JPS63117988A - Graphite crucible for preparation of semiconductor single crystal - Google Patents

Graphite crucible for preparation of semiconductor single crystal

Info

Publication number
JPS63117988A
JPS63117988A JP26310486A JP26310486A JPS63117988A JP S63117988 A JPS63117988 A JP S63117988A JP 26310486 A JP26310486 A JP 26310486A JP 26310486 A JP26310486 A JP 26310486A JP S63117988 A JPS63117988 A JP S63117988A
Authority
JP
Japan
Prior art keywords
graphite
quartz glass
crucible
reaction
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26310486A
Other languages
Japanese (ja)
Inventor
Yukihiro Sugimoto
杉本 行廣
Yoshihiko Sunami
角南 好彦
Toru Iwahashi
徹 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26310486A priority Critical patent/JPS63117988A/en
Publication of JPS63117988A publication Critical patent/JPS63117988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To retard the reaction between a graphite and quartz glass and to obtain a single crystal having high durability inexpensively by using a graphite crucible having low degree of graphitization and a specified pore structure. CONSTITUTION:The graphite crucible is prepd. from a graphite material having <=0.6 (after treating at 2,500 deg.C) degree of graphitization (1-P) and <=0.1cm<3>/g volume of pores having >=1mu pore radius measured by a mercury porosimetric method wherein P is 0-1 calculated by using the formula of Franklin wherein d is a spacing of lattice planes by X-ray diffractometry. Then, a quartz glass crucible is housed in this graphite crucible, and the melt of raw materials are charged to the quartz glass crucible and heated with a carbon heater. A seed crystal, for example, a seed crystal of a silicon, is dipped in the melt and pulled up slowly while rotating the pulling shaft. Thus, a single crystal, for example, a single crystal of a silicon is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体単結晶製造用黒鉛ルツボ、特にシリコ
ン等の半導体単結晶を製造するときに使用する単結晶引
上げ装置用黒鉛ルツボに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a graphite crucible for producing semiconductor single crystals, and particularly to a graphite crucible for a single crystal pulling apparatus used when producing semiconductor single crystals such as silicon.

(従来の技術) 一般に、半導体物質、特にシリコンの単結晶は主にチョ
クラルスキー法と呼ばれる回転引上げ法によって製造さ
れている。
(Prior Art) In general, semiconductor materials, particularly silicon single crystals, are mainly manufactured by a rotational pulling method called the Czochralski method.

チョクラルスキー法は溶融液に浸した種結晶を回転させ
ながら引上げて単結晶を作る結晶育成法である。例えば
シリコン単結晶を製造する場合には、黒鉛ルツボに内装
された石英ガラスルツボ内で高純度のシリコン多結晶を
外部のカーボンヒーターにより加熱溶融し、この溶融液
に最初シリコンの種結晶を浸して回転させながらゆっく
り引上げる。この操作はシリコンの固−液境界温度であ
る1413℃をはさんで1450℃近くの温度で行われ
るが、石英ガラスは1200℃以上の温度では軟化をは
じめるので、黒鉛ルツボで支えて軟化による変形を防止
している。
The Czochralski method is a crystal growth method in which a single crystal is produced by pulling a seed crystal immersed in a molten liquid while rotating it. For example, when manufacturing silicon single crystals, high-purity silicon polycrystals are heated and melted in a quartz glass crucible housed in a graphite crucible using an external carbon heater, and silicon seed crystals are first immersed in this melt. Slowly pull up while rotating. This operation is carried out at a temperature close to 1450°C across the solid-liquid boundary temperature of silicon, 1413°C, but since silica glass begins to soften at temperatures above 1200°C, it is supported in a graphite crucible and deformed due to softening. is prevented.

