JPS6311741B2 - - Google Patents

Info

Publication number
JPS6311741B2
JPS6311741B2 JP55063889A JP6388980A JPS6311741B2 JP S6311741 B2 JPS6311741 B2 JP S6311741B2 JP 55063889 A JP55063889 A JP 55063889A JP 6388980 A JP6388980 A JP 6388980A JP S6311741 B2 JPS6311741 B2 JP S6311741B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic
ion
polarity
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55063889A
Other languages
Japanese (ja)
Other versions
JPS56160743A (en
Inventor
Mitsuharu Uo
Tokuhiro Oobiki
Akihiko Sasaki
Hidetomo Nishimura
Tadashi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6388980A priority Critical patent/JPS56160743A/en
Publication of JPS56160743A publication Critical patent/JPS56160743A/en
Publication of JPS6311741B2 publication Critical patent/JPS6311741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン源に係り、特に、中性粒子入
射装置に使用するのに好適なバケツト型のイオン
源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion source, and particularly to a bucket-type ion source suitable for use in a neutral particle injection device.

〔従来の技術〕[Conventional technology]

従来、核融合装置で発生させた超高温プラズマ
を追加過熱する手段として、高速の中性粒子をプ
ラズマに入射させる中性粒子入射装置がある。こ
の中性粒子を作り出すには、イオン源が必要であ
る。その一つに、バケツト型と呼ばれるイオン源
がある。
Conventionally, as a means for additionally heating the ultrahigh-temperature plasma generated in a nuclear fusion device, there is a neutral particle injection device that injects high-speed neutral particles into the plasma. An ion source is required to create these neutral particles. One of these is an ion source called a bucket type.

従来のこの種のイオン源を第1図と第2図に示
す。この従来例においては、方形状の壁12に囲
まれてイオン室14が形成されている。イオン室
14には、周知のフイラメント加熱による熱電子
放出や水素ガス注入等によりプラズマが生成され
る。このプラズマを閉じ込めるために、壁12の
外周に複数列の永久磁石16が配置されている。
イオン室14の出口方向には、引出し電極群すな
わち加速電極18,減速電極20,および接地電
極22が、イオン粒子の流れとは直角方向に配列
されている。イオン室14に閉じ込められたプラ
ズマは、前記引出し電極群によりビーム状となつ
て次段(例えば中性化セル等)に入射する。
A conventional ion source of this type is shown in FIGS. 1 and 2. In this conventional example, an ion chamber 14 is formed surrounded by a rectangular wall 12. Plasma is generated in the ion chamber 14 by thermionic emission by well-known filament heating, hydrogen gas injection, or the like. To confine this plasma, multiple rows of permanent magnets 16 are arranged around the outer periphery of the wall 12.
In the exit direction of the ion chamber 14, a group of extraction electrodes, that is, an acceleration electrode 18, a deceleration electrode 20, and a ground electrode 22 are arranged in a direction perpendicular to the flow of ion particles. The plasma confined in the ion chamber 14 is formed into a beam by the extraction electrode group and enters the next stage (for example, a neutralization cell).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来のバケツト型イオン源を試験した結
果、次のような問題があることが判明した。
As a result of testing the above conventional bucket type ion source, it was found that it had the following problems.

永久磁石16からイオン室14内への漏洩磁束
が大きく、閉じ込めたプラズマが不均一になる欠
点がある。また、イオン室14から引出されたイ
オンビームの発散角が大きくなり、ビームの密度
が減少する欠点がある。
There is a drawback that the leakage magnetic flux from the permanent magnet 16 into the ion chamber 14 is large and the confined plasma becomes non-uniform. Further, there is a drawback that the divergence angle of the ion beam extracted from the ion chamber 14 increases, and the density of the beam decreases.

更に、引出し電極間、特に、加速電極18と減
速電極20との間の放電破壊頻度が高くなる欠点
がある。
Furthermore, there is a drawback that the frequency of discharge breakdown between the extraction electrodes, particularly between the acceleration electrode 18 and the deceleration electrode 20, increases.

