JPS63118023A - Melting method for titanium - Google Patents

Melting method for titanium

Info

Publication number
JPS63118023A
JPS63118023A JP26637986A JP26637986A JPS63118023A JP S63118023 A JPS63118023 A JP S63118023A JP 26637986 A JP26637986 A JP 26637986A JP 26637986 A JP26637986 A JP 26637986A JP S63118023 A JPS63118023 A JP S63118023A
Authority
JP
Japan
Prior art keywords
tool
titanium
cutting
remelting
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26637986A
Other languages
Japanese (ja)
Other versions
JPH0442459B2 (en
Inventor
Koichi Terao
公一 寺尾
Ryuka Ikeda
池田 隆果
Takao Suzuki
隆夫 鈴木
Hiroyuki Ichihashi
市橋 弘行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26637986A priority Critical patent/JPS63118023A/en
Publication of JPS63118023A publication Critical patent/JPS63118023A/en
Publication of JPH0442459B2 publication Critical patent/JPH0442459B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To enable efficient remelting by using cutting waste without any foreign material, which causes material defect, by obtaining the cutting wastes of Ti-base metal as the remelting raw material by using ceramic tool having specific material and density. CONSTITUTION:The cutting wastes of pure Ti or Ti alloy are obtd. by using the tool having oxiding, nitriding or oxy-nitriding ceramic as main composition and <=4.5g/cm<2> density and this cutting wastes are used as remelting raw material. Then, as the tool material to be available, the ceramic, such as Al2O3, Si3N4, cubic system BN, SIALON (Si-Al-O-N series), etc., as main composition, is recommended. The cutting wastes obtd. by using the above tool are available for the remelting raw material, since the material of the above tool mixed in the cutting wastes is easily melted in the molten Ti. Further, in case of density of the tool material exceeds 4.5kg/cm<2>, the tool material sometimes is not perfectly melted but settles in the molten Ti and in case of being <=4.5kg/cm<2>, the tool material has enough time to melt and if it remains without melting, it floats up and is separated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チタンを溶解する方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for dissolving titanium.

(従来の技術) 現在工業的にもっとも普及しているチタンの溶解方法は
、消耗電極式真空アーク再溶解法である。
(Prior Art) The method of melting titanium that is currently the most widely used industrially is the consumable electrode vacuum arc remelting method.

そして、この)容解原料には主にスポンジチタンをコン
パクト成形し、それを溶接した電極を用いている。とこ
ろで、このスポンジチタンの製造は、エネルギー消費壇
が多く高価となるため、スクラップを効率よく消化する
ことが必要となってくる。
The material to be dissolved is mainly compact titanium sponge molded and welded electrodes are used. By the way, the production of this titanium sponge consumes a lot of energy and is expensive, so it is necessary to efficiently digest scrap.

しかし、スクラップを利用するには、スクラップ原料に
混入するおそれのある異種金属による材料欠陥の発生防
止対策を溶解システム中で考慮しなければならない。
However, in order to utilize scrap, measures must be taken in the melting system to prevent material defects caused by dissimilar metals that may be mixed into the scrap raw material.

しかして、このスクラップ源のひとつとして、チタンイ
ンゴットやチタン製品の旋削やフライス加工などの切削
加工によって生成する切屑があげられる。ところが、チ
タンは鋼に比べ熱転W度が小さくまた単位体積当たりの
比熱も小さいため、切削時に発生した熱が被削材を通し
て解放されにくい。このため工具先端温度は容易に10
00 ’c近くまで上昇する。
One of the sources of this scrap is chips generated by cutting operations such as turning and milling of titanium ingots and titanium products. However, since titanium has a lower degree of heat transfer and a lower specific heat per unit volume than steel, it is difficult for the heat generated during cutting to be released through the work material. Therefore, the tool tip temperature can easily be reduced to 10
The temperature rises to nearly 00'c.

