JPS63242489A - Beta-type titanium alloy welding rod - Google Patents

Beta-type titanium alloy welding rod

Info

Publication number
JPS63242489A
JPS63242489A JP7399987A JP7399987A JPS63242489A JP S63242489 A JPS63242489 A JP S63242489A JP 7399987 A JP7399987 A JP 7399987A JP 7399987 A JP7399987 A JP 7399987A JP S63242489 A JPS63242489 A JP S63242489A
Authority
JP
Japan
Prior art keywords
beta
alloy
type
welding
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7399987A
Other languages
Japanese (ja)
Inventor
Hideo Sakuyama
秀夫 作山
Hideo Takatori
英男 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP7399987A priority Critical patent/JPS63242489A/en
Publication of JPS63242489A publication Critical patent/JPS63242489A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/325Ti as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To provide the beta-type Ti alloy electrode capable of preventing the reduction in ductility of weld zone at the time when using for welding beta-type Ti alloy especially, made by the Ti alloy contg. Y and/or B in specific amt. in the beta-type Ti alloy. CONSTITUTION:The beta-type Ti alloy electrode of this invention is composed of the Ti alloy contg. 0.02-0.10 wt.% Y and/or 0.002-0.10 wt.% B in the beta-type Ti alloy. As said beta-type Ti alloy Ti-15V-3Cr-3-Sn-3Al is given, for instance. In this invention, the Y and B impede the movement of grain boundary by being entering into solid solution as an intermetal compound and simple substance, working to refine crystal grains. Consequently, the ductility reduction of a weld zone can be prevented by using the welding rod of this invention.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、チタン基材合金溶接棒に関し、とくにβ型
チタン合金の溶接に用いた場合に溶接部に生じる延性低
下を防ぐチタン基材合金溶接棒に関するものでおる。
Detailed Description of the Invention [Field of Industrial Application] This invention relates to a titanium-based alloy welding rod, and in particular to a titanium-based alloy welding rod that prevents a decrease in ductility that occurs in a welded part when used for welding β-type titanium alloy. This is related to welding rods.

[従来技術] β型チタン合金は、T i −15V −3C−r −
3Sn −3A I 、T i −13V−11Cr 
−3A I、T i −11,5MO−62r −4,
53n、 T i −3A I −8V −6Cr −
4Mo −4Z r等が知られているが、これは成形性
にすぐれ、かつ高強度のチタン合金として注目されてお
り、各方面での利用が期待されている。そうした重要な
分野として溝造物としての利用がおるが、この場合には
溶接に対する適応性が不可欠の要素である。
[Prior art] β-type titanium alloy is T i −15V −3Cr −
3Sn-3A I, Ti-13V-11Cr
-3A I, T i -11,5MO-62r -4,
53n, T i -3A I -8V -6Cr -
4Mo-4Zr and the like are known, and this is attracting attention as a titanium alloy with excellent formability and high strength, and is expected to be used in various fields. One such important field is the use as groove structures, and in this case, adaptability to welding is an essential element.

β型チタン合金の溶接には、EB溶接、レーザービーム
溶接、TIG溶接必るいはMIG:8接が採用されてい
る。
For welding β-type titanium alloys, EB welding, laser beam welding, TIG welding, or MIG:8 welding is used.

[発明が解決しようとする問題点] 上記の溶接法のうち、EB溶接、レーザービーム溶接は
入熱量が少なく、問題はないが、TIG溶接やMIG溶
接による場合は溶接部に大幅な延性低下を引起すという
問題が生じる。
[Problems to be solved by the invention] Among the above welding methods, EB welding and laser beam welding have a small amount of heat input and there is no problem, but TIG welding and MIG welding cause a significant decrease in ductility of the welded part. The problem arises that it causes

このため、このような溶接法による場合には材料を強制
冷却する等の方策を講じる必要があった。
Therefore, when such a welding method is used, it is necessary to take measures such as forced cooling of the material.