このような欠点を解消するために、例えば、特
開昭53―9993号が提案されている。この例は、引
出し電極への磁束の漏洩を防ぐために、環状の強
磁性部材を筒の外周端部に取付ける構造を示して
いる。
In order to eliminate such drawbacks, for example, Japanese Patent Application Laid-Open No. 53-9993 has been proposed. This example shows a structure in which an annular ferromagnetic member is attached to the outer peripheral end of the cylinder in order to prevent leakage of magnetic flux to the extraction electrode.

しかし、本従来例では、永久磁石から引出し電
極への漏洩磁束が抑制されるだけで、プラズマを
閉じ込める磁束密度が強化されるわけではない。
また、プラズマを強力な磁界で閉じ込める核融合
装置本体のポロイダルコイル等からの漏洩磁束に
は、無防備であつた。したがつて、核融合装置か
らの漏洩磁束がイオン室内のプラズマ密度分布を
不均一にさせる。その結果、均一で大出力のイオ
ンビームが得にくくなり、プラズマが消失するよ
うな不都合が生ずるおそれがある。
However, in this conventional example, the leakage magnetic flux from the permanent magnet to the extraction electrode is only suppressed, but the magnetic flux density that confines the plasma is not strengthened.
In addition, it was defenseless against leakage magnetic flux from the poloidal coils of the fusion device itself, which confine the plasma in a strong magnetic field. Therefore, leakage magnetic flux from the fusion device makes the plasma density distribution within the ion chamber non-uniform. As a result, it becomes difficult to obtain a uniform, high-output ion beam, which may cause problems such as plasma disappearance.

本発明の目的は、イオン室外面の永久磁石およ
び核融合装置本体からの漏洩磁束のプラズマへの
影響がなく、発散角の小さなプラズマビームを再
現性良く引出せるイオン源を提供することであ
る。
An object of the present invention is to provide an ion source that can extract a plasma beam with a small divergence angle with good reproducibility without affecting the plasma due to leakage magnetic flux from the permanent magnet on the outer surface of the ion chamber and the fusion device main body.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、熱電子
放出により内部にプラズマを発生させる筒形イオ
ン室の側板外面に前記筒の軸に直角な各断面上で
は同極性であり軸方向では極性が交互に反転する
ように矩形の永久磁石を取付ける一方、前記筒の
底板外面に同一周上では同極性であり筒の軸から
離れる方向では極性が交互に反転するように矩形
の永久磁石を取付け、プラズマからイオン状のビ
ーム粒子を引出す引出し電極群をイオン室内部前
方に備えたイオン源において、少なくとも引出し
電極群に最も近接したイオン室の側板外面に永久
磁石と並行に磁性材を配置するとともに、磁性材
および永久磁石の外側を高透磁率材料の枠体で取
囲んだイオン源を提案するものである。
In order to achieve the above object, the present invention provides that the outer surface of the side plate of a cylindrical ion chamber that generates plasma inside by thermionic emission has the same polarity on each cross section perpendicular to the axis of the cylinder, but has different polarity in the axial direction. Rectangular permanent magnets are installed so that they are alternately reversed, while rectangular permanent magnets are installed on the outer surface of the bottom plate of the cylinder so that the polarity is the same on the same circumference and the polarity is alternately reversed in the direction away from the axis of the cylinder, In an ion source equipped with an extraction electrode group at the front inside the ion chamber for extracting ionic beam particles from the plasma, a magnetic material is arranged parallel to the permanent magnet on the outer surface of the side plate of the ion chamber closest to the extraction electrode group at least, and This paper proposes an ion source in which a magnetic material and a permanent magnet are surrounded by a frame made of a high magnetic permeability material.

