JPH08252689A - Aluminum-lithium alloy filler metal - Google Patents

Aluminum-lithium alloy filler metal

Info

Publication number
JPH08252689A
JPH08252689A JP8196195A JP8196195A JPH08252689A JP H08252689 A JPH08252689 A JP H08252689A JP 8196195 A JP8196195 A JP 8196195A JP 8196195 A JP8196195 A JP 8196195A JP H08252689 A JPH08252689 A JP H08252689A
Authority
JP
Japan
Prior art keywords
aluminum
lithium alloy
welding
filler metal
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8196195A
Other languages
Japanese (ja)
Inventor
Toshimasa Sakamoto
敏正 坂本
Takuzo Hagiwara
卓三 萩原
Kazunori Kobayashi
一徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALITHIUM KK
Original Assignee
ALITHIUM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALITHIUM KK filed Critical ALITHIUM KK
Priority to JP8196195A priority Critical patent/JPH08252689A/en
Publication of JPH08252689A publication Critical patent/JPH08252689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE: To provide a aluminum-lithium alloy filler metal which does not cause pin holes, cracks or other defects in the welding of the aluminum-lithium alloy, is excellent in the mechanical properties, and capable of forming a welded part having the tensile strength of >=300MPa and >=2% elongation at extremely low temperature. CONSTITUTION: This aluminum-lithium alloy filler metal has the composition consisting of 4-6.5% Cu, 0.1-0.9% Mg, 0.05-0.15% Ti, 0.4-1.0% Ag, 0.05-1.5% one kind of Mn, Cr and Zr if one kind is contained, or 0.05-l.5% in total thereof if two kinds are contained, <=0.09% Si, <=0.09% Fe, <=0.8cc/100gAl H2, and the balance Al with inevitable impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム−リチウ
ム合金溶加材、詳しくは、数%のリチウムを含有するア
ルミニウム−リチウム合金を溶接するために使用される
アルミニウム−リチウム合金溶加材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum-lithium alloy filler metal, and more particularly to an aluminum-lithium alloy filler metal used for welding an aluminum-lithium alloy containing several% of lithium.

【0002】[0002]

【従来の技術】アルミニウム−リチウム合金は、他のア
ルミニウム合金に比べて比強度、比剛性が優れているこ
とから、航空・宇宙用の構造材料として期待され、また
液体窒素、液体水素、液体ヘリウム温度などの極低温で
優れた強度、伸び、破壊靭性をそなえ、且つ高い電気抵
抗をそなえていることから、超伝導マグネット用タンク
や支持具、および強磁場の作用する場所に設けられる構
造材、例えば核融合炉材などとしても期待されている。
2. Description of the Related Art Aluminum-lithium alloys are expected to be structural materials for aviation and space because they have excellent specific strength and specific rigidity as compared with other aluminum alloys, and also liquid nitrogen, liquid hydrogen and liquid helium. Since it has excellent strength, elongation, fracture toughness at extremely low temperatures such as temperature, and high electrical resistance, it is a tank for superconducting magnets, a supporting tool, and a structural material provided in a place where a strong magnetic field acts, For example, it is expected as a fusion reactor material.

【0003】アルミニウム−リチウム合金を上記の構造
材として使用するためには、他のアルミニウム合金材料
と同様、溶接による接合が不可欠であるが、アルミニウ
ム−リチウム合金を一般のアルミニウム合金の溶接用と
して従来から使用されている溶接線、共金材などの溶加
材を適用して溶接すると、溶接部の伸びが低くなるとと
もに、溶接部にブローホールが発生し易いという問題点
があり、その解決手段が要望されている。
In order to use an aluminum-lithium alloy as the above-mentioned structural material, joining by welding is indispensable like other aluminum alloy materials, but the aluminum-lithium alloy has been conventionally used for welding general aluminum alloys. When welding is applied by using a welding wire, a common metal material, etc., used in the above, there is a problem that the elongation of the weld becomes low and blowholes are easily generated in the weld. Is required.

