JPS63116727A - Dry dehumidifying material - Google Patents

Dry dehumidifying material

Info

Publication number
JPS63116727A
JPS63116727A JP26484186A JP26484186A JPS63116727A JP S63116727 A JPS63116727 A JP S63116727A JP 26484186 A JP26484186 A JP 26484186A JP 26484186 A JP26484186 A JP 26484186A JP S63116727 A JPS63116727 A JP S63116727A
Authority
JP
Japan
Prior art keywords
dehumidifying material
dry
chloride
dehumidifying
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26484186A
Other languages
Japanese (ja)
Inventor
Fumikazu Toda
文和 戸田
Hisaaki Yokota
横田 久昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26484186A priority Critical patent/JPS63116727A/en
Publication of JPS63116727A publication Critical patent/JPS63116727A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details

Abstract

PURPOSE:To prevent the generation of liquid droplets from a dehumidifying material due to mosture absorption, by containing 75wt% or more of an Si- source in terms of SiO2 or containing 30wt% or more of the Si-source in terms of SiO2 and 5-40wt% of chloride. CONSTITUTION:As the base material of a dry dehumidifying material, 75wt% or more of a silica (Si) source (e.g., a silica gel) in term of SiO2 (a) is contained or 30wt% or more of the Si-source in terms of SiO2 and 5-40wt% of chloride (e.g., lithium chloride) (b) are contained to obtained the dry dehumidifying material. When this dehumidifying material is prepared, 2-25wt% a binder (e.g; colloidal silica) is pref. added in order to improve the moldabililty of the dehumidifying material and to obtained strength as a molding. Further, this dehumidifying material is pref. formed into a accumulated lumpy article of linear extrudates or a honeycomb shape. When this dehumidifying material is used as the dehumidifying rotary body of a dry dehumidifier, a problem such that an aqueous chloride solution due to moistuure absorption is scattered with rotation can be solved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は乾式除湿材に関する [従来技イ1ド〔] 電子1機械、食品、医薬品等の多くの分野では防錆、乾
燥、等の目的で多数の除湿機械が使用されている。除湿
方法としては、冷却式、吸収式(湿式)、圧縮式、吸着
式、吸収式(乾式)等の種々の方式がある。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a dry dehumidifying material. A large number of dehumidification machines are used in There are various dehumidification methods, such as a cooling type, an absorption type (wet type), a compression type, an adsorption type, and an absorption type (dry type).

これらの除湿方法の中で、乾燥空気の需要の高まりに伴
なって、簡便に除湿ができ、かつ低露点の空気が得られ
る吸収式(乾式)(以下乾式除湿機械とする)が数多く
用いられるようになった。
Among these dehumidification methods, as the demand for dry air increases, absorption type (dry type) (hereinafter referred to as dry dehumidification machines), which can easily dehumidify air and provide air with a low dew point, is increasingly used. It became so.

乾式除湿機械としては、実開昭58−28616に示さ
れている様に、被処理ガス通路と吸湿材の再生を行う再
生ガス通路を有し、両道路にまたがって回転自在に構成
された乾式除湿材が設けられており、該回転体が回転す
る事によって、被処理ガス中からの除湿と吸湿された除
湿材の再生を交互に連続して使用する機械が一般的であ
る。
As shown in Japanese Utility Model Application No. 58-28616, a dry type dehumidifying machine has a gas passage to be treated and a regenerating gas passage for regenerating moisture absorbing material, and is configured to freely rotate across both roads. Generally, a machine is provided with a dehumidifying material, and by rotating the rotary body, dehumidification from the gas to be treated and regeneration of the dehumidifying material that has been absorbed are alternately and continuously performed.

このような乾式除湿機械で用いられる乾式除湿材として
は、 ■特開昭55−159827号公報に示されているよう
に、アスベスト、プラスチック、又は活性炭を含有せた
素材をハニカム状に成型したもの史)また、吸湿能を更
に向上させるため、前記の素材に塩化リチウム、塩化カ
ルシウム等の塩化物を担持させた素材をハニカム状に成
型したものがある。
Dry dehumidifying materials used in such dry dehumidifying machines include: ■As shown in Japanese Patent Application Laid-Open No. 159827/1982, materials containing asbestos, plastic, or activated carbon are molded into a honeycomb shape. Furthermore, in order to further improve the moisture absorbing ability, there is a material in which the above-mentioned material is made to support a chloride such as lithium chloride or calcium chloride and is formed into a honeycomb shape.