前記磁性材は、引出し電極群に最も近接した位
置のみならず、筒の側板および底板外面に永久磁
石と交互に配置してもよい。
The magnetic material may be arranged not only at the position closest to the extraction electrode group, but also on the outer surface of the side plate and bottom plate of the cylinder, alternating with the permanent magnets.

〔作用〕[Effect]

本発明においては、少なくとも引出し電極群に
最も近接したイオン室の側板外面に配置した磁性
材により、永久磁石から引出し電極群に漏洩する
磁束を抑制できるのは勿論であるが、この磁性材
と永久磁石の外側を高透磁率材料の枠体で取囲ん
であるので、イオン室内壁面上で面と平行な磁束
密度を強化できる。したがつて、この枠体を用い
ないときと同じ強さの磁束密度でよければ、永久
磁石の高さを低くして、高価で欠損しやすい永久
磁石の使用量を削減可能である。
In the present invention, the magnetic material placed on the outer surface of the side plate of the ion chamber closest to the extraction electrode group can of course suppress the magnetic flux leaking from the permanent magnet to the extraction electrode group. Since the outside of the magnet is surrounded by a frame made of a high magnetic permeability material, the magnetic flux density parallel to the surface on the inner wall surface of the ion chamber can be strengthened. Therefore, if the magnetic flux density is the same as when the frame is not used, the height of the permanent magnet can be lowered and the amount of expensive and easily damaged permanent magnets used can be reduced.

特に、磁性材を永久磁石と交互に配置した場合
は、その削減効果が著しい。
In particular, when magnetic materials are arranged alternately with permanent magnets, the reduction effect is remarkable.

また、高透磁率材料で取囲んだ構造は、外部か
らイオン室に印加される磁界をシールドする機能
を果し、核融合装置本体のポロイダルコイル等か
らの漏洩磁束の影響を排除できるほか、イオン源
を近接させて配置しても相互の干渉がないという
利点がある。
In addition, the structure surrounded by high magnetic permeability material has the function of shielding the magnetic field applied to the ion chamber from the outside, and can eliminate the influence of leakage magnetic flux from the poloidal coil of the fusion device main body. There is an advantage that there is no mutual interference even if they are placed close to each other.

さらに、磁性材を配置し、高透磁率材料で取囲
むことにより、引出し電極群への漏洩磁束を地磁
気と同程度まで低下させてあるので、漏洩磁束に
よる磁界と電界との複合作用に基づく電子の飛程
の増加が抑えられ、ガス電離量の異常な増加がな
く、放電破壊が生ずる確率が低くなる。
Furthermore, by arranging the magnetic material and surrounding it with a high magnetic permeability material, the leakage magnetic flux to the extraction electrode group is reduced to the same level as the earth's magnetism. The increase in the range of the gas is suppressed, there is no abnormal increase in the amount of gas ionization, and the probability of discharge breakdown occurring is reduced.

〔実施例〕〔Example〕

次に、図面第3図〜第5図を参照して、本発明
の実施例を説明する。
Next, an embodiment of the present invention will be described with reference to FIGS. 3 to 5 of the drawings.

本発明によるイオン源の第1実施例を第3図に
示す。なお、第1図および第2図の従来例と同機
能を果す部分には同一符号を付してある。
A first embodiment of the ion source according to the invention is shown in FIG. Note that parts that perform the same functions as those of the conventional example shown in FIGS. 1 and 2 are given the same reference numerals.

方形状の壁12に囲まれたイオン室14の出口
方向には、イオン流と直角の方向に、加速電極1
8,減速電極20,接地電極22の順に引出し電
極群が配置されている。
In the direction of the exit of the ion chamber 14 surrounded by the rectangular wall 12, an accelerating electrode 1 is placed in a direction perpendicular to the ion flow.
8, a deceleration electrode 20, and a ground electrode 22 are arranged in this order.