【0004】[0004]

【発明が解決しようとする課題】本発明は、アルミニウ
ム−リチウム合金溶加材における上記従来の問題点を解
消するためになされたものであり、その目的は、溶接部
に割れ、ピンホール、ブローホールなどの欠陥が生じる
ことなく、強度特性に優れた溶接部が形成でき、とくに
液体窒素、液体水素、液体ヘリウム温度のような極低温
での強度、延性に優れた溶接部を形成することができる
アルミニウム−リチウム合金溶加材を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems in aluminum-lithium alloy filler metal, and its object is to crack, pinhole, blow in the welded portion. It is possible to form welds with excellent strength characteristics without causing defects such as holes, and especially to form welds with excellent strength and ductility at extremely low temperatures such as liquid nitrogen, liquid hydrogen and liquid helium temperatures. It is to provide an aluminum-lithium alloy filler that can be used.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるアルミニウム−リチウム合金溶加材
は、Cu:4〜6.5 %、Mg:0.1 〜0.9 %、Ti:0.05
〜0.15%、Ag:0.3〜1.0 %を含有し、さらにMn、C
rおよびZrのうちの1種を含む場合はそれぞれ0.05〜
1.5 %、2種以上を含む場合は合計量で0.05〜1.5 %含
有し、Si:0.09%以下、Fe:0.09 %以下、H2(水素
ガス):0.8 cc/100 gAl以下に限定し、残部Alお
よび不可避的不純物からなることを構成上の特徴とす
る。
The aluminum-lithium alloy filler material according to the present invention for achieving the above object comprises Cu: 4 to 6.5%, Mg: 0.1 to 0.9%, Ti: 0.05%.
.About.0.15%, Ag: 0.3 to 1.0%, Mn, C
When one of r and Zr is included, each is 0.05 to
When it contains 1.5% or 2 or more kinds, it is contained in a total amount of 0.05 to 1.5%, Si: 0.09% or less, Fe: 0.09% or less, H 2 (hydrogen gas): 0.8 cc / 100 gAl or less, and the rest. The structural feature is that it is composed of Al and inevitable impurities.

【0006】本発明のアルミニウム−リチウム合金溶加
材組成の含有成分の意義および限定理由について説明す
ると、Cuは溶接部のマトリックス中に固溶し、さらに
CuAl2 相を形成して、溶接部の機械的特性を向上さ
せる主要な合金元素である。好ましい含有量は4 〜6.5
%の範囲であり、4 %未満では溶接割れが生じ易くな
り、6.5 %を越えて含有すると強度は高くなるが伸びが
低下し、溶接割れも発生し易くなる。
[0006] Explaining the significance of the components contained in the aluminum-lithium alloy filler material composition of the present invention and the reason for limitation, Cu dissolves in the matrix of the weld zone and further forms a CuAl 2 phase to form the weld zone. It is a main alloying element that improves mechanical properties. Preferred content is 4-6.5
%, And if it is less than 4%, weld cracking tends to occur, and if it exceeds 6.5%, the strength increases but the elongation decreases, and weld cracking easily occurs.

【0007】Mgはマトリックスに固溶して強度向上に
寄与する。好ましい含有範囲は0.1〜0.9 %であり、0.1
%未満ではその効果が十分でなく、0.9 %を越えて含
有されると、Mgが溶接される材料に付着した水分や溶
接雰囲気中の水分と反応して水素ガスを発生し、溶接部
にピンホールが生じ易くなる。
Mg forms a solid solution in the matrix and contributes to the strength improvement. The preferred content range is 0.1 to 0.9%,
If it is less than 0.9%, its effect is not sufficient, and if it exceeds 0.9%, Mg reacts with the moisture adhering to the material to be welded and the moisture in the welding atmosphere to generate hydrogen gas, which causes pinning in the weld zone. Holes are easily generated.

【0008】Tiは溶接部の組織を微細化して伸びを改
善する効果がある。好ましい含有範囲は0.05〜0.15%
で、0.05%未満ではその効果が小さく、0.15%を越えて
添加されると粗大なTiAl3 化合物が生じ、伸びを劣
化させる。なお、一般のアルミニウム合金と同様、Ti
濃度の1/10〜1/1 のBを共存させると、組織微細化効果
をより安定して得ることができる。
Ti has the effect of refining the structure of the weld and improving elongation. The preferred content range is 0.05 to 0.15%
If it is less than 0.05%, its effect is small, and if it exceeds 0.15%, a coarse TiAl 3 compound is produced, and elongation is deteriorated. It should be noted that, similar to general aluminum alloys, Ti
The coexistence of 1/10 to 1/1 of the concentration of B makes it possible to more stably obtain the effect of refining the structure.