このようにシリコン単結晶引上げ操作中石英ガラスと黒
鉛は接触し、SiO2+C→Co (91” S10 
(9)の反応で黒鉛ルツボが消耗し減肉が進行する。特
に最近は黒鉛ルツボの割れを防止する観点から2以上に
分割した黒鉛ルツボが多く使用されており(例えば、特
開昭58−95693号公報参照)、この場合分割した
ルツボの合わせ部で黒鉛と石英ガラスの接触面積が大と
なるため、合わせ端部での黒鉛ルツボの消耗、減肉が著
しくなる。その結果、内装した石英ガラスルツボが軟化
変化して黒鉛ルツボ合わせ部の間隙からはみ出すという
現象が起こり、黒鉛と石英ガラスの接触面積を増大して
黒鉛ルツボの消耗、減肉をさらに助長する。このように
減肉が進行して黒鉛ルツボ合せ部の間隙が大きくなると
、内装した石英ガラスルツボのはみ出し量が大きくなり
、薄肉化した石英ガラスルツボが破れて内部の溶融シリ
コンが飛散するという事態が生じる。
In this way, during the silicon single crystal pulling operation, quartz glass and graphite come into contact, and SiO2+C→Co (91” S10
The graphite crucible is consumed by the reaction (9) and thinning progresses. Particularly recently, graphite crucibles that are divided into two or more parts are often used to prevent cracking of the graphite crucible (for example, see Japanese Patent Application Laid-Open No. 58-95693). Since the contact area of the quartz glass becomes large, wear and thinning of the graphite crucible at the mating ends becomes significant. As a result, a phenomenon occurs in which the internal quartz glass crucible softens and protrudes from the gap between the graphite crucible mating parts, increasing the contact area between graphite and quartz glass and further promoting wear and thinning of the graphite crucible. As the thickness decrease progresses and the gap between the mating parts of the graphite crucible increases, the amount of protrusion of the inner quartz glass crucible increases, leading to a situation where the thinned quartz glass crucible ruptures and the molten silicon inside is scattered. arise.

このような危険を避けるため、通常のシリコン単結晶引
上げ操作においては10サイクル程度で黒鉛ルツボの交
換を行っている。
In order to avoid such a risk, the graphite crucible is replaced after about 10 cycles in a normal silicon single crystal pulling operation.

(発明が解決しようとする問題点) このように従来は黒鉛ルツボの耐久寿命が短い欠点があ
った。
(Problems to be Solved by the Invention) As described above, conventional graphite crucibles have had a short durability life.

かくして、本発明の目的は、引上げ法によりシリコン等
の半導体単結晶を製造するときに使用される黒鉛ルツボ
における従来の前記問題点を解決すべく、石英ガラスと
の反応による消耗、減肉が小さく、従って耐久寿命の長
い材質の半導体単結晶製造用黒鉛ルツボを提供すること
である。
Thus, an object of the present invention is to solve the above-mentioned problems of conventional graphite crucibles used when producing semiconductor single crystals such as silicon by the pulling method, and to reduce consumption and thinning due to reaction with quartz glass. Therefore, it is an object of the present invention to provide a graphite crucible for producing a semiconductor single crystal, which is made of a material with a long durable life.

(問題点を解決するための手段) 本発明者らは、かかる目的を達成すべく、半導体引上げ
装置における黒鉛ルツボの消耗、減肉について種々検討
した結果、黒鉛ルツボの消耗、減肉の原因である石英ガ
ラスとの接触反応の難易が使用する黒鉛素材の黒鉛化度
と気孔構造とに支配されていることを見出した。すなわ
ち、黒鉛化度については黒鉛素材の黒鉛化度を低下する
ことによって石英ガラスとの反応を抑制でき、例えばF
ranklinのP値を用いて計算される(1−P)の
値が温度2500℃処理後で0.6以下であれば、黒鉛
素材と石英ガラスとの接触反応が著しく抑制されること
を見出したものである。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have conducted various studies on the consumption and thinning of graphite crucibles in semiconductor pulling equipment, and have found that the causes of consumption and thinning of graphite crucibles are as follows. It has been found that the difficulty of a contact reaction with a certain quartz glass is controlled by the degree of graphitization and pore structure of the graphite material used. That is, regarding the degree of graphitization, the reaction with quartz glass can be suppressed by lowering the degree of graphitization of the graphite material.
It has been found that if the value of (1-P) calculated using ranklin's P value is 0.6 or less after treatment at a temperature of 2500°C, the contact reaction between the graphite material and silica glass is significantly suppressed. It is something.