イオン室の壁12の外面には周囲を取囲むよう
に方形枠状の永久磁石16が配列されている。こ
れら永久磁石は、同一周上では同極性であり、と
なり合う周上では交互に極性が異なる。イオン室
14外で加速電極18に最も近い位置には、永久
磁石16と同形の磁性材24が配置されている。
さらに、永久磁石16および磁性材24は、断面
がコ字状の高透磁率材料からなる枠体26により
密着して取囲まれている。
Permanent magnets 16 in the shape of a rectangular frame are arranged on the outer surface of the wall 12 of the ion chamber so as to surround the periphery. These permanent magnets have the same polarity on the same circumference, and alternately have different polarities on adjacent circumferences. A magnetic material 24 having the same shape as the permanent magnet 16 is arranged outside the ion chamber 14 at a position closest to the accelerating electrode 18 .
Further, the permanent magnet 16 and the magnetic material 24 are closely surrounded by a frame 26 made of a high magnetic permeability material and having a U-shaped cross section.

磁性材24は、磁気抵抗の小さな磁気回路とし
て作用している。また、本実施例では、永久磁石
16として残留磁束密度の大きな希土類コバルト
磁石(商品名HICOREX18日立金属製)を使用
し、枠体26として厚さ10mmの軟鉄板(比透磁率
約1000)を用いた。なお、磁性材24には、枠体
26と同一材料を永久磁石16と同一寸法の断面
8mm×10mm長さ156mmに切断加工して使用した。
The magnetic material 24 acts as a magnetic circuit with low magnetic resistance. In addition, in this embodiment, a rare earth cobalt magnet (product name: HICOREX18 manufactured by Hitachi Metals) with a large residual magnetic flux density is used as the permanent magnet 16, and a soft iron plate with a thickness of 10 mm (relative magnetic permeability of about 1000) is used as the frame 26. there was. The magnetic material 24 was made of the same material as the frame 26 and cut to have the same dimensions as the permanent magnet 16, 8 mm x 10 mm in cross section and 156 mm in length.

本実施例では、引出し電極群に最も近いところ
に磁性材24を配置してあるので、ここでは磁束
が発生せず、単に磁気抵抗の小さな磁気回路とな
つている。したがつて、引出し電極群付近での漏
洩磁束は、従来型と比較して、1/10に減少する。
In this embodiment, since the magnetic material 24 is disposed closest to the extraction electrode group, no magnetic flux is generated here, and the magnetic circuit is simply a magnetic circuit with low magnetic resistance. Therefore, the leakage magnetic flux near the extraction electrode group is reduced to 1/10 compared to the conventional type.

本発明によるイオン源の第2実施例を第4図に
示す。本実施例では、引出し電極群に最も近い位
置に磁性材24を配置し、その他の部分は、永久
磁石16と磁性材24とを交互に配置してある。
A second embodiment of the ion source according to the invention is shown in FIG. In this embodiment, the magnetic material 24 is arranged at the position closest to the extraction electrode group, and the permanent magnets 16 and the magnetic materials 24 are arranged alternately in the other parts.

バケツト型イオン源の永久磁石は、本来、各列
毎にN極とS極とが互いに逆向きになるように配
置されている。すなわち、1つ飛びの位置には同
極性を持つた永久磁石が位置している。したがつ
て、本実施例のように、1つ飛びの位置に磁性材
24を配置しても磁束分布の形が変化しないの
で、永久磁石16と磁性材24とを交互に配置で
きる。
The permanent magnets of the bucket ion source are originally arranged so that the north and south poles of each row are in opposite directions. That is, permanent magnets with the same polarity are located at every position. Therefore, as in this embodiment, even if the magnetic materials 24 are placed at alternate positions, the shape of the magnetic flux distribution does not change, so the permanent magnets 16 and the magnetic materials 24 can be placed alternately.

本実施例の場合も引出し電極群付近において
は、漏洩磁束が、従来に比べて、1/15に減少する
効果がある。
This embodiment also has the effect of reducing the leakage magnetic flux to 1/15 in the vicinity of the extraction electrode group compared to the conventional case.