[問題点を解決するための手段] この発明者は、このような溶接部における延性の低下を
解決するため鋭意検討してきた。そして、この延性低下
の原因は、β型チタン合金の溶着部が溶融してから同化
、冷却するまでの時間が長く、またその間α相が表われ
ず、β相単独から構成されているために結晶粒径の粗大
化が顕著となる結果、結晶粒界に応力集中を生じ易く、
粒界われを生じ易くなるためであろうと推定した。
[Means for Solving the Problems] The inventor has made extensive studies to solve this problem of reduced ductility in welded parts. The reason for this decrease in ductility is that it takes a long time for the welded part of the β-type titanium alloy to melt, assimilate, and cool, and during that time, the α phase does not appear, and it is composed only of the β phase. As a result of the coarsening of the crystal grain size, stress concentration tends to occur at the grain boundaries,
It is assumed that this is because grain boundary cracking is more likely to occur.

そして、イツトリウムやほう素がチタンまたはチタン合
金中で金属間化合物や単体として固溶されて粒界の移動
を妨げ、結晶粒を微細化する作用をもつことに着目し、
このイツトリウムやほう素の作用を利用することによっ
て、前記の延性の低下を改善できるのではないかと考え
、研究を重ねた結果、ついに下記に示す特定の組成をも
つチタン基材合金溶接棒を提供することにより、上記の
問題点を解決するに至った。
Then, we focused on the fact that yttrium and boron are dissolved as intermetallic compounds or simple substances in titanium or titanium alloys, and have the effect of hindering the movement of grain boundaries and refining crystal grains.
We thought that the above-mentioned decrease in ductility could be improved by utilizing the effects of yttrium and boron, and as a result of repeated research, we finally developed a titanium-based alloy welding rod with the specific composition shown below. By doing so, we were able to solve the above problems.

すなわち、この発明はβ型チタン合金にイツトリウム0
.002〜0.10重量%および/またはほう素0.0
02〜0.10重量%を含有させたチタン合金よりなる
溶接棒である。
In other words, this invention has a β-type titanium alloy containing 0 yttrium.
.. 002-0.10% by weight and/or boron 0.0
This is a welding rod made of a titanium alloy containing 0.02 to 0.10% by weight.

イツトリウム、はう素を0.002〜0.10重量%と
しだのは、0.0021ffi%未満では結晶粒が十分
に微細化しないため、延性低下の防止効果が不十分であ
り、また0、10fflffi%を越えると介在物が多
すぎるため結晶粒径にかかわりなく、材料が脆化するた
め好ましくないからである。
The reason for using 0.002 to 0.10% by weight of yttrium and boron is that if it is less than 0.0021ffi%, the crystal grains will not become fine enough, so the effect of preventing ductility reduction will be insufficient; This is because if it exceeds 10fffffi%, there will be too many inclusions and the material will become brittle regardless of the crystal grain size, which is undesirable.

[実施例コ 次に実施例によりこの発明をざらに詳細に説明する。[Example code] Next, the present invention will be explained in more detail with reference to examples.

供試材には代表的なβ型チタン合金であるT i −1
5V −3Cr −3Sn −3A Iを基材として用
いた。
The sample material was Ti-1, a typical β-type titanium alloy.
5V-3Cr-3Sn-3A I was used as the base material.

供試材A−Lの化学成分組成を表1に示す。Table 1 shows the chemical composition of sample materials A-L.

供試材Aからは1mmtの冷間圧延板を製造した。供試
材B−Iは、この発明の範囲内の組成のもので、これら
からは2.0mmφ×文の棒材を製造した。棒材はダイ
スびきの後、センタレス加工、酸洗、真空焼鈍を施した
From sample material A, a cold rolled plate of 1 mmt was manufactured. The sample material B-I had a composition within the scope of the present invention, and bars of 2.0 mmφ×mm were manufactured from these. After the bar material was diced, it was subjected to centerless processing, pickling, and vacuum annealing.