(発明が解決しようとする問題点) 従って、上記した理由によりチタンの切削工具としては
超硬工具(WC−CO)が通常使用されているが、この
ような材質の切削工具を使用した場合には1000℃付
近でチタンは鉄族元素と共晶を作り、もろい金属間化合
物を生成して欠損を生じる為、切屑中に工具材質が混入
することになる。しかして、この切屑を再溶解原料とし
て利用した場合には、超硬成分が溶解しきらず高密度介
在物として残り、材料に態形習を及ぼすため切削切屑は
再溶解スクラップとしてほとんど利用されていないのが
現状である。
(Problem to be solved by the invention) Therefore, for the reasons mentioned above, carbide tools (WC-CO) are usually used as cutting tools for titanium, but when cutting tools made of such materials are used, At around 1000°C, titanium forms a eutectic with iron group elements, forming brittle intermetallic compounds and causing defects, resulting in tool material being mixed into the chips. However, when these chips are used as raw materials for remelting, the carbide components are not completely dissolved and remain as high-density inclusions, which affect the shape of the material, so the cutting chips are rarely used as remelting scraps. is the current situation.

本発明、は上述した問題点を解決するために成されたも
のであり、材料欠陥となるような異物の偉人のないチタ
ン切屑を効率的に用いて再溶解する方法を提供するもの
である。
The present invention has been made to solve the above-mentioned problems, and provides a method for efficiently using and remelting titanium chips free of foreign substances that would cause material defects.

(問題点を解決するための手段) 本発明者らは、チタン切屑中への超硬成分の混入をさけ
るため種々の工具材質の切削性及びチタン溶湯中への溶
解性を調査したところ、チタンの密度との関係から、密
度が4.5g/cffl以下の酸化物、窒化物あるいは
酸窒化物セラミックスを主成分とする工具にて切削した
純チタンあるいはチタン合金の切屑を再溶解原料として
用いることが、材料欠陥のない溶製材を得るのに有効で
あることを見いだし本発明を成立させたのである。
(Means for solving the problem) The present inventors investigated the machinability of various tool materials and the solubility in molten titanium in order to avoid mixing of cemented carbide components into titanium chips, and found that titanium Due to the relationship with the density of , pure titanium or titanium alloy chips cut with a tool whose main component is oxide, nitride, or oxynitride ceramics with a density of 4.5 g/cffl or less should be used as a remelting raw material. The present invention was established based on the discovery that this method is effective in obtaining melt-molded material free of material defects.

すなわち本発明は、酸化物、窒化物あるいは酸窒化物セ
ラミックスを主成分とし、密度が4.5g/cll!以
下の工具を用いて純チタンあるいはチタン合金の切削屑
を得、この切削屑を再溶解原料とすることを要旨とする
ものである。
That is, the present invention has an oxide, nitride, or oxynitride ceramic as its main component, and has a density of 4.5 g/cll! The gist of this method is to obtain cutting waste of pure titanium or titanium alloy using the following tool, and to use this cutting waste as a raw material for remelting.

ここで、本発明に適用できる工具材質としてはAI!0
.3、Si3N4 、C−BN (立方晶BN)、サイ
アロン(Si−AI−0−N系)などを主成分とするセ
ラミックスをあげることができる。
Here, the tool material applicable to the present invention is AI! 0
.. 3. Ceramics whose main components include Si3N4, C-BN (cubic BN), and Sialon (Si-AI-0-N system) can be mentioned.

ところで本発明において、酸化物、窒化物あるいは酸窒
化物セラミックスを主成分とする工具により切削して得
られた切屑が、再溶解原料として有効であるのは、切屑
中に混入したこれらの工具材質が、チタン溶湯に容易に
溶解するためである。
However, in the present invention, the chips obtained by cutting with a tool mainly composed of oxide, nitride, or oxynitride ceramics are effective as raw materials for remelting because of these tool materials mixed in the chips. This is because it easily dissolves in molten titanium.

これはチタン中への酸素及び窒素の固溶量が大なること
に寄囚すると考えられる。たとえばSiJ。
This is thought to be due to the large amount of oxygen and nitrogen solidly dissolved in titanium. For example, SiJ.

は5iJ4−3 Si + 4 Nなる分解反応により
Ti1容湯中に溶解する。
is dissolved in the Ti1 hot water by the decomposition reaction 5iJ4-3Si + 4N.

一方WCのような炭化物やTiB2のような硼化物から
なる工具材質はTi中への炭素や硼素の固溶量が小さい
ため溶解しに<<、高密度介在物とじて残存する。
On the other hand, tool materials made of carbides such as WC and borides such as TiB2 have a small amount of solid solution of carbon and boron in Ti, so they are not dissolved and remain as high-density inclusions.