一方、気孔構造については、黒鉛ルツボの消耗、減肉は
石英ガラスとの接触反応により進行するため、その接触
面積を低減すれば黒鉛素材と石英ガラスとの反応を抑制
でき、そのためには黒鉛素材の気孔構造の制御が重要で
、特に半径が1μm以上の細孔の占める容積を0.1 
cm’/g以下になるような気孔構造にすれば黒鉛素材
と石英ガラスの反応を最小にできることを見出し、本発
明を完成した。
On the other hand, regarding the pore structure, the wear and thinning of the graphite crucible progresses due to the contact reaction with the quartz glass, so by reducing the contact area, the reaction between the graphite material and the quartz glass can be suppressed. It is important to control the pore structure, especially when the volume occupied by pores with a radius of 1 μm or more is
It was discovered that the reaction between the graphite material and quartz glass could be minimized by creating a pore structure with a pore structure of cm'/g or less, and the present invention was completed based on this finding.

ここに、本発明は、FranklinのP値を用いて計
算される黒鉛化度(1−P)の値が温度250(l”c
処理後で0.6以下であり、かつ半径が1μm以上の細
孔の占める容積が0.1 cm3/g以下である気孔構
造を有する黒鉛素材からなることを特徴とする半導体単
結晶製造用黒鉛ルツボである。
Here, in the present invention, the value of graphitization degree (1-P) calculated using Franklin's P value is at a temperature of 250 (l"c
Graphite for manufacturing semiconductor single crystals, characterized in that it is made of a graphite material having a pore structure of 0.6 or less after treatment, and in which the volume occupied by pores with a radius of 1 μm or more is 0.1 cm3/g or less It is a crucible.

すなわち、本発明は黒鉛ルツボの石英ガラスとの反応に
よる消耗、減肉を小さくして黒鉛ルツボの耐久寿命を延
長するため、黒鉛ルツボの素材としてX線回折分析によ
り求められ黒鉛化度の指標となる(1−P)の値が温度
2500 ’Cでの処理後で0゜6以下の値であり、か
つ水銀圧入法により測定される半径が1μm以上の細孔
の占める容積が0.1cm″/g以下である黒鉛素材を
使用せんとするものである。
That is, the present invention uses a graphite crucible material determined by X-ray diffraction analysis and used as an index of the degree of graphitization, in order to reduce the wear and thinning caused by the reaction with quartz glass of the graphite crucible and extend the durable life of the graphite crucible. The value of (1-P) is 0°6 or less after treatment at a temperature of 2500'C, and the volume occupied by pores with a radius of 1 μm or more measured by mercury porosimetry is 0.1 cm'' /g or less.

ここで、FranklinのP値とはX線回折分析によ
り求められる面間隔(dO02)の値から、式:に従っ
て計算されるPの値のことで、0から1までの値をとり
、このP値は黒鉛素材中に無秩序層が存在する確率を表
わしており、(1−P)の値は黒鉛化度の尺度となる(
石川敏功、長沖通:新・炭素工業、近代編集社(198
2)参照)。すなわち、(1−P)の値が1に近づけば
黒鉛素材中の無秩序層の割合が減少して黒鉛化度の高い
ことを示し、逆に(1−P)の値が0に近づけば黒鉛素
材中の無秩序層の割合が増大して黒鉛化度の低いことを
示す。
Here, Franklin's P value is the value of P calculated from the value of the interplanar spacing (dO02) obtained by X-ray diffraction analysis according to the formula: It takes a value from 0 to 1, and this P value represents the probability that a disordered layer exists in the graphite material, and the value of (1-P) is a measure of the degree of graphitization (
Toshihisa Ishikawa, Michi Nagaoki: New Carbon Industry, Kindai Editorial Company (198
2)). In other words, when the value of (1-P) approaches 1, the proportion of disordered layers in the graphite material decreases, indicating a high degree of graphitization, and conversely, when the value of (1-P) approaches 0, the graphite material The proportion of disordered layers in the material increases, indicating a low degree of graphitization.