【0009】Agは、Cuと共存し、固溶、CuAl2
相への吸着、Ω相の生成などに基づいて機械的特性を顕
著に改善する。好ましい含有量は0.3 〜1.0 %の範囲で
あり、0.3 %未満ではその効果が不十分であり、1.0 %
を越えると伸びの低下が大きくなり望ましくない。
Ag coexists with Cu and forms a solid solution, CuAl 2
The mechanical properties are remarkably improved on the basis of adsorption to the phase, formation of the Ω phase, and the like. The preferable content is in the range of 0.3 to 1.0%, and if the content is less than 0.3%, the effect is insufficient and 1.0%.
If it exceeds, the decrease in elongation becomes large, which is not desirable.

【0010】Mn、CrおよびZrはアルミニウムと結
合して、それぞれMnAl6 、CrAl7 、ZrAl3
などの化合物を生成し、結晶粒(サブグレインを含む)
を微細化するとともに、転位の運動を阻害することによ
り溶接部の伸びを改善する効果がある。好ましい含有範
囲は、Mn、CrおよびZrのうちの1種を含有する場
合はそれぞれ0.05〜1.5 %、Mn、CrおよびZrのう
ちの2種以上を含有する場合は合計量で0.05〜1.5 %で
ある。0.05%未満の含有では効果が十分でなく、1.5 %
を越えると、アルミニウムと初晶化合物を形成し、溶接
部の機械的特性、とくに伸びおよび靭性を著しく劣化さ
せる。
Mn, Cr and Zr are combined with aluminum to form MnAl 6 , CrAl 7 and ZrAl 3 respectively.
Produce compounds such as crystal grains (including subgrains)
Has the effect of improving the elongation of the weld by inhibiting the movement of dislocations as well as refining. A preferable content range is 0.05 to 1.5% when one of Mn, Cr and Zr is contained, and a total amount of 0.05 to 1.5% when two or more of Mn, Cr and Zr are contained. is there. If the content is less than 0.05%, the effect is not sufficient and 1.5%
If it exceeds the range, primary crystals are formed with aluminum, and the mechanical properties of the weld, particularly elongation and toughness, are significantly deteriorated.

【0011】本発明の溶加材においては、SiおよびF
eの含有量をいずれも0.09%以下、より好ましくは0.05
%以下に制限するのが望ましい。SiおよびFeは、ア
ルミニウム地金中に含まれる不可避的不純物であるが、
多く含有されると溶接部の伸びを低下させる。
In the filler material of the present invention, Si and F
The content of e is 0.09% or less, more preferably 0.05
It is desirable to limit it to less than or equal to%. Si and Fe are inevitable impurities contained in the aluminum ingot,
If it is contained in a large amount, the elongation of the weld will be reduced.

【0012】溶接部への水素ガス(H2)の混入は、溶加
材および溶接母材となるアルミニウム−リチウム合金材
中に存在する水素ガス、および表面に付着している水分
に起因して生じるが、溶接金属中にブローホールやピン
ホールが形成する原因となるから、溶湯処理により溶加
材中のH2 濃度を0.8 cc/100 gAl以下に制限する
のが好ましく、0.6 cc/100 gAl以下とするのがさ
らに好ましい。
The mixing of hydrogen gas (H 2 ) into the welded portion is due to the hydrogen gas present in the aluminum-lithium alloy material serving as the filler metal and the welding base metal, and the moisture adhering to the surface. Although it occurs, it causes the formation of blowholes and pinholes in the weld metal, so it is preferable to limit the H 2 concentration in the filler metal to 0.8 cc / 100 gAl or less by the melt treatment, and 0.6 cc / 100 gAl The following is more preferable.

【0013】本発明の溶加材中に含まれるその他の不可
避的不純物については、0.03%以下に制限するのが好ま
しい。とくに、Ca、Na、Kなどのアルカリ金属、ア
ルカリ土類金属の含有は、溶接部の粒界破断の原因とな
り易いので、10ppm以下の限定するのが望ましい。
The other unavoidable impurities contained in the filler metal of the present invention are preferably limited to 0.03% or less. In particular, the content of alkali metals such as Ca, Na, and K, and alkaline earth metals is liable to cause the grain boundary breakage of the welded portion, so it is desirable to limit the content to 10 ppm or less.