[発明が解決しようどする問題点] ■乾式除湿材のうち塩化物を担持させてないものは吸湿
能が低いために実際に用いられる事は少ない。
[Problems to be solved by the invention] ■ Among dry dehumidifying materials, those that do not carry chlorides are rarely actually used because of their low moisture absorption ability.

■一方、塩化物を担持させたものは、塩化物を担持させ
てないものに比べ吸湿能は向上するが、塩化物が水溶液
の形となり除湿材の回転に伴ない飛散するという問題点
が有る。
■On the other hand, chloride-supported materials have improved moisture absorption ability compared to non-chloride-supported materials, but there is a problem in that the chlorides become an aqueous solution and scatter as the dehumidifying material rotates. .

この点をより詳細に述べる。This point will be discussed in more detail.

すなわち、このような塩化物を担持した除湿材の場合、
除湿材の保水性能が除湿材の吸湿能に大きな影響を与え
る。
In other words, in the case of a dehumidifying material that carries such chlorides,
The water retention capacity of a dehumidifying material has a large effect on its moisture absorption ability.

しかるに、例えば塩化物として塩化リチウムを用いた場
合には、被処理ガス中の湿分をLiC文ΦnH2Oの形
で吸収し水溶液となる。
However, when lithium chloride is used as the chloride, for example, the moisture in the gas to be treated is absorbed in the form of LiC particles ΦnH2O and becomes an aqueous solution.

かくて、除湿材を構成する材質が保水性能を超えるにい
たると、そこに塩化リチウム水溶液の液滴を生じ、該液
滴は除湿材の回転につれて飛散するに至る。
Thus, when the water retention capacity of the material constituting the dehumidifying material exceeds its water retention capacity, droplets of lithium chloride aqueous solution are generated there, and these droplets are scattered as the dehumidifying material rotates.

このように、塩化物が水溶液の形となり飛散すると、除
湿材から塩化物が流出してしまう為に、除湿材の除湿能
力が徐々に低下するという問題点が有る。
As described above, when chloride is dispersed in the form of an aqueous solution, the chloride flows out from the dehumidifying material, resulting in a problem that the dehumidifying ability of the dehumidifying material gradually decreases.

又、飛散した塩化物の水溶液により乾式除湿機械を用い
ているプロセスに腐食を生じさせるという問題点も有る
Another problem is that the scattered aqueous chloride solution causes corrosion in processes using dry dehumidification machines.

なお、除湿材中の塩化物含有量を多くするほど除湿性能
が向上することは容易に推察することができるが、以上
のように、この含有量は、塩化物水溶液の飛散によって
制限され、除湿材の保水性能が高いほど多く含有させる
ことができる。
Note that it can be easily inferred that the dehumidification performance improves as the chloride content in the dehumidifying material increases, but as mentioned above, this content is limited by the scattering of the chloride aqueous solution, and the dehumidification performance increases as the chloride content increases. The higher the water retention capacity of the material, the more it can be contained.

しかしながら、アスベストやプラスチックさらには活性
炭を含有させた素材においても、保水性能は十分満足で
きるものではなく、その結果として、塩化物の含有ji
¥すなわち、吸湿性能に限界があり、性能を」−げよう
とすれば長期使用中において塩化物の飛散を生じ、性能
劣化、缶体腐食等の問題が発生していた。
However, the water retention performance of materials containing asbestos, plastic, and even activated carbon is not fully satisfactory, and as a result, chloride content
In other words, there is a limit to the moisture absorption performance, and if you try to improve the performance, chloride will scatter during long-term use, causing problems such as performance deterioration and can corrosion.

[問題点を解決するための手段] 上記問題点は、Si源をSiO2換算で75wt%以上
含有するか又はSi源をSiO2換算で30wt%以上
と塩化物を5〜40wt%含有することを特徴とする乾
式除湿材によって解決される。
[Means for solving the problem] The above problem is characterized by containing a Si source of 75 wt% or more in terms of SiO2, or containing a Si source of 30 wt% or more in terms of SiO2 and 5 to 40 wt% of chloride. This problem can be solved by using dry dehumidification materials.