また、本発明において工具材質の密度を4.5g / 
cnt以下と限定したのは、4.5g/c+Jを超える
と工具材質はチタン溶湯中を沈降してゆくため、溶解時
間を十分にかせぐことができずに溶は残ることがあるか
らである。しかし4.5g/cJ以下であると溶湯中に
浮くため、溶解に十分な時間をとることができるととも
に、万一、溶は残りがあっても浮上分離することができ
る。
In addition, in the present invention, the density of the tool material is set to 4.5 g/
The reason why it is limited to less than cnt is that if it exceeds 4.5 g/c+J, the tool material will settle in the molten titanium, making it impossible to obtain sufficient dissolution time and the melt may remain. However, if it is 4.5 g/cJ or less, it will float in the molten metal, allowing sufficient time for dissolution, and even if there is any remaining molten metal, it can be floated and separated.

(作   用) 本発明は、酸化物、窒化物あるいは酸窒化物セラミック
スを主成分とし、密度が4.5g/cI11以下の工具
を用いて純チタンあるいはチタン合金の切削屑を得、こ
の切削屑を再溶解原料とするものである為、チタン切屑
中に材料欠陥となるような異物の混入がない。
(Function) The present invention obtains cutting waste of pure titanium or titanium alloy using a tool containing oxide, nitride, or oxynitride ceramics as a main component and having a density of 4.5 g/cI11 or less. Since titanium is used as a re-melted raw material, there is no foreign matter that could cause material defects in the titanium chips.

(実 施 例) 次に本発明方法の高価を確認するために行った実験の結
果について述べる。
(Example) Next, the results of an experiment conducted to confirm the high cost of the method of the present invention will be described.

Si□N4基工具及び超硬工具にて純チタンを切削して
得られた切屑を各々粉砕、酸洗した。そして、このうち
の超硬工具による切削で得られたチタン切屑については
さらに磁選により超硬成分をとりのぞいた。しかして、
それぞれの切屑をコンパクト成形し、溶接して電極とし
て真空アーク溶解し、約1トンのインゴットを得た。ま
た、比較材としてスポンジチタンを原料としたインゴッ
トも溶製した。
Chips obtained by cutting pure titanium using a Si□N4-based tool and a carbide tool were respectively crushed and pickled. Of these, the titanium chips obtained by cutting with the carbide tool were further subjected to magnetic separation to remove the carbide component. However,
Each chip was compacted, welded and used as an electrode for vacuum arc melting to obtain an ingot weighing approximately 1 ton. In addition, an ingot made from titanium sponge was also produced as a comparison material.

その結果、超硬工具による切削切屑を溶解したインゴッ
トには磁選工程を経たにもかかわらず顕微鏡下で異物が
認められた。
As a result, foreign matter was observed under a microscope in the ingot in which the cutting chips from the carbide tool had been dissolved, even though it had gone through the magnetic separation process.

この異物をX線マイクロアナライザー(EPMA)で調
査したところWCと判明した。
When this foreign substance was investigated using an X-ray microanalyzer (EPMA), it was found to be WC.

一方、5ilN4基工具による切削で得た切屑を溶解し
たインゴット及びスポンジチタンを溶解したインゴット
には高密度介在物が全く認められなかった。
On the other hand, no high-density inclusions were observed in the ingot in which chips obtained by cutting with a 5ilN four-base tool were dissolved and in the ingot in which sponge titanium was dissolved.

これらの溶製材を圧延処理したTiの薄板(L3mm)
を超音波探傷した結果、超硬工具による切削で得た切屑
を溶解し、圧延処理した薄板には10mにつき3ケ所の
不良部が検出され、この不良部には約70μm程度のW
 Cが存在した。
Ti thin plate (L3mm) made by rolling these melted materials
As a result of ultrasonic flaw detection, three defective areas were detected per 10m in the thin plate that was rolled by melting chips obtained by cutting with a carbide tool, and these defective areas contained W of about 70 μm.
C existed.

これに対して、5iJ4基工具による切削で得た切屑お
よびスポンジチタンを溶解し圧延処理した71板には不
良部が検出されなかった。
On the other hand, no defective parts were detected in plate 71, which was rolled by melting chips and titanium sponge obtained by cutting with a 5iJ4-based tool.

なお、本実施例では消耗式真空アーク再溶解法を用いた
ものを示したが、これに限らず非消耗式真空アーク再)
容解決、プラズマビーム溶解法、エレクトロンビーム溶
解法等を用いてもよいことは勿論である。
Note that although this example uses a consumable vacuum arc remelting method, it is not limited to this;
Of course, it is also possible to use a plasma beam melting method, a plasma beam melting method, an electron beam melting method, or the like.