供試材J−Lは、この発明の範囲外の組成のもので、比
較例としてA−Iと同様にして棒材を製造した。
Sample material J-L had a composition outside the scope of the present invention, and a bar material was produced in the same manner as A-I as a comparative example.

すなわち、Jはほう素およびイツトリウムの含有量が共
にo、ooi重量%以下と、この発明の下限値に満たな
いものであり、Kはほう素の含有量が0.20重量%と
、またLはイツトリウムの含有量が0.22重量%とそ
れぞれこの発明の上限値を越えてるものである。
That is, J has a boron and yttrium content of 0,00% by weight or less, which is less than the lower limit of this invention, and K has a boron content of 0.20% by weight, and L has a boron content of 0.20% by weight. The content of yttrium is 0.22% by weight, which exceeds the upper limit of this invention.

次に供試材AをB−1の溶接棒を用いてTIG溶接した
。この場合、電極はトリウム入りタングステンの3.2
mmφx 150mm1を用い、溶接電流は、ioo〜
110A、溶接電圧は11.0〜13、OVとした。ア
ルゴンガスをシールドとしてトーチガスに1OL’mi
n、アフターガスに251/min流した。
Next, sample material A was TIG-welded using a welding rod B-1. In this case, the electrode is a thoriated tungsten 3.2
Using mmφx 150mm1, the welding current is ioo ~
The welding voltage was 110 A and 11.0 to 13 OV. 1OL'mi to torch gas using argon gas as shield
n, the aftergas was flowed at 251/min.

材料Aは突きあわせ状態で溶接し、溶接後、上下両面を
0.2mmずつ面削し、標点間距離50mmのJIS1
3号B試験片を第1図のように切り出し、510’CX
8時間の時効処理を施した後、引張試験に供した。この
引張試験結果を表2に示す。これはN=3の平均値でお
る。
Material A was welded in a butt-to-butt state, and after welding, the top and bottom surfaces were milled by 0.2 mm each, and the gauge distance was JIS 1 of 50 mm.
A No. 3 B test piece was cut out as shown in Figure 1, and 510'CX
After aging for 8 hours, it was subjected to a tensile test. The results of this tensile test are shown in Table 2. This is the average value of N=3.

表2から明らかなように、この発明の範囲内の組成を有
するB〜■では、粒径の微細化効果が表われ破断のびが
3%以上と著しく改善されている。一方、比較例である
Jは結晶粒径が粗大化し、脆化を生じ、またに、Lでは
ほう素あるいはイツトリウムの添加量が過大で、これら
による介在物から割れを生じるため、破断のびは劣って
いる。
As is clear from Table 2, in B to ■, which have compositions within the range of the present invention, the effect of making the grain size finer appears and the elongation at break is significantly improved to 3% or more. On the other hand, in J, which is a comparative example, the grain size becomes coarse, causing embrittlement, and in L, the addition amount of boron or yttrium is too large, and cracks occur from inclusions caused by these, resulting in poor fracture propagation. ing.

表1 fi  55部は実質的に7iである。Table 1 55 parts of fi is substantially 7i.

表2 [発明の効果] この発明の溶接棒は、β型チタン合金の溶接に用いたと
き、溶接部の延性低下を防止することができるという顕
著な効果を奏するものである。
Table 2 [Effects of the Invention] When the welding rod of the present invention is used for welding β-type titanium alloy, it exhibits the remarkable effect of being able to prevent a decrease in the ductility of the welded part.