本発明者は前述のような事情に着目して数々検討した結
果、除湿材素材として従来用いられているアスベストや
プラスチック、活性炭にかえてSi源をSiO2換算で
75wt%含有する素材を選定するか、あるいは、Si
源をSiO2換算で30wt%含有し、かつ塩化物を5
〜40wt%含有する素材を選定することにより吸湿能
を大幅に向上できるとの知見に基づいて本発明を完成さ
せたものである。
As a result of numerous studies focusing on the above-mentioned circumstances, the inventor of the present invention has decided to select a material containing 75 wt% Si source in terms of SiO2 instead of asbestos, plastic, and activated carbon that have been conventionally used as dehumidifying material materials. , or Si
Contains 30 wt% of source in terms of SiO2 and 5% of chloride.
The present invention was completed based on the knowledge that the moisture absorption ability can be significantly improved by selecting a material containing ~40 wt%.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

(Si 源) ここでSi源の含有量をSiO2換算で75%以上含有
するとした理由は、Si源としてシリカゲルを用い、シ
リカゲル含有量をSiO2換算したSiO2量と、吸湿
量との関係を示す第1図から、吸湿量はSi源のSiO
2換算値が増加するに従い増加し、特に70%程度に成
ると急激に増加し始め、75%以上に成ると吸湿量は一
段と増加しはじめる。従ってSi源の含有量はSiO2
換算で75%以上含有するとした。
(Si source) The reason why the content of the Si source is set to be 75% or more in terms of SiO2 is that silica gel is used as the Si source, and the silica gel content is calculated by using a method that shows the relationship between the amount of SiO2 in terms of SiO2 and the amount of moisture absorption. From Figure 1, the amount of moisture absorption is determined by the amount of moisture absorbed by the Si source, SiO.
It increases as the 2-conversion value increases, and especially when it reaches about 70%, it starts to increase rapidly, and when it reaches 75% or more, the moisture absorption amount starts to increase further. Therefore, the content of Si source is SiO2
It was assumed that the content was 75% or more in terms of conversion.

なお2、第1図に示した実験は、結合剤としてコロイダ
ルアルミナを用い、50X50X50mmの大きさとし
たハニカム状の成型体を、温度30℃、相対湿度80%
の雰囲気に24時間放置し、実験前後の試験片の重量の
変化から吸湿量を求めたものである。
2. In the experiment shown in Figure 1, colloidal alumina was used as a binder, and a honeycomb-shaped molded body with a size of 50 x 50 x 50 mm was heated at a temperature of 30°C and a relative humidity of 80%.
The test piece was left in an atmosphere for 24 hours, and the amount of moisture absorbed was determined from the change in weight of the test piece before and after the experiment.

また、第1図に示した実験ではSi源としてシリカゲル
を用いて行なったが、Si源としてはケイ砂、ケイ石、
ゼオライト、ケイ藻土、ケイ酸白土、シラス、多孔質ガ
ラス、シリカゲル等から任意に選択する11γが出来る
In addition, in the experiment shown in Figure 1, silica gel was used as the Si source, but silica sand, silica stone,
11γ can be arbitrarily selected from zeolite, diatomaceous earth, silicate clay, shirasu, porous glass, silica gel, etc.

特にシリカゲルが性能、経済性等の点より有利である。In particular, silica gel is advantageous in terms of performance, economy, etc.

なお、これらのSi[は粉粒体として入手できる。Note that these Si[s] can be obtained as powder or granules.

(塩化物) また1本発明者はSi源を30wt%以上含有する素材
中に塩化物を5〜40wt%添加することによっても吸
湿能を大幅に向上させることができるとの知見をえた。
(Chloride) The present inventor also found that the moisture absorption ability can be significantly improved by adding 5 to 40 wt% of chloride to a material containing 30 wt% or more of a Si source.

次に、塩化物を5〜40wt%含有し、Si源を換算で
30wt%以上含有するとした理由であるが、塩化物が
5%未満の場合には吸湿性能が著しく低下し、除湿材と
して、性能が低くなる。
Next, the reason why the chloride content is 5 to 40 wt% and the Si source content is 30 wt% or more in terms of Si source is that if the chloride content is less than 5%, the moisture absorption performance is significantly reduced, so it is difficult to use as a dehumidifying material. Performance will be lower.