【0014】[0014]

【作用】本発明の溶加材においては、特定量のCu、M
gの含有、CuとAgの相乗効果により機械的特性を向
上させ、特定量のTiおよびMn、CrあるいはZrの
添加により伸びを改善し、Si、Fe、H2 の含有量を
制限することによって溶接部の品質を高め、これらの組
み合わせに基づいて、アルミニウム−リチウム合金に対
し、ピンホールの形成や割れなどの欠陥を生じることが
なく、機械的特性に優れ、とくに極低温において優れた
強度および伸びを有する溶接部を形成することができ
る。
In the filler metal of the present invention, a specific amount of Cu, M
By including g, improving the mechanical properties by the synergistic effect of Cu and Ag, improving the elongation by adding a specific amount of Ti and Mn, Cr or Zr, and limiting the content of Si, Fe and H 2 . Improves the quality of the weld and, based on these combinations, does not cause defects such as pinhole formation and cracks in the aluminum-lithium alloy, has excellent mechanical properties, and has excellent strength and especially at extremely low temperatures. A weld having elongation can be formed.

【0015】[0015]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 アルミニウム−リチウム合金における通常のように溶
解、鋳造し、圧延および伸線行程を経て、Cu:4.5%、
Mg:0.5%、Ti:0.10 %、Ag:1.0%、Mn:1.0%、
Cr:0.05 %、Zr:0.05 %、Si:0.08 %、Fe:0.0
8 %、H2:0.10cc/100gAl を含有するアルミニウム合金
溶接線を作製した。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 Melting, casting, rolling, and wire drawing as usual in an aluminum-lithium alloy, Cu: 4.5%,
Mg: 0.5%, Ti: 0.10%, Ag: 1.0%, Mn: 1.0%,
Cr: 0.05%, Zr: 0.05%, Si: 0.08%, Fe: 0.0
An aluminum alloy welding line containing 8% of H 2 : 0.10cc / 100g Al was prepared.

【0016】この溶接線を使用して、Cu:5.10 %、L
i:1.40 %、Mg:0.27 %、Mn:0.30 %、Fe:0.08
%。Si:0.03 %、Ti:0.02 %、Zr0.14%を含有す
るアルミニウム−リチウム合金を溶接母材(厚さ6 〜10
mm) として、アルゴンガスシールドによるMIG溶接を
行った。溶接後、溶接部における巨大化合物、ピンホー
ル、割れ、粗大結晶粒の発生の有無を観察したが、これ
らの欠陥、異常生成物は全く観察されずきわめて健全な
溶接部が得られた。
Using this welding line, Cu: 5.10%, L
i: 1.40%, Mg: 0.27%, Mn: 0.30%, Fe: 0.08
%. An aluminum-lithium alloy containing Si: 0.03%, Ti: 0.02%, and Zr0.14% is welded as base metal (thickness 6-10).
mm) was performed by MIG welding with an argon gas shield. After welding, it was observed whether or not giant compounds, pinholes, cracks, and coarse crystal grains were generated in the weld, but no defects or abnormal products were observed, and a very sound weld was obtained.

【0017】比較例1 実施例1と同様にして、表1に示す組成のアルミニウム
合金溶接線を作製し、これらの溶接線を使用して、実施
例1と同一組成のアルミニウム−リチウム合金を溶接母
材として、実施例1と同様にMIG溶接を行った。な
お、表1において、本発明の条件を外れたものには下線
を付した。
Comparative Example 1 Aluminum alloy welding wires having the compositions shown in Table 1 were prepared in the same manner as in Example 1, and the aluminum-lithium alloy having the same composition as in Example 1 was welded using these welding wires. As a base material, MIG welding was performed as in Example 1. In Table 1, those that do not satisfy the conditions of the present invention are underlined.

【0018】[0018]

【表1】 [Table 1]

【0019】各試験材を溶接線として溶接を行った場合
の溶接部における巨大化合物、ピンホール、割れ、粗大
結晶粒の発生を観察したところ、試験材No.1の溶接線で
は、Cu、Mn、Agの含有量が本発明の上限を越えて
いるため、巨大化合物が生成し、H2 の含有量が上限を
越えているためピンホールが観察された。試験材No.2で
はCu、Agが少ないため溶接割れがみられた。試験材
No.3ではMn、CrおよびZrの合計含有量が上限を越
えているため、巨大なアルミニウムとの初晶化合物が生
じた。
When the generation of large compounds, pinholes, cracks, and coarse crystal grains in the welded portion when each test material was welded as a welding line was observed, Cu and Mn were found in the welding line of test material No. 1. , Ag content exceeds the upper limit of the present invention, a huge compound is produced, and pinholes are observed because the H 2 content exceeds the upper limit. In test material No. 2, welding cracks were observed because the amounts of Cu and Ag were small. Test material
In No. 3, since the total content of Mn, Cr and Zr exceeded the upper limit, a huge primary crystal compound with aluminum was formed.