【図面の簡単な説明】 第1図は溶接部の引張試験片の採取方法を示す図でおる
。 1・・・溶接部、2・・・引張試験片。 オ1図 手続補正書 (師) 昭和62年7月1 特許庁長官  小 川 邦 夫  殿 1、事件の表示     特願昭62−73999号2
、発明の名称     β型チタン合金溶接棒3、補正
をする者 事件との関係   特許出願人 名称  日本鉱業株式会社 4、代理人 S、補正命令の日付    (自発) 6、補正の対象 (1)明細書中、第3頁1行の「同化」を「凝固」日 
  と補正する。 (2)同頁2行の「表われず、」を「現われず、」と補
正する。 (3)同頁4〜5行の「生じ易く、」を「生じ、」と補
正する。 【
[Brief Description of the Drawings] Figure 1 is a diagram showing a method for collecting tensile test pieces of welded parts. 1... Welded part, 2... Tensile test piece. Figure O1 Procedural Amendment (Master) July 1, 1988 Director General of the Patent Office Kunio Ogawa 1, Indication of Case Patent Application No. 1988-73999 2
, Title of invention β-type titanium alloy welding rod 3, Relationship with the case of the person making the amendment Name of patent applicant Nippon Mining Co., Ltd. 4, Agent S, Date of amendment order (voluntary) 6. Subject of amendment (1) Details In the book, page 3, line 1, “assimilation” is replaced by “coagulation” day.
and correct it. (2) In the second line of the same page, amend "not appearing" to "not appearing." (3) In lines 4 and 5 of the same page, "probably occurs," is corrected to "produce,". [

Claims (1)

【特許請求の範囲】[Claims] (1)β型チタン合金にイットリウム0.002〜0.
10重量%および/またはほう素0.002〜0.10
重量%を含有させたチタン合金よりなる溶接棒。
(1) β-type titanium alloy with 0.002 to 0.00 yttrium.
10% by weight and/or boron 0.002-0.10
Welding rod made of titanium alloy containing % by weight.
JP7399987A 1987-03-30 1987-03-30 Beta-type titanium alloy welding rod Pending JPS63242489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7399987A JPS63242489A (en) 1987-03-30 1987-03-30 Beta-type titanium alloy welding rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7399987A JPS63242489A (en) 1987-03-30 1987-03-30 Beta-type titanium alloy welding rod

Publications (1)

Publication Number Publication Date
JPS63242489A true JPS63242489A (en) 1988-10-07

Family

ID=13534339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7399987A Pending JPS63242489A (en) 1987-03-30 1987-03-30 Beta-type titanium alloy welding rod

Country Status (1)

Country Link
JP (1) JPS63242489A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271841A (en) * 1988-04-25 1990-03-12 Henkel Kgaa Ethoxidizing or propoxidizing catalyst
JPH02243790A (en) * 1989-03-15 1990-09-27 Nippon Steel Corp Titanium electrocoated face plate drum and its production
JPH0615452A (en) * 1992-04-01 1994-01-25 Gould Inc Drum cathode and its preparation
JP2008063598A (en) * 2006-09-05 2008-03-21 Sumitomo Metal Ind Ltd Titanium weld part
JP2009097064A (en) * 2007-10-19 2009-05-07 Piolax Medical Device:Kk Ti-BASE ALLOY
JP2018504282A (en) * 2014-11-05 2018-02-15 アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド Ti welding wire, ultrasonically inspectable weld and article obtained from the welding wire, and related methods
CN111761258A (en) * 2020-06-24 2020-10-13 中国船舶重工集团公司第七二五研究所 Welding wire of Ti62A alloy suitable for manned submersible and preparation method thereof
CN112872654A (en) * 2021-02-23 2021-06-01 哈尔滨焊接研究院有限公司 TC4 titanium alloy solid welding wire for large-thickness ultra-narrow gap laser filler wire welding and preparation method thereof
CN113245749A (en) * 2021-07-09 2021-08-13 四川西冶新材料股份有限公司 Titanium alloy welding wire for arc fuse additive manufacturing and high-performance welding
CN114211117A (en) * 2021-12-29 2022-03-22 西南交通大学 Titanium alloy plate welding method for improving welding performance