また、40%を超えた含有量どなると、除湿材表面に塩
化物水溶液の液滴が発生し、除湿材の回転にともない液
滴が飛散し、そのために長期に使用すると、除湿材の性
能低下と、液滴による腐食の問題が生じる為である。
In addition, if the content exceeds 40%, droplets of chloride aqueous solution will be generated on the surface of the dehumidifier, and the droplets will scatter as the dehumidifier rotates, resulting in a decrease in the performance of the dehumidifier if used for a long time. This is because the problem of corrosion caused by droplets occurs.

なお、塩化物の含有量は高いほど除湿材の吸湿能が高く
なるが、25wt%を上回った範囲においては含有量増
加による吸湿能の向上の割合が小さくなるため、液滴発
生の観点より25wt%以下とすることが好ましい(第
2請求項)。
Note that the higher the chloride content, the higher the moisture absorption ability of the dehumidifier, but in a range exceeding 25 wt%, the rate of improvement in moisture absorption ability due to an increase in chloride content decreases, so from the viewpoint of droplet generation, 25 wt% % or less (second claim).

塩化物としては塩化リチウム、塩化カルシウム等が例示
される。特に塩化リチウムが性能の点からも好ましい(
第3請求項)。
Examples of chlorides include lithium chloride and calcium chloride. In particular, lithium chloride is preferable from the viewpoint of performance (
3rd claim).

一塩化物の含有方法 なお、塩化物を含有させるには、たとえば、希望する形
状に成形し、乾燥及び/又は焼成した成形体に塩化物の
水溶液を含浸させて乾燥すればよい。
Method for Incorporating Monochloride In order to contain chloride, for example, a molded product formed into a desired shape, dried and/or fired may be impregnated with an aqueous solution of chloride, and then dried.

この塩化物水溶液の含浸方法についても特段の制限はな
く常法に従えばよい0以上説明した方法は多孔質シリカ
成形体を得た後に、この成形体に塩化物を担持させる方
法であるが、混合−混練時から塩化物を添加し、その後
成形する方法をとってもよい。
There are no particular restrictions on the method of impregnating this aqueous chloride solution, and any conventional method may be followed.The method described above is a method in which a porous silica molded body is obtained and then a chloride is supported on this molded body. A method may also be used in which chloride is added from the time of mixing and kneading, followed by molding.

そして、塩化物の含有量を5〜40wt%とした場合に
、Si源をSiO2換算で30wt%以ドとすると除湿
材の性能が急激に低下しはじめ、除湿材としての性能が
充分に発揮できない為、この場合はSi源をSiO2換
算で30wt%以上とする。
When the chloride content is 5 to 40 wt%, and the Si source is increased to 30 wt% or more in terms of SiO2, the performance of the dehumidifying material begins to deteriorate rapidly, and its performance as a dehumidifying material cannot be fully demonstrated. Therefore, in this case, the Si source should be 30 wt% or more in terms of SiO2.

(結合剤) 本発明に係る除湿材を製造する過程で、除湿材の成形性
を良好にしたり、成形体としての強度を得るために結合
剤を2〜25wt%添加することが好ましい(第4請求
項)。
(Binder) In the process of manufacturing the dehumidifying material according to the present invention, it is preferable to add 2 to 25 wt% of a binder in order to improve the moldability of the dehumidifying material and to obtain strength as a molded product (No. 4). claims).

この場合、結合剤の添加量を2〜25 W t 96と
する理由は、結合剤の添加量が2%以下の場合には結合
剤を添加した効果が無く、また結合材の添加量が25%
を超える場合には、Si源である、たとえばシリカゲル
の表面が結合剤によって覆われてしまう事により、除湿
材の性能を劣化させるおそれがあるためである。
In this case, the reason why the amount of binder added is 2 to 25 Wt96 is that if the amount of binder added is 2% or less, there is no effect of adding the binder, and if the amount of binder added is 25% or less, there is no effect. %
This is because if it exceeds 100%, the surface of the Si source, for example, silica gel, may be covered with the binder, which may deteriorate the performance of the dehumidifying material.

結合剤としては特段の制限はなく、粘結機能を発揮しう
るちのであればよい。
There are no particular restrictions on the binder, as long as it exhibits a caking function.