ところで、上記第1,第2実施例において、永
久磁石を磁性材に置換えると、プラズマ閉じ込め
性能が低下することが懸念される。プラズマ閉じ
込め性能を確認するために、第5図Aのように配
置したイオン源のイオン室14の壁12内壁面上
での面と平行な磁束成分の実測結果を、同図Bに
示す。なお、第5図Bの横軸は、壁12の内壁面
上の位置を表わしている。
By the way, in the first and second embodiments, if the permanent magnet is replaced with a magnetic material, there is a concern that the plasma confinement performance will deteriorate. In order to confirm the plasma confinement performance, the actual measurement result of the magnetic flux component parallel to the inner wall surface of the wall 12 of the ion chamber 14 of the ion source arranged as shown in FIG. 5A is shown in FIG. 5B. Note that the horizontal axis in FIG. 5B represents the position on the inner wall surface of the wall 12.

実線uは、従来例と同様に、磁気回路素子2
8,29,30が全部希土類コバルト磁石で、し
かも枠体26がない場合である。一点鎖線vは、
第3図の第1実施例と同様に、引出し電極群に最
も近接した磁気回路素子28が軟鉄性の磁性材の
場合である。破線wは、第4図の第2実施例のよ
うに、磁気回路素子28および1つ飛びの位置に
ある磁気回路素子30が軟鉄で、磁気回路素子2
9が希土類コバルト磁石の場合である。
The solid line u indicates the magnetic circuit element 2 as in the conventional example.
8, 29, and 30 are all rare earth cobalt magnets, and there is no frame 26. The dashed line v is
As in the first embodiment shown in FIG. 3, the magnetic circuit element 28 closest to the extraction electrode group is made of soft iron magnetic material. The broken line w indicates that the magnetic circuit element 28 and the magnetic circuit elements 30 at every position are made of soft iron, as in the second embodiment shown in FIG.
9 is the case of a rare earth cobalt magnet.

従来例(u)に比較して、第1実施例(v)は磁気
回路素子28の付近で磁束が40%ほど強くなつて
おり、他の部分でも60〜80%程強い磁束分布を示
している。第2実施例(W)は磁気回路素子28
付近で、第1実施例と同様に、磁束が従来例uに
比較して40%ほど強くなつており、他の部分でも
40〜50%程強い磁束分布を示している。したがつ
て、第1,第2実施例において、プラズマ閉じ込
め能力は従来よりも高まり、低下することはな
い。
Compared to the conventional example (u), in the first example (v), the magnetic flux is about 40% stronger near the magnetic circuit element 28, and other parts also show a magnetic flux distribution that is about 60 to 80% stronger. There is. The second embodiment (W) is a magnetic circuit element 28
Similar to the first example, the magnetic flux in the vicinity is about 40% stronger than in the conventional example u, and in other parts as well.
It shows a strong magnetic flux distribution of about 40-50%. Therefore, in the first and second embodiments, the plasma confinement ability is higher than before and does not deteriorate.

これらの実施例によれば、永久磁石16の少な
くとも引出し電極群に一番近い側に磁性材24を
使用し、それらを枠体26で取囲んであるので、
引出し電極群付近の漏洩磁束が著しく減少する。
According to these embodiments, the magnetic material 24 is used at least on the side of the permanent magnet 16 closest to the extraction electrode group, and the magnetic material 24 is surrounded by the frame 26.
Leakage magnetic flux near the extraction electrode group is significantly reduced.

また、希土類コバルト磁石はもろくて破損し易
く高価であるが、これを一部軟鉄の磁性材24に
したため、取扱いが容易で、安価となる。特に、
第2実施例において、この効果が著しい。
In addition, rare earth cobalt magnets are brittle, easily damaged, and expensive, but since the magnetic material 24 is partially made of soft iron, it is easy to handle and inexpensive. especially,
In the second embodiment, this effect is remarkable.