【0020】試験材No.4の溶接線を使用した場合も、試
験材No.3と同様、Mn、CrおよびZrの合計含有量が
1.5 %を越えているため巨大な化合物が生成した。試験
材No.5ではTiの含有量が少ないため粗大結晶粒が生
じ、巨大化合物も観察された。試験材No.6では、Cu量
が少ないため溶接割れがみられ、H2 含有量が多いため
ピンホールも生じていた。
Even when the welding wire of test material No. 4 was used, the total content of Mn, Cr and Zr was the same as in test material No. 3.
Since it exceeds 1.5%, a huge compound is produced. In the test material No. 5, since the content of Ti was small, coarse crystal grains were generated, and a giant compound was also observed. In the test material No. 6, welding cracks were observed due to the small amount of Cu, and pinholes were also formed due to the large H 2 content.

【0021】実施例2 実施例1と同様にして、表2に示す組成のアルミニウム
合金溶接線を作製し、これらの溶接線を使用して、実施
例1と同一組成のアルミニウム−リチウム合金(厚さ6
〜10mm) を溶接母材として、実施例1と同様にMIG溶
接を行ったのち、溶接部から引張試験片を切り出し、液
体窒素温度(77K)において引張試験を行った。その結
果、いずれの試験材においても引張強さ300 MPa以
上、伸び率2%以上の優れた機械的特性が得られた。母
材の板厚による差はほとんど認められなかった。
Example 2 In the same manner as in Example 1, aluminum alloy welding lines having the compositions shown in Table 2 were prepared, and using these welding lines, an aluminum-lithium alloy (thickness) having the same composition as in Example 1 was prepared. 6
.About.10 mm) was used as a welding base material and MIG welding was carried out in the same manner as in Example 1. Then, a tensile test piece was cut out from the welded portion and subjected to a tensile test at a liquid nitrogen temperature (77 K). As a result, excellent mechanical properties with a tensile strength of 300 MPa or more and an elongation of 2% or more were obtained in all the test materials. Almost no difference was observed depending on the thickness of the base metal.

【0022】[0022]

【表2】 《表注》水素ガス(H2)含有量はいずれも0.8cc/100gAl以下[Table 2] << Table Note >> Hydrogen gas (H 2 ) content is 0.8cc / 100gAl or less

【0023】比較例2 実施例1と同様にして、表3に示す組成のアルミニウム
合金溶接線を作製し、これらの溶接線を使用して、実施
例1と同一組成のアルミニウム−リチウム合金(板厚6
〜10mm) を溶接母材として、実施例1と同様にMIG溶
接を行い、溶接後、各板厚のものについて、実施例2と
同様に溶接部から引張試験片を採取し、液体窒素温度
(77K)において引張試験を行った。その結果を表4に示
す。なお、表3において、本発明の条件を外れたものに
は下線を付した。
Comparative Example 2 Aluminum alloy welding lines having the compositions shown in Table 3 were prepared in the same manner as in Example 1, and using these welding lines, an aluminum-lithium alloy (plate having the same composition as in Example 1 was prepared. Thickness 6
.About.10 mm) as a welding base material, MIG welding was performed in the same manner as in Example 1, and after welding, tensile test pieces were sampled from the welded portion for each plate thickness in the same manner as in Example 2, and the liquid nitrogen temperature ( A tensile test was carried out at 77K). The results are shown in Table 4. In Table 3, those that do not satisfy the conditions of the present invention are underlined.