(作用) このように、本発明は、黒鉛素材と石英ガラスとの接触
反応が起こる温度である1450℃イ」近では石英ガラ
スは軟化状態にあるが、両者の反応は本質的には同相間
反応であり、このような反応系において反応の難易は黒
鉛素材の結晶構造に依存し黒鉛素材の黒鉛化度が低くて
無秩序層の存在する割合が増大ずればする程、反応が抑
制されるのである。
(Function) As described above, the present invention provides that although silica glass is in a softened state near 1450°C, which is the temperature at which a contact reaction between graphite material and quartz glass occurs, the reaction between the two is essentially in-phase. In such a reaction system, the difficulty of the reaction depends on the crystal structure of the graphite material, and the lower the degree of graphitization of the graphite material and the higher the proportion of disordered layers, the more the reaction is suppressed. be.

ここで、黒鉛素材の半径が1μm以上の細孔容積が黒鉛
素材と石英ガラスとの反応において重要な要因となる理
由は、前述のSiO□+C→Co(91+SiO+、n
 の反応によって生成した一酸化珪素ガスが黒鉛との反
応、2C+ SiO(g)→Si C+ COf91に
よって炭化珪素を生成してこの炭化珪素が黒鉛素材の細
孔を閉塞して表面積を低下するように働き、このような
細孔の閉塞効果が気孔半径が1μmよりも小さな細孔の
場合に特に顕著となるからである。すなわち、黒鉛素材
と石英ガラスとの反応の副反応の結果生成した炭化珪素
による細孔の閉塞効果が有効に働いて黒鉛素材と石英ガ
ラスとの反応を抑制するためには、黒鉛素材の半径が1
μm以上の細孔の占める容積を低減することが必要であ
り、この細孔容積が小さければ小さい程反応が抑制でき
るが、半径が1μm以上の細孔容積を0゜1 cm3/
g以下にすれば、黒鉛素材の石英ガラスとの反応による
消耗、減肉を著しく低下できるのである。
Here, the reason why the pore volume of the graphite material with a radius of 1 μm or more is an important factor in the reaction between the graphite material and silica glass is because of the aforementioned SiO□+C→Co(91+SiO+, n
The silicon monoxide gas generated by the reaction reacts with graphite to generate silicon carbide through 2C+ SiO(g) → Si C+ COf91, and this silicon carbide blocks the pores of the graphite material and reduces the surface area. This is because such a pore clogging effect becomes particularly noticeable in the case of pores with a pore radius smaller than 1 μm. In other words, in order for the pore blocking effect by silicon carbide produced as a result of the side reaction of the reaction between the graphite material and silica glass to work effectively and suppress the reaction between the graphite material and silica glass, the radius of the graphite material must be 1
It is necessary to reduce the volume occupied by pores with a radius of 1 μm or more, and the smaller the pore volume, the more the reaction can be suppressed.
If it is less than g, consumption and thinning due to the reaction of graphite material with quartz glass can be significantly reduced.

なお、本発明に係る黒鉛素材を製造する方法としては例
えば特開昭59−207822号公報に示された炭素材
料の製造方法がある。
Incidentally, as a method for manufacturing the graphite material according to the present invention, there is, for example, a method for manufacturing a carbon material disclosed in JP-A-59-207822.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例I 第1表に示すような温度2500℃で黒鉛化し黒鉛化度
、気孔構造の異なる黒鉛素材からそれぞれ大きさが幅1
0+nm、長さ50mm、厚さ10mmのサンプルを切
り出し、各黒鉛素材サンプルの上部にこれと同じサイズ
の石英ガラスサンプルを載荷して横型電気炉内にセット
し、温度1450℃、圧力5 torr %静流量50
 Ncc/分の条件下で20時間加熱処理を行った。加
熱処理後の黒鉛素材サンプルについて厚さの測定を行い
、石英ガラスとの反応による黒鉛素材サンプルの減肉量
の値を求めた結果を第1表に示す。
Example I Graphite materials were graphitized at a temperature of 2500°C and had different degrees of graphitization and pore structures as shown in Table 1, each having a width of 1.
Samples of 0+ nm, length 50 mm, and thickness 10 mm were cut out, and a quartz glass sample of the same size was loaded on top of each graphite material sample, set in a horizontal electric furnace, and heated at a temperature of 1450°C and a pressure of 5 torr% static. Flow rate 50
Heat treatment was performed for 20 hours under the condition of Ncc/min. The thickness of the graphite material sample after heat treatment was measured, and the amount of thickness reduction of the graphite material sample due to reaction with quartz glass was determined. The results are shown in Table 1.