有機系のものとしては、例えば、MC,CMC,ε粉、
CMS (カルボキシメチルスターチ)、HEC(ヒド
ロキシエチルセルローズ)、MPC(ヒドロキシプロピ
ルセルローズ)、リグニンスルホン酸ナトリウム、リグ
ニンスルホンカルシウム、ポリビニルアルコール、ポリ
アクリル酸エステル、ポリメタクリル酸エステル、フェ
ノール樹脂、メラミン樹脂等が例示される。
Examples of organic materials include MC, CMC, ε powder,
CMS (carboxymethyl starch), HEC (hydroxyethyl cellulose), MPC (hydroxypropyl cellulose), sodium lignin sulfonate, calcium lignin sulfonate, polyvinyl alcohol, polyacrylic acid ester, polymethacrylic acid ester, phenolic resin, melamine resin, etc. Illustrated.

また、無機系のものとしては、例えば、コロイダルシリ
カ、コロイダルアルミナ、コロイダルチタン、硅酸塩、
アルミン酸塩、金属アルコキシド、ベントナイト、カオ
リナイト、セビオライト、アタパルジャイト、リン酸ア
ルミニウム等が例示される。
Examples of inorganic materials include colloidal silica, colloidal alumina, colloidal titanium, silicates,
Examples include aluminate, metal alkoxide, bentonite, kaolinite, seviolite, attapulgite, and aluminum phosphate.

これらの有機結合剤、無機結合剤は2種以上添加しても
構わない。
Two or more of these organic binders and inorganic binders may be added.

なお、加熱再生による再生使用を行なう乾式除湿機械の
場合にあっては、加熱による結合剤成分の劣化が無いと
いう点から無機結合剤を選択することが好ましい(第1
0請求項) なお、結合剤等にSi源を含む場合はこれらをSi源の
一部として計算する。
In addition, in the case of a dry dehumidifying machine that performs reuse by heating, it is preferable to select an inorganic binder because the binder component does not deteriorate due to heating (first
(Claim 0) If the binder or the like contains a Si source, these are calculated as part of the Si source.

(ポロンティ) なお、成形体のポロシティを0.2cc/g以上とする
ことが好ましい(第5請求項)。
(Poronty) Note that it is preferable that the porosity of the molded body is 0.2 cc/g or more (fifth claim).

この場合、ポロシティを0 、2 c c / g以下
にするとオープンホールの数が減少する為に除湿材の表
面近傍で湿度を吸収する為、除湿材の大きさに比較して
除湿量が少なくなり、結果として除湿性能が低下するお
それがあるためである。ここでポロシティとは、微細気
孔中に存在するガスを完全に脱気した除湿材を純粋水銀
中に浸漬し密封したのち、加圧して水銀を微細気孔中に
圧入し、水銀の見掛の体積の減少を測定し、その値を除
湿材の重量で割った値をポロシティとした。
In this case, when the porosity is set to 0.2 c c / g or less, the number of open holes decreases and the moisture is absorbed near the surface of the dehumidifying material, so the amount of dehumidification becomes smaller compared to the size of the dehumidifying material. This is because dehumidification performance may deteriorate as a result. Here, porosity refers to the apparent volume of mercury, which is obtained by immersing a dehumidifying material that has completely deaerated the gas present in the micropores in pure mercury, sealing it, and pressurizing it to inject mercury into the micropores. The porosity was determined by dividing the value by the weight of the dehumidifying material.

(製造方法) 除湿材の成形体を製造する方法をしては、特別の制限は
無く、希望する成形体形状に適した成形方法を選択すれ
ばよい。
(Manufacturing method) There are no particular restrictions on the method of manufacturing the molded body of the dehumidifying material, and a molding method suitable for the desired shape of the molded body may be selected.

成形後は、常法に従って乾燥及び/又は焼成することに
よって本発明の乾式除湿材を得ることができる。
After shaping, the dry dehumidifying material of the present invention can be obtained by drying and/or baking according to a conventional method.

また、混合・混練手段については特に制限はなく、公知
の装置及び機器を適宜利用すればよい。
Further, there are no particular restrictions on the mixing/kneading means, and known devices and equipment may be used as appropriate.

(形状) 除湿材の形状についても特に限定されず、ペレット状、
ビーズ状、ハニカム状、線状押出物の集積塊形状等から
適宜選択すればよい。
(Shape) The shape of the dehumidifying material is not particularly limited, and may be pellet-shaped,
The shape may be appropriately selected from beads, honeycombs, agglomerated shapes of linear extrudates, etc.

