less has an average particle size of 2
~3μm zirconium oxide (ZrO2) particles were mixed at a volume ratio of 0~60%, encapsulated and sealed in a capsule, and then hot isostatically pressed (550℃ x 1000kgf).
/c+n2X 1 hr or 630℃x 1000k
gf/cm2X 1 hr) to obtain a composite material.

上記複合材のうち630℃で熱間静水圧プレスを行なっ
たものについては、該成形工程でZrO,粒子とAlと
の反応が進行し、ZrO2粒子の反応率は20〜30%
の範囲に収まることが確認された。この複合材のビッカ
ース硬さ試験を行ない、ZrO2粒子の体積率と硬さの
関係を調べたところ、第5図に示す傾向が得られた。
Among the above composite materials, for those subjected to hot isostatic pressing at 630°C, the reaction between ZrO particles and Al progresses during the forming process, and the reaction rate of ZrO2 particles is 20 to 30%.
It was confirmed that it falls within the range of When this composite material was subjected to a Vickers hardness test and the relationship between the volume fraction of ZrO2 particles and hardness was investigated, the tendency shown in FIG. 5 was obtained.

この図からも明らかな様にZrO2粒子の体積率と硬さ
とはほぼ比例関係にあるが、該体積率が2%未満では十
分な硬さ改善効果が得られず、2%以上とすることによ
って本発明の目的を達成し得ることが分かる。
As is clear from this figure, there is a nearly proportional relationship between the volume fraction of ZrO2 particles and the hardness, but if the volume fraction is less than 2%, a sufficient hardness improvement effect cannot be obtained; It can be seen that the objectives of the invention can be achieved.

一方上記複合材のうち成形温度を550℃に抑えて(Z
rO2粒子とAlの反応が進行しにくい条件)熱間静水
圧プレスを行なったものについては、その後押出圧力及
び押出比を種々変えて静水圧押出試験を行ない、押出材
の表面性状を調べた。
On the other hand, among the above composite materials, the molding temperature was suppressed to 550°C (Z
Conditions under which the reaction between rO2 particles and Al is difficult to proceed) For those subjected to hot isostatic pressing, hydrostatic extrusion tests were conducted with various extrusion pressures and extrusion ratios, and the surface properties of the extruded materials were investigated.

結果は第3表に示す通りであり、同表からも明らかな様
に、ZrO2粒子の体積率が増すにつれて押出圧力は増
大し、押出材の表面性状も悪くなっている。特にZrO
2粒子の体積率が50%程度のところを境界として押出
性能は極変し、50%を超えると表面割れや焼付き等が
目立つ様になり、60%ではほとんど押出不能となる(
木実験では最大圧力1000 kgf/Cm2の静水圧
押出装置を使用しているため)。従って加工性を考慮し
た場合ZrO□粒子の体積率は50%以下、より好まし
くは40%以下に抑える必要がある。
The results are shown in Table 3, and as is clear from the table, as the volume fraction of ZrO2 particles increases, the extrusion pressure increases and the surface quality of the extruded material also deteriorates. Especially ZrO
The extrusion performance changes drastically when the volume ratio of two particles reaches about 50%, and when it exceeds 50%, surface cracks and seizures become noticeable, and when it reaches 60%, it becomes almost impossible to extrude.
In the wood experiment, a hydrostatic extrusion device with a maximum pressure of 1000 kgf/Cm2 was used). Therefore, in consideration of processability, the volume fraction of ZrO□ particles needs to be suppressed to 50% or less, more preferably 40% or less.

尚この実験では成形及び押出工程で処理温度を580℃
以下に抑え、ZrO2粒子とAlか反応するのを抑えて
いる(この反応が進むと複合材は硬質化し成形性が著し
く悪化するため)ので、実用化に当たっては押出し等の
成形加工の後580℃程度以上の熱処理に付し、ZrO
2粒子の10体積%以上をAlと反応させることにより
耐熱性及び耐摩耗性の改善を行なう必要がある。
In this experiment, the processing temperature was 580℃ during the molding and extrusion steps.
In order to prevent the ZrO2 particles from reacting with Al (as this reaction progresses, the composite material becomes hard and the formability deteriorates significantly), for practical use it is necessary to keep the temperature at 580°C after forming processes such as extrusion. ZrO
It is necessary to improve heat resistance and abrasion resistance by reacting 10% by volume or more of the two particles with Al.