【0024】[0024]

【表3】 《表注》水素ガス(H2)含有量はいずれも0.8cc/100gAl以下[Table 3] << Table Note >> Hydrogen gas (H 2 ) content is 0.8cc / 100gAl or less

【0025】[0025]

【表4】 [Table 4]

【0026】表4にみられるように、試験材No.7はS
i、Feの含有量が多いため伸び率が低い。試験材No.8
はCu量が多過ぎるため伸びが低下している。試験材N
o.9は、Si量が多いため、また試験材No.10 はFe量
が上限を越えているため、伸びが少ない。試験材No.11
はAgの含有量が少なく、試験材No.12 はMgを含有せ
ず、試験材No.13 はMgを含まないとともにTi含有量
も少ないため、いずれも引張強さが低い。
As shown in Table 4, the test material No. 7 is S
Since the contents of i and Fe are large, the elongation rate is low. Test material No.8
Since the amount of Cu is too large, the elongation is low. Test material N
O.9 has a small amount of Si, and test material No. 10 has a small amount of elongation because the amount of Fe exceeds the upper limit. Test material No.11
Has a low Ag content, the test material No. 12 does not contain Mg, and the test material No. 13 does not contain Mg and has a small Ti content, so that both have low tensile strength.

【0027】[0027]

【発明の効果】以上のとおり、本発明によれば、アルミ
ニウム−リチウム合金の溶接において、ピンホール、割
れ、その他の欠陥を生じることがなく、機械的特性にも
優れ、とくに極低温において300 MPa以上の引張強
度、2 %以上の伸び率を有する溶接部の形成を可能とす
るアルミニウム−リチウム合金用溶加材が提供される。
As described above, according to the present invention, in welding an aluminum-lithium alloy, pinholes, cracks, and other defects are not generated, and mechanical properties are excellent. Provided is a filler metal for aluminum-lithium alloy capable of forming a weld having the above tensile strength and an elongation of 2% or more.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Cu:4〜6.5 %(重量%、以下同じ)、
Mg:0.1〜0.9 %、Ti:0.05 〜0.15%、Ag:0.3〜1.
0 %を含有し、さらにMn、CrおよびZrのうちの1
種を含む場合はそれぞれ0.05〜1.5 %、2種以上を含む
場合は合計量で0.05〜1.5 %含有し、Si:0.09 %以
下、Fe:0.09 %以下、H2:0.8 cc/100 gAl以下
に限定し、残部Alおよび不可避的不純物からなること
を特徴とするアルミニウム−リチウム合金溶加材。
1. Cu: 4 to 6.5% (weight%, the same applies hereinafter),
Mg: 0.1-0.9%, Ti: 0.05-0.15%, Ag: 0.3-1.
0%, and one of Mn, Cr and Zr
When it contains seeds, it contains 0.05 to 1.5% respectively, and when it contains 2 or more kinds, it contains 0.05 to 1.5% in total. Si: 0.09% or less, Fe: 0.09% or less, H 2 : 0.8 cc / 100 gAl or less. An aluminum-lithium alloy filler material, characterized in that the balance comprises Al and inevitable impurities.
JP8196195A 1995-03-14 1995-03-14 Aluminum-lithium alloy filler metal Pending JPH08252689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8196195A JPH08252689A (en) 1995-03-14 1995-03-14 Aluminum-lithium alloy filler metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8196195A JPH08252689A (en) 1995-03-14 1995-03-14 Aluminum-lithium alloy filler metal

Publications (1)

Publication Number Publication Date
JPH08252689A true JPH08252689A (en) 1996-10-01

Family

ID=13761108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8196195A Pending JPH08252689A (en) 1995-03-14 1995-03-14 Aluminum-lithium alloy filler metal

Country Status (1)