なお、乾式除湿材としては、取り扱いの便利さ、耐摩耗
性の観点から一体成形が好ましく、さらに、圧力損失の
点から線状押出物の集積塊形状(第6請求項)あるいは
ハニカム形状が最適である(第7請求項)。
In addition, as a dry dehumidifying material, integral molding is preferable from the viewpoint of convenience in handling and wear resistance, and furthermore, from the viewpoint of pressure loss, the shape of an aggregate of linear extrudates (6th claim) or the shape of a honeycomb is optimal. (Claim 7).

なお、除湿材を乾式除湿機の除湿回転体として用いる際
には回転体の両端と除湿ゾーン及び再生ゾーンとの気密
性を確保するため耐熱ゴム材等を用いて 動接触させる
が、ここに用いられる耐熱性ゴム材は、高温再生が必要
とされる場合においては、硬い材料となることが一般的
である。従って、Si源を主成分とした成形体の両端面
は回転体が回転することにより常に 動接触材にてこす
られることとなり、Jl耗が発生し、ひいては各ゾーン
間の気密性を損なうことともなる。この場合には、成形
体両端面に、金属、樹脂あるいはセラミック材よりなる
網又はハニカム状の強度補強部材を可能なかぎり成形体
との空間を残さないように密接させて取り付けたり(第
8請求項)、又は成形体の両端面にエポキシ樹脂やフェ
ノール樹脂等を含浸コーティングして補強することが好
ましい(第9請求項)。
When the dehumidifying material is used as a dehumidifying rotating body of a dry dehumidifier, heat-resistant rubber material or the like is used to ensure airtightness between both ends of the rotating body and the dehumidifying zone and regeneration zone, but this material is not used here. The heat-resistant rubber material used is generally a hard material when high-temperature regeneration is required. Therefore, both end faces of the molded product mainly composed of Si source are constantly rubbed by the moving contact material due to the rotation of the rotating body, which causes Jl wear and may even impair the airtightness between each zone. Become. In this case, a net or honeycomb-shaped strength reinforcing member made of metal, resin, or ceramic material may be attached to both end surfaces of the molded product in close contact with the molded product as much as possible, leaving no space between the ends of the molded product (claim 8). (Claim 9), or it is preferable to impregnate and coat both end surfaces of the molded body with an epoxy resin, phenol resin, etc. for reinforcement (Claim 9).

(用法) また、本発明で得られた除湿材は、それ自体を乾燥剤と
して所定容器内の空気の乾燥に用い得ることはもちろん
であり、従来のベレットやビーズを用いた場合にはデシ
ケータ−に代表される乾燥保管容器内での乾燥剤の分離
窒化が必要であったが、本発明の除湿材を並置すること
も可能であり、これにより極めて簡便な使用が可能とな
る。
(Usage) Furthermore, the dehumidifying material obtained in the present invention can of course be used as a desiccant itself to dry the air in a predetermined container, and when conventional pellets or beads are used, it can be used as a desiccator. Although it was necessary to separate and nitride the desiccant in a dry storage container, as typified by the above method, it is also possible to juxtapose the dehumidifying material of the present invention, which allows for extremely simple use.

[発明の実施例] (実施例1) Si源としてシリカゲルを使用し、塩化物にLi0文又
は、CaCJ12を使用し、結合剤としてコロイダルア
ルミナを使用し、常法に基づき、塩化物、S i02 
 、A!;L203の含有量を種々変化させたハニカム
形状および線状押出し物の集積塊形状の除湿材を用いて
除湿性能及び、液滴の発生に関して下記条件で試験した
結果を表1に示す、除湿性能: 150X150X10
0mmの大きさの除湿材に温度30度、相対湿度80%
の被処理空気を1.5m/sの風速で5分間流した後の
除湿材の重量変化から除湿材1cciりの吸湿量を求め
、其の値を除湿性能とした。
[Example of the invention] (Example 1) Using silica gel as the Si source, using Li0 or CaCJ12 as the chloride, and using colloidal alumina as the binder, chloride and Si02 were prepared according to a conventional method.
, A! Table 1 shows the results of tests conducted under the following conditions regarding dehumidification performance and droplet generation using dehumidification materials in the form of honeycomb shapes and linear extrudates with various L203 contents. : 150X150X10
Dehumidifying material with a size of 0 mm at a temperature of 30 degrees and a relative humidity of 80%
The amount of moisture absorbed by 1 cci of the dehumidifying material was determined from the change in weight of the dehumidifying material after the air to be treated was flowed at a wind speed of 1.5 m/s for 5 minutes, and that value was taken as the dehumidifying performance.