希土類コバルト磁石はキユーリー点が900℃程
度であり、磁気的な特性はそれよりも低い温度で
熱劣化する。これを一部軟鉄にすれば熱的弱点が
減り、永久磁石等の冷却が容易となる。
Rare earth cobalt magnets have a Curie point of around 900°C, and their magnetic properties deteriorate thermally at lower temperatures. If part of this is made of soft iron, the thermal weakness will be reduced and permanent magnets etc. will be easier to cool.

さらに、漏洩磁束が1/10〜1/15程度に減少した
ため、引き出し電極付近でのプラズマの状態が改
善され、従来は加速電流の約25%が減速電極20
に流れてしまつていたものが、約5%にまで減
り、プラズマの引出し効率が20%程向上し、95%
となる。
Furthermore, since the leakage magnetic flux has been reduced to about 1/10 to 1/15, the plasma condition near the extraction electrode has been improved, and about 25% of the accelerating current is
The amount of plasma that had previously flowed into
becomes.

加えて、既に述べたように、引き出し電極間で
の放電破壊の発生を完全に防止できる。
In addition, as already mentioned, the occurrence of discharge breakdown between the extraction electrodes can be completely prevented.

なお、上記実施例では、希土類コバルト磁石を
使用したが、これに代えて、残留磁束密度は小さ
いもののより安価なアルニコ・フエライトなどの
磁石を電極群に最も近い一列を除いた他の箇所に
使用すれば、イオン室14内のプラズマ閉じ込め
性能を増大させ、しかも引出し電極群付近の漏洩
磁束を減らせる。
In the above example, a rare earth cobalt magnet was used, but instead, magnets such as alnico ferrite, which has a small residual magnetic flux density but is cheaper, were used in other locations except for the one row closest to the electrode group. This increases the plasma confinement performance within the ion chamber 14 and reduces leakage magnetic flux near the extraction electrode group.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、イオン室外面の永久磁石およ
び核融合装置本体からの漏洩磁束のプラズマへの
影響がなく、発散角の小さなプラズマビームを再
現性良く引出せるイオン源が得られる。
According to the present invention, it is possible to obtain an ion source that can extract a plasma beam with a small divergence angle with good reproducibility without affecting the plasma due to leakage magnetic flux from the permanent magnet on the outer surface of the ion chamber and the fusion device main body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバケツト形イオン源の一例を示
す斜視図、第2図は第1図示例の平断面図、第3
図は本発明によるイオン源の第1実施例を示す平
断面図、第4図は同じく第2実施例を示す平断面
図、第5図Aは複数の磁気回路を備えたイオン室
壁面の部分拡大断面図、第5図Bはその磁束分布
を示す図である。 12……壁、14……イオン室、16……永久
磁石、18……加速電極、20……減速電極、2
2……接地電極、24……磁性材、26……枠
体。
FIG. 1 is a perspective view showing an example of a conventional bucket-type ion source, FIG. 2 is a cross-sectional plan view of the example shown in FIG. 3, and FIG.
The figure is a plan sectional view showing the first embodiment of the ion source according to the present invention, FIG. 4 is a plan sectional view showing the second embodiment, and FIG. The enlarged sectional view, FIG. 5B, is a diagram showing the magnetic flux distribution. 12...Wall, 14...Ion chamber, 16...Permanent magnet, 18...Acceleration electrode, 20...Deceleration electrode, 2
2... Ground electrode, 24... Magnetic material, 26... Frame.