第1表に示したように、黒鉛素材の黒鉛化度(I−P)
の値が0.6を越え、かつ半径1μm以上の細孔の占め
る容積が0.1 cm’/gを越える比較例の試験階4
や、黒鉛素材の半径1μm以上の細孔の占める容積が0
.1 cm3/g以下であるものの黒鉛化度(1−P)
の値が0.6を越える比較例の試験階5、試験11kt
5とは逆に黒鉛素材の黒鉛化度(1−P)の値が0.6
以下であるものの半径1μm以上の細孔の占める容積が
0.1 cm37gを越える比較例の試験11kL6の
場合には、石英ガラスとの20時間反応後の黒鉛素材の
減肉量が1mmを越えている。これに対して、本発明の
実施例である試験Thl 、2.3の場合には、石英ガ
ラスとの20時間反応後の黒鉛素材の減肉量が比較例の
場合と比べて172以下の値になっており、石英ガラス
との反応による黒鉛素材の消耗、減肉が抑制されている
ことが分かる。
As shown in Table 1, the degree of graphitization (I-P) of graphite material
Comparative example test floor 4 in which the value of is over 0.6 and the volume occupied by pores with a radius of 1 μm or more exceeds 0.1 cm'/g
Or, the volume occupied by pores with a radius of 1 μm or more in the graphite material is 0.
.. Degree of graphitization (1-P) of 1 cm3/g or less
Test floor 5, test 11kt of comparative example where the value exceeds 0.6
5, the graphitization degree (1-P) of the graphite material is 0.6.
In the case of Comparative Example Test 11kL6 in which the volume occupied by pores with a radius of 1 μm or more exceeds 0.1 cm37g, the amount of thinning of the graphite material after 20 hours of reaction with quartz glass exceeds 1 mm. There is. On the other hand, in the case of test Thl, 2.3, which is an example of the present invention, the amount of thinning of the graphite material after 20 hours of reaction with quartz glass was 172 or less compared to the comparative example. It can be seen that consumption of graphite material and thinning due to reaction with quartz glass are suppressed.

実施例2 実施例1の試験i2、および比較例の試験隘4の黒鉛素
材を加工してそれぞれ内径305mm 、外径330m
mの2分割型黒鉛ルツボを作成し、これらの黒鉛ルツボ
を使用して常法によりシリコン単結晶の引上げを行い、
黒鉛ルツボの耐久寿命を比較した。結果を第2表に示す
Example 2 The graphite materials of Test i2 of Example 1 and Test No. 4 of Comparative Example were processed to have an inner diameter of 305 mm and an outer diameter of 330 mm, respectively.
A two-part graphite crucible of m was created, and silicon single crystals were pulled using the conventional method using these graphite crucibles.
The durability life of graphite crucibles was compared. The results are shown in Table 2.

第2表に示したように、本発明の実施例である試験隘7
の場合には石英ガラスとの反応による黒鉛素材の消耗、
減肉が抑制された結果、黒鉛ルツボの耐久寿命は比較例
の試験隘8の場合に比べて2倍以上に向上している。
As shown in Table 2, test chamber 7 which is an embodiment of the present invention
In the case of , consumption of graphite material due to reaction with quartz glass,
As a result of suppressing thinning, the durable life of the graphite crucible is more than doubled compared to the case of Test No. 8 of the comparative example.