液滴の発生二上記したサンプルを温度30度相対湿度8
0%の雰囲気に24時間放置し、除湿材の表面の液滴発
生の有無を調べた。
Generation of droplets 2. The above sample was heated to a temperature of 30 degrees and a relative humidity of 8.
The dehumidifying material was left in a 0% atmosphere for 24 hours, and the presence or absence of droplets on the surface of the dehumidifying material was examined.

除湿性能は表1から明らかなように本発明に係わるNo
、3.4,7,8,9,10,12゜14の除湿材はい
ずれも良好な吸湿能を示している。特にNo、7.8,
9,12.1’4に示すが75wt%以上で且つ塩化物
を含有しているものはよりすぐれた吸湿能を示している
As is clear from Table 1, the dehumidification performance is No. 1 according to the present invention.
, 3.4, 7, 8, 9, 10, and 12°14 all exhibit good moisture absorption ability. Especially No. 7.8,
No. 9, 12.1'4, those containing 75 wt% or more and chloride show better moisture absorption ability.

液滴の発生は塩化リチウム含有量がNo。The generation of droplets is No. with lithium chloride content.

11.13,15.に示すように40%を上回ると溶滴
の発生が認められた。
11.13,15. As shown in Figure 2, droplets were observed to occur when the concentration exceeded 40%.

また、塩化リチウム含有量が25wt%を上回った範囲
においては、含有量増加に伴う吸湿量増大の割合が小さ
いため、既述の液滴の発生しやすさの観点より、安全性
をみて25wt%以下の範囲がより望ましい。
In addition, in the range where the lithium chloride content exceeds 25 wt%, the rate of increase in moisture absorption due to the increase in content is small, so from the viewpoint of ease of generating droplets as mentioned above, from the viewpoint of safety, 25 wt% The following ranges are more desirable.

No、l、2はSiO2含有量が低いため(Si源が低
いため)吸湿能が低くなっている。
Nos. 1 and 2 have low SiO2 content (because the Si source is low), so their hygroscopic ability is low.

No、5はSiO2含有量が30wt%にみたないので
、塩化物の添加効果が得られず吸湿能が低くなっている
In No. 5, the SiO2 content was less than 30 wt%, so the effect of adding chloride was not obtained and the moisture absorption capacity was low.

N006は塩化物の添加量が低いため吸湿能が低くなっ
ている。
N006 has low hygroscopicity because the amount of chloride added is low.

なお、市販の活性炭シート製除湿材について同様の条件
で吸湿能を調査したところ0.06g/CCであった。
In addition, when the moisture absorption capacity of a commercially available dehumidifying material made of activated carbon sheet was investigated under the same conditions, it was found to be 0.06 g/CC.

(実施例2) 結合剤添加効果を調べるためにシリカゲルをSi源とし
、ベントナイトを結合剤とし、塩化物としてLiC!;
Lを使用して既述の方法に基づき。
(Example 2) In order to investigate the effect of adding a binder, silica gel was used as the Si source, bentonite was used as the binder, and LiC! was used as the chloride! ;
Based on the method previously described using L.

結合剤含有量を種々変化させたハニカム形状の除湿材を
作製した。
Honeycomb-shaped dehumidifying materials with various binder contents were fabricated.

得られた除湿剤について、強度、吸湿能を下記条件にて
試験した結果を表2に示した。
The strength and moisture absorption capacity of the obtained dehumidifier were tested under the following conditions, and the results are shown in Table 2.

強度: 50X50X50のハニカム状成形体を試料とし、第2
図に示すようにC軸方向圧壊強度を測定した。
Strength: A 50x50x50 honeycomb-shaped molded body was used as a sample, and the second
As shown in the figure, the C-axis direction crushing strength was measured.

吸湿能: 同上サンプルを温度30℃、相対温度80%の雰囲気中
に24時間放置し、吸湿前後の重量変化から吸湿量(w
t%)を求めた。
Moisture absorption capacity: The above sample was left in an atmosphere with a temperature of 30℃ and a relative temperature of 80% for 24 hours, and the moisture absorption amount (w) was determined from the weight change before and after moisture absorption.
t%) was determined.