Claims (1)

【特許請求の範囲】 1 熱電子放出により内部にプラズマを発生させ
る筒形イオン室の側板外面に前記筒の軸に直角な
各断面上では同極性であり軸方向では極性が交互
に反転するように矩形の永久磁石を取付ける一
方、前記筒の底板外面に同一周上では同極性であ
り前記軸から離れる方向では極性が交互に反転す
るように矩形の永久磁石を取付け、前記プラズマ
からイオン状のビーム粒子を引出す引出し電極群
を前記イオン室内部前方に備えたイオン源におい
て、 少なくとも前記引出し電極群に最も近接したイ
オン室の側板外面に前記永久磁石と並行に磁性材
を配置するとともに、 前記磁性材および永久磁石の外側を高透磁率材
料の枠体で取囲んだことを特徴とするイオン源。 2 特許請求の範囲第1項において、 前記永久磁石と磁性材とを前記筒の側板および
底板外面に交互に配置したことを特徴とするイオ
ン源。
[Claims] 1. On the outer surface of the side plate of a cylindrical ion chamber that generates plasma inside by thermionic emission, the polarity is the same on each cross section perpendicular to the axis of the cylinder, and the polarity is alternately reversed in the axial direction. A rectangular permanent magnet is attached to the outer surface of the bottom plate of the cylinder, and a rectangular permanent magnet is attached to the outer surface of the bottom plate of the cylinder so that the polarity is the same on the same circumference and the polarity is alternately reversed in the direction away from the axis. In an ion source including an extraction electrode group for extracting beam particles at the front inside the ion chamber, a magnetic material is disposed in parallel with the permanent magnet on the outer surface of the side plate of the ion chamber closest to the extraction electrode group at least, and the magnetic material An ion source characterized in that a frame made of a high magnetic permeability material surrounds the outside of the material and the permanent magnet. 2. The ion source according to claim 1, wherein the permanent magnet and the magnetic material are alternately arranged on the outer surface of the side plate and the bottom plate of the tube.
JP6388980A 1980-05-16 1980-05-16 Ion source Granted JPS56160743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6388980A JPS56160743A (en) 1980-05-16 1980-05-16 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6388980A JPS56160743A (en) 1980-05-16 1980-05-16 Ion source

Publications (2)

Publication Number Publication Date
JPS56160743A JPS56160743A (en) 1981-12-10
JPS6311741B2 true JPS6311741B2 (en) 1988-03-15

Family

ID=13242304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6388980A Granted JPS56160743A (en) 1980-05-16 1980-05-16 Ion source

Country Status (1)

Country Link
JP (1) JPS56160743A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166869A (en) * 1984-09-11 1986-04-05 Toshiba Corp Rf type ion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539993A (en) * 1976-07-15 1978-01-28 Toshiba Corp Ion producing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539993A (en) * 1976-07-15 1978-01-28 Toshiba Corp Ion producing device

Also Published As

Publication number Publication date
JPS56160743A (en) 1981-12-10

Similar Documents

Publication Publication Date Title
US7304435B2 (en) Device for confinement of a plasma within a volume
JP6019121B2 (en) Ionization vacuum measuring cell
JP4509097B2 (en) Magnetic circuit for magnetron sputtering
US5548183A (en) Magnetic field immersion type electron gun
US6919672B2 (en) Closed drift ion source
EP0622621B1 (en) Opposed magnet ionization gauge
EP0084653B1 (en) Composite concentric-gap magnetic lens
US5111494A (en) Magnet for use in a drift tube of an x-ray tube
JP2008234880A (en) Ion source
JPS6311741B2 (en)
CA1143770A (en) Vacuum circuit interrupter
JP2010515282A (en) Permanent magnet with improved field characteristics and apparatus using the same
JP2004113455A (en) Magnetic field generating device
JP4489868B2 (en) Cathode electrode apparatus and sputtering apparatus
JPS6132779B2 (en)
JPS6250941B2 (en)
JPH0373598A (en) Magnetic shielding device
JP2645572B2 (en) Cathode ray tube display
JPH05290748A (en) Magnetron
JP3652927B2 (en) Insertion light source with radiation resistance
JP4219925B2 (en) Magnetron sputtering equipment
JPS6211449B2 (en)
JP3758446B2 (en) Ion source
JP2015018609A (en) Microwave ion source and ion extraction part
CN117551974A (en) Magnetron sputtering cathode device and working method thereof