(発明の効果) 以上説明したように本発明は、酸化物、窒化物あるいは
酸窒化物セラミックスを主成分とし、密度が4.5g/
cn!以下の工具を用いて純チタンあるいはチタン合金
の切削屑を得、この切削屑を再溶解原料とするものであ
る為、チタン切屑中に材料欠陥となるような異物の混入
がない。すなわら、本発明方法に使用する切屑は高品位
なチタンスクラップである為、磁選等の不純物除去工程
を径ずに効率的に再溶解することができる。
(Effects of the Invention) As explained above, the present invention has an oxide, a nitride, or an oxynitride ceramic as a main component, and has a density of 4.5 g/
cn! The following tool is used to obtain pure titanium or titanium alloy cutting waste, and this cutting waste is used as a raw material for remelting, so there is no foreign matter that could cause material defects in the titanium chips. In other words, since the chips used in the method of the present invention are high-grade titanium scraps, they can be efficiently remelted without going through an impurity removal process such as magnetic separation.

Claims (1)

【特許請求の範囲】[Claims] (1)酸化物、窒化物あるいは酸窒化物セラミックスを
主成分とし、密度が4.5g/cm^3以下の工具を用
いて純チタンあるいはチタン合金の切削屑を得、この切
削屑を再溶解原料とすることを特徴とするチタンの溶解
方法。
(1) Cuttings of pure titanium or titanium alloy are obtained using a tool mainly composed of oxide, nitride, or oxynitride ceramics and having a density of 4.5 g/cm^3 or less, and the cuttings are remelted. A method for dissolving titanium as a raw material.
JP26637986A 1986-11-07 1986-11-07 Melting method for titanium Granted JPS63118023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26637986A JPS63118023A (en) 1986-11-07 1986-11-07 Melting method for titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26637986A JPS63118023A (en) 1986-11-07 1986-11-07 Melting method for titanium

Publications (2)

Publication Number Publication Date
JPS63118023A true JPS63118023A (en) 1988-05-23
JPH0442459B2 JPH0442459B2 (en) 1992-07-13

Family

ID=17430117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26637986A Granted JPS63118023A (en) 1986-11-07 1986-11-07 Melting method for titanium

Country Status (1)

Country Link
JP (1) JPS63118023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837100B2 (en) * 2006-09-11 2011-12-14 アルファマイクロン インコーポレイテッド Electrical wiring tab for use with optical devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837100B2 (en) * 2006-09-11 2011-12-14 アルファマイクロン インコーポレイテッド Electrical wiring tab for use with optical devices

Also Published As

Publication number Publication date
JPH0442459B2 (en) 1992-07-13

Similar Documents

Publication Publication Date Title
RU1776197C (en) Method for production of aluminium oxide
US4388286A (en) Silicon purification
AU2002349139B2 (en) Electrochemical processing of solid materials in fused salt
KR100935959B1 (en) Method for Producing High Purity Silicon
US4108644A (en) Manufacture of reactive metals and alloys
US5135565A (en) Recovery of aluminum from dross using the plasma torch
CA2148923A1 (en) The method of manufacturing alloy by using aluminum residuum
US8002872B2 (en) Methods of recovering and purifying secondary aluminum
Baligidad et al. Processing of high carbon Fe3Al based intermetallic alloy
JPS63118023A (en) Melting method for titanium
JPH10182134A (en) Refining of silicon
WO1993002219A1 (en) Process for purifying raw material of copper or its alloy
JPS63242489A (en) Beta-type titanium alloy welding rod
US3054166A (en) Electrodes for melting refractory metals
RU2349658C1 (en) Method of manufacturing tungsten of high purity
JPH10147821A (en) Method for refining copper
JP4652537B2 (en) Method for melting titanium or titanium alloy scrap
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
RU2349657C1 (en) Method of molybdenum of high purity manufacturing
JP2002332528A (en) Method for recycling high purity ruthenium, and method for producing target from recycled high purity ruthenium
JP2985009B2 (en) A method of recovering cemented carbide scrap as a raw material for scouring
JPH1161392A (en) Production of sputtering target for forming ru thin film
JP3006799B2 (en) Dissolution method of copper or copper alloy scrap
Prasad et al. Hot ductility of an electroslag crucible melted age hardenable Cu-Cr alloy
RU2465095C2 (en) Thermal mix for production of silicon iron