町iニド 550℃x I OOOkgf/cLI2x l br
押出温度 ・480℃ ステム速度: 10 mm/sec [発明の効果] 本発明は以上の様に構成されており、Al又はAl合金
をマトリックスとし、これに強化材として加えられる酸
化ジルコニウム粉末とAl又はAl合金との赤面に適量
のZrAl3層を生成させることによって、Al又はA
l合金の軽量であるという特性を保持しつつ、その欠点
とされていた剛性や耐熱性、耐摩耗性等の物性を飛躍的
に改善し、優れた材料特性を有するAl又はAl合金複
合材料を提供し得ることになった。
Town I Nido 550℃x I OOOkgf/cLI2x l br
Extrusion temperature: 480°C Stem speed: 10 mm/sec [Effects of the invention] The present invention is configured as described above, and has Al or an Al alloy as a matrix, zirconium oxide powder added as a reinforcing material, and Al or Al alloy as a matrix. By forming an appropriate amount of ZrAl3 layer in the blush with Al alloy, Al or A
While maintaining the lightweight characteristics of l-alloys, we have dramatically improved physical properties such as rigidity, heat resistance, and abrasion resistance, which were considered to be disadvantageous, and have created Al or Al alloy composite materials with excellent material properties. I was able to provide it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は粉末冶金法を採用した場合における成形温度と
酸化ジルコニウム粉末表面の反応量の関係を示すグラフ
、第2図は粉末冶金法により得た複合材料の断面ミクロ
組織を示す図面代用顕微鏡写真、第3図は、500℃で
熱間静水圧プレスして得た酸化ジルコニウム粉末強化A
l合金複合材料を熱処理したときの熱処理時間と酸化ジ
ルコニウム粉末の反応量の関係を示すグラフ、第4図<
A)、CB)は上記熱処理の前・後における各複合材料
の断面組織を示す図面代用顕微鏡写真、第5図はZ 1
” 02粒子の体積率とビッカース硬さの関係を示すグ
ラフである。
Figure 1 is a graph showing the relationship between the molding temperature and the amount of reaction on the surface of zirconium oxide powder when powder metallurgy is used, and Figure 2 is a photomicrograph substituted for a drawing showing the cross-sectional microstructure of a composite material obtained by powder metallurgy. , Figure 3 shows zirconium oxide powder reinforced A obtained by hot isostatic pressing at 500°C.
Graph showing the relationship between heat treatment time and reaction amount of zirconium oxide powder when heat treating l-alloy composite material, Figure 4.
A) and CB) are micrographs substituted for drawings showing the cross-sectional structure of each composite material before and after the above heat treatment, and Fig. 5 is a Z1
2 is a graph showing the relationship between the volume fraction of 02 particles and Vickers hardness.

Claims (1)

【特許請求の範囲】[Claims] Al又はAl合金よりなるマトリックス中に、微粉末状
酸化ジルコニウムが2〜50体積%の割合で均一に分散
せしめられ、且つ該微粉末の10体積%以上がZrAl
_3よりなる反応層を形成したものであることを特徴と
するAl又はAl合金複合材料。
Finely powdered zirconium oxide is uniformly dispersed in a matrix made of Al or an Al alloy at a ratio of 2 to 50% by volume, and at least 10% by volume of the fine powder is ZrAl.
An Al or Al alloy composite material characterized by forming a reaction layer made of _3.
JP26319386A 1986-11-04 1986-11-04 Al or al alloy composite material Pending JPS63118043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26319386A JPS63118043A (en) 1986-11-04 1986-11-04 Al or al alloy composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26319386A JPS63118043A (en) 1986-11-04 1986-11-04 Al or al alloy composite material

Publications (1)

Publication Number Publication Date
JPS63118043A true JPS63118043A (en) 1988-05-23

Family

ID=17386066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26319386A Pending JPS63118043A (en) 1986-11-04 1986-11-04 Al or al alloy composite material

Country Status (1)

Country Link
JP (1) JPS63118043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776420A (en) * 2012-07-20 2012-11-14 哈尔滨工业大学 Preparation method of mixed reinforced three-dimensional quasi-continuous net-shaped aluminum-based composite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106742A (en) * 1984-08-13 1986-05-24 エ−イ−・ピ−エルシ− Material composition comprising aluminum and aluminum alloy and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106742A (en) * 1984-08-13 1986-05-24 エ−イ−・ピ−エルシ− Material composition comprising aluminum and aluminum alloy and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776420A (en) * 2012-07-20 2012-11-14 哈尔滨工业大学 Preparation method of mixed reinforced three-dimensional quasi-continuous net-shaped aluminum-based composite

Similar Documents

Publication Publication Date Title
Aghajanian et al. The fabrication of metal matrix composites by a pressureless infiltration technique
CN1701052A (en) Method for producing a composite part and metal/ceramic part
EP0651067B1 (en) Metal-ceramic composite material with high toughness and process for its manufacture
GB2179369A (en) Sintered aluminium alloy
EP0382975B1 (en) SiC-reinforced aluminum alloy composite material
US6187260B1 (en) Aluminum metal matrix composite materials reinforced by intermetallic compounds and alumina whiskers
JPH055142A (en) Titanium-based composite material and production thereof
JPS63118043A (en) Al or al alloy composite material
JP3084512B2 (en) Intermetallic compound reinforced magnesium-based composite material and method for producing the same
JP3618106B2 (en) Composite material and method for producing the same
JPH0578762A (en) Tial-based composite material having excellent strength and its production
CN1044803A (en) The preparation method of ceramic composite
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
CN1044802A (en) With bonding ceramic composite body in the method for second object goods produced of method therewith
Tantri et al. Synthesis and properties of MoSi 2 based engineering ceramics
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JP3985036B2 (en) Zirconium aluminide reinforced composite material using reaction synthesis of zirconia and aluminum and method for producing the same
JP2967789B2 (en) High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same
JPH02270931A (en) Ceramic grains reinforced titanium composite material
JPH02258948A (en) Ceramic grain reinforced titanium composite material
JPS61266530A (en) Composite material
US5120684A (en) Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
JPH05194022A (en) Ceramic composite material and its production
Ma et al. Aluminium borate whisker reinforced Al-8.5 Fe-1.3 V-1.7 Si composite
JPH10139548A (en) Molybdenum disilicide-base composite material and its production