Country Link
JP (1) JPH08252689A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1240973A1 (en) * 2001-03-15 2002-09-18 McCook Metals L.L.C. Improved filler wire for aluminum alloys and method of welding
EP1776486A2 (en) * 2004-07-15 2007-04-25 Alcoa Inc. 2000 series alloys with enhanced damage tolerance performance for aerospace applications
US7229508B2 (en) * 2003-05-28 2007-06-12 Alcan Rolled Products-Ravenswood, Llc Al—Cu—Mg—Ag—Mn-alloy for structural applications requiring high strength and high ductility
CN102145441A (en) * 2011-04-18 2011-08-10 兰州威特焊材炉料有限公司 SAL8090 aluminum-lithium alloy TIG (Tungsten Inert Gas)/MIG (Metal-Inert Gas) solder wire and preparation method thereof
CN102145440A (en) * 2011-04-18 2011-08-10 兰州威特焊材炉料有限公司 SAL2195 aluminum-lithium alloy TIG (argon tungsten-arc welding)/MIG (Metal-Inert Gas Welding) welding wire and preparation method thereof
CN102198576A (en) * 2010-11-25 2011-09-28 兰州威特焊材炉料有限公司 Processing method for aluminum-lithium alloy welding wire
CN106392367A (en) * 2016-11-22 2017-02-15 江苏阳明船舶装备制造技术有限公司 Solder for brazing red copper and graphite and brazing method
CN106893910A (en) * 2017-03-01 2017-06-27 辽宁忠大铝业有限公司 A kind of low rare earth high-strength aluminium alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1240973A1 (en) * 2001-03-15 2002-09-18 McCook Metals L.L.C. Improved filler wire for aluminum alloys and method of welding
US7229508B2 (en) * 2003-05-28 2007-06-12 Alcan Rolled Products-Ravenswood, Llc Al—Cu—Mg—Ag—Mn-alloy for structural applications requiring high strength and high ductility
US7704333B2 (en) 2003-05-28 2010-04-27 Alean Rolled Products Ravenswood Llc Al-Cu-Mg-Ag-Mn alloy for structural applications requiring high strength and high ductility
EP1776486A2 (en) * 2004-07-15 2007-04-25 Alcoa Inc. 2000 series alloys with enhanced damage tolerance performance for aerospace applications
EP1776486A4 (en) * 2004-07-15 2009-09-30 Alcoa Inc 2000 series alloys with enhanced damage tolerance performance for aerospace applications
CN102198576A (en) * 2010-11-25 2011-09-28 兰州威特焊材炉料有限公司 Processing method for aluminum-lithium alloy welding wire
CN102145441A (en) * 2011-04-18 2011-08-10 兰州威特焊材炉料有限公司 SAL8090 aluminum-lithium alloy TIG (Tungsten Inert Gas)/MIG (Metal-Inert Gas) solder wire and preparation method thereof
CN102145440A (en) * 2011-04-18 2011-08-10 兰州威特焊材炉料有限公司 SAL2195 aluminum-lithium alloy TIG (argon tungsten-arc welding)/MIG (Metal-Inert Gas Welding) welding wire and preparation method thereof
CN106392367A (en) * 2016-11-22 2017-02-15 江苏阳明船舶装备制造技术有限公司 Solder for brazing red copper and graphite and brazing method
CN106893910A (en) * 2017-03-01 2017-06-27 辽宁忠大铝业有限公司 A kind of low rare earth high-strength aluminium alloy

Similar Documents

Publication Publication Date Title
RU2378095C2 (en) Filler wire for welding of aluminium alloys
CA2381332C (en) Aluminum-magnesium-scandium alloys with zinc and copper
JP2730847B2 (en) Magnesium alloy for castings with excellent high temperature creep strength
JP5237801B2 (en) Doped iridium with improved high temperature properties
US4888253A (en) High strength cast+HIP nickel base superalloy
WO1990002211A1 (en) Ultrahigh strength al-cu-li-mg alloys
JPH0323613B2 (en)
GB2204324A (en) Welding wire
CN104372202A (en) Ti2AlNb alloy with low density and high plasticity
JPH08252689A (en) Aluminum-lithium alloy filler metal
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
JPH01168837A (en) High molybdenum base alloy
GB2037322A (en) Super heat resistant alloys having high ductility at room temperature and high strength at high temperatures
JPH03226538A (en) Ti-al base heat resistant alloy and its manufacture
JPS63242489A (en) Beta-type titanium alloy welding rod
EP0964069B1 (en) Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same
KR19990015625A (en) Flux Filling Wire for Arc Welding
JPH08144003A (en) High strength aluminum alloy excellent in heat resistance
JPH03122243A (en) High strength aluminum alloy plate material for welding excellent in stress corrosion cracking resistance
JPH0413830A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JP2915497B2 (en) Aluminum alloy for welding with excellent stress corrosion cracking resistance
JP2000144297A (en) Aluminum alloy welded joint excellent in toughness at low temperature, and structural material using same
JP2018199157A (en) Welding method of aluminium alloy
JP2860075B2 (en) Aluminum alloy filler metal
JPH06346177A (en) Aluminum alloy for weld structure excellent in stress corrosion cracking resistance and proof stress value after welding