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271841A (en) * 1988-04-25 1990-03-12 Henkel Kgaa Ethoxidizing or propoxidizing catalyst
JPH02243790A (en) * 1989-03-15 1990-09-27 Nippon Steel Corp Titanium electrocoated face plate drum and its production
JPH0615452A (en) * 1992-04-01 1994-01-25 Gould Inc Drum cathode and its preparation
JP2008063598A (en) * 2006-09-05 2008-03-21 Sumitomo Metal Ind Ltd Titanium weld part
JP2009097064A (en) * 2007-10-19 2009-05-07 Piolax Medical Device:Kk Ti-BASE ALLOY
JP2019193947A (en) * 2014-11-05 2019-11-07 アーコニック インコーポレイテッドArconic Inc. METHOD OF ULTRASONICALLY INSPECTING WELDS OBTAINED FROM Ti WELDING WIRE
JP2018504282A (en) * 2014-11-05 2018-02-15 アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド Ti welding wire, ultrasonically inspectable weld and article obtained from the welding wire, and related methods
CN111761258A (en) * 2020-06-24 2020-10-13 中国船舶重工集团公司第七二五研究所 Welding wire of Ti62A alloy suitable for manned submersible and preparation method thereof
CN111761258B (en) * 2020-06-24 2022-01-28 中国船舶重工集团公司第七二五研究所 Welding wire of Ti62A alloy suitable for manned submersible and preparation method thereof
CN112872654A (en) * 2021-02-23 2021-06-01 哈尔滨焊接研究院有限公司 TC4 titanium alloy solid welding wire for large-thickness ultra-narrow gap laser filler wire welding and preparation method thereof
CN112872654B (en) * 2021-02-23 2022-01-28 哈尔滨焊接研究院有限公司 TC4 titanium alloy solid welding wire for large-thickness ultra-narrow gap laser filler wire welding and preparation method thereof
CN113245749A (en) * 2021-07-09 2021-08-13 四川西冶新材料股份有限公司 Titanium alloy welding wire for arc fuse additive manufacturing and high-performance welding
CN113245749B (en) * 2021-07-09 2021-10-08 四川西冶新材料股份有限公司 Titanium alloy welding wire for arc fuse additive manufacturing and high-performance welding
CN114211117A (en) * 2021-12-29 2022-03-22 西南交通大学 Titanium alloy plate welding method for improving welding performance
CN114211117B (en) * 2021-12-29 2023-03-07 西南交通大学 Titanium alloy plate welding method for improving welding performance

Similar Documents

Publication Publication Date Title
TWI598451B (en) Austenitic stainless steel and method for producing austenitic stainless steel
US3162751A (en) Welding electrode
EP1395387B1 (en) High temperature melting braze materials for bonding niobium based alloys
JPS63242489A (en) Beta-type titanium alloy welding rod
CA1219152A (en) Weldable oxide dispersion strengthened alloys
Scott et al. The welding and brazing of the refractory metals niobium, tantalum, molybdenum and tungsten—a review
EP0260600B1 (en) High temperature nickel base alloy with improved stability
US5296676A (en) Welding of aluminum powder alloy products
Liu et al. Dissimilar alloy laser beam welding of titanium: Ti-6AI-4V to Beta-C™
JPH08252689A (en) Aluminum-lithium alloy filler metal
US3970447A (en) Ferritic steel welding material
US3293031A (en) Ductile iridium alloy
US3895939A (en) Weldable, age hardenable, austenitic stainless steel
JP3365190B2 (en) Post heat treatment method for α + β type titanium alloy welded members
JPH02127981A (en) Method for welding titanium alloy
RU2824504C1 (en) Granulated weldable heat-resistant nickel alloy and article made from it
KR970001326B1 (en) High functional duplex stainless steel having a minimized content of molybdenum and a high content of tungsten
Liu et al. Weld metal grain structure and mechanical properties of a Th-Doped Ir-0.3 Pct W alloy (DOP-26)
JPS6213110B2 (en)
JPH0796391A (en) Wire for gas shielded arc welding
JP2003231950A (en) Welded structure of ferritic stainless steel
US20210129272A1 (en) Solder for Soldering Nickel Based Superalloys
De Mastry et al. Development of High-strength Niobium Alloys for Elevated-temperature Applications
JPS60159151A (en) Fe-ni alloy having superior weldability
JPS6213111B2 (en)