第2表 (発明の効果) 以上説明したごとく、本発明によれば石英ガラスとの反
応による黒鉛素材の消耗、減肉を著しく低減することが
可能であり、したがって引上げ法によりシリコン等の半
導体単結晶を製造するときに使用される黒鉛ルツボの耐
久寿命を延長できるので、単結晶の製造コスト引下げ効
果は極めて大きい。
Table 2 (Effects of the Invention) As explained above, according to the present invention, it is possible to significantly reduce consumption and thinning of graphite material due to reaction with quartz glass, and therefore, it is possible to significantly reduce consumption and thinning of graphite material due to reaction with quartz glass. Since the durable life of the graphite crucible used when manufacturing the crystal can be extended, the effect of reducing the manufacturing cost of single crystals is extremely large.

Claims (1)

【特許請求の範囲】[Claims] FranklinのP値を用いて計算される黒鉛化度(
1−P)の値が温度2500℃処理後で0.6以下であ
り、かつ半径が1μm以上の細孔の占める容積が0.1
cm^3/g以下である気孔構造を有する黒鉛からなる
ことを特徴とする半導体単結晶製造用黒鉛ルツボ。
Degree of graphitization (calculated using Franklin's P value)
1-P) is 0.6 or less after treatment at a temperature of 2500°C, and the volume occupied by pores with a radius of 1 μm or more is 0.1
A graphite crucible for producing a semiconductor single crystal, characterized in that it is made of graphite having a pore structure of cm^3/g or less.
JP26310486A 1986-11-05 1986-11-05 Graphite crucible for preparation of semiconductor single crystal Pending JPS63117988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26310486A JPS63117988A (en) 1986-11-05 1986-11-05 Graphite crucible for preparation of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26310486A JPS63117988A (en) 1986-11-05 1986-11-05 Graphite crucible for preparation of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS63117988A true JPS63117988A (en) 1988-05-21

Family

ID=17384879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26310486A Pending JPS63117988A (en) 1986-11-05 1986-11-05 Graphite crucible for preparation of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS63117988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187878A (en) * 1992-03-24 1995-07-25 Tokai Carbon Co Ltd Graphite crucible for production of silicon single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187878A (en) * 1992-03-24 1995-07-25 Tokai Carbon Co Ltd Graphite crucible for production of silicon single crystal

Similar Documents

Publication Publication Date Title
JP5269384B2 (en) Semiconductor single crystal manufacturing method using Czochralski method
JP4462808B2 (en) Manufacturing method of quartz glass crucible
GB2301349A (en) Process for producing high purity silicon carbide powder for preparation of a silicon carbide single crystal.
JP6927150B2 (en) Method for manufacturing silicon single crystal
EP0229322A2 (en) Method and apparatus for Czochralski single crystal growing
TWI404840B (en) Silicon wafer and method for producing the same
JP2009173501A (en) Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal
WO2018186150A1 (en) Heat-blocking member, single-crystal-pulling device, and method for producing single crystal silicon ingot
JP4307076B2 (en) Manufacturing method of quartz glass crucible
JPH0218379A (en) Device for pulling up semiconductor single crystal
JP2018104248A (en) Quartz glass crucible for pulling silicon single crystal
JPS63117988A (en) Graphite crucible for preparation of semiconductor single crystal
KR0163839B1 (en) Seed crystal of silicon single crystal
JPS5930792A (en) Apparatus for growing single crystal
JP4461781B2 (en) Silicon single crystal manufacturing method, silicon single crystal manufacturing apparatus design method, and silicon single crystal manufacturing apparatus
Loison et al. Progress in melt growth of Cu2O
JPS63222091A (en) Crucible for pulling up silicon single crystal
JP6627737B2 (en) Single crystal pulling device
JP4774355B2 (en) Protective sheet for crucible and melting apparatus
JPS5849516B2 (en) Method for manufacturing silicon single crystal with few impurities
JP2002293691A (en) Method of manufacturing silicon single crystal and silicon single crystal as well as silicon wafer
JP2508546B2 (en) Quartz crucible for pulling silicon single crystal
JPS5849519B2 (en) Quartz glass crucible for pulling silicon single crystals
JPS62223090A (en) Device for pulling up semiconductor single crystal
WO2021157183A1 (en) Single crystal production method and single crystal pulling apparatus