表2から明らかなように結合剤(ベントナイト)含有量
が2%にみたないNo、1.2は圧壊強度が低下し結合
剤が25wt%をこえているNo、3は吸湿能が低下し
ていることが分った。
As is clear from Table 2, No. 1.2, where the binder (bentonite) content is less than 2%, has a decreased crushing strength and No. 3, where the binder content exceeds 25 wt%, and No. 3, where the moisture absorption capacity has decreased. I found out that there is.

結合剤(ベントナイト)の含有量を2〜25wt%の範
囲とした場合(No、4〜7)は、含有量が2%未満の
場合(No、1.2)に比べ圧壊強度は一段と良好であ
り、また、含有量が25%を超える場合(N o 3)
に比べ吸湿能も一段と良好となる。
When the content of the binder (bentonite) is in the range of 2 to 25 wt% (No. 4 to 7), the crushing strength is much better than when the content is less than 2% (No. 1.2). Yes, and if the content exceeds 25% (No 3)
The moisture absorption capacity is also much better than that of .

(実施例3) ポロシティの影響を調べるためにシリカゲルをSi源、
カオリナイトを結合剤として既述の方法に基づき、ポロ
シティの程度を種々変化させたハニカム形状及び線状除
湿材を作製した。
(Example 3) In order to investigate the influence of porosity, silica gel was used as a Si source.
Honeycomb-shaped and linear dehumidifying materials with various degrees of porosity were produced using kaolinite as a binder and using the method described above.

得られた除湿材について吸湿能を実施例2の条件にて試
験した結果を表3に示した。
The moisture absorption ability of the obtained dehumidifying material was tested under the conditions of Example 2, and the results are shown in Table 3.

表3から明らかなようにポロシティが0.2c c /
 HにみたないNo、l、2は吸湿能が低下しているが
、0 、2 c c / g以上であるNo。
As is clear from Table 3, the porosity is 0.2c c /
Nos., 1, and 2, which do not look like H, have reduced hygroscopic ability, but No. 0, 2 cc/g or more.

3.4,5.6は吸湿量が一段と良好である。3.4 and 5.6 have even better moisture absorption.

なお、以上の実施例において5iC)+、結合材、塩化
物の含有量はいずれも除湿材を110℃×24時間乾燥
した状態でのwt%である。
In the above examples, the contents of 5iC)+, binder, and chloride are all wt% when the dehumidifying material is dried at 110° C. for 24 hours.

[発明の効果] 本発明は以上のように構成したので、除湿能力に優れ、
塩化物の溶出が少ない乾式除湿材を提供することが出来
る。
[Effects of the Invention] Since the present invention is configured as described above, it has excellent dehumidifying ability,
A dry dehumidifying material with less chloride elution can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSiO2含有量と吸湿量との関係を示すグラフ
である。t52図は、ハニカム構造の試験体を圧縮する
状態を示す概念図である。 第1図 第2図
FIG. 1 is a graph showing the relationship between SiO2 content and moisture absorption. Figure t52 is a conceptual diagram showing a state in which a honeycomb structured test specimen is compressed. Figure 1 Figure 2

Claims (10)

【特許請求の範囲】[Claims] (1)Si源をSiO_2換算で75wt%以上含有す
るか又はSi源をSiO_2換算で30wt%以上と塩
化物を5〜40wt%含有することを特徴とする乾式除
湿材。
(1) A dry dehumidifier characterized by containing a Si source of 75 wt% or more in terms of SiO_2, or containing a Si source of 30 wt% or more in terms of SiO_2 and 5 to 40 wt% of chloride.
(2)塩化物の含有量が5〜25wt%である特許請求
の範囲第(1)項に記載の乾式除湿材。
(2) The dry dehumidifying material according to claim (1), wherein the chloride content is 5 to 25 wt%.
(3)塩化物が塩化リチウムである特許請求の範囲第(
1)項又は第(2)項のいずれかに記載の乾式除湿材。
(3) Claim No. 1 in which the chloride is lithium chloride (
The dry dehumidifying material according to either item 1) or item (2).
(4)2〜25wt%の結合材を含有する特許請求の範
囲第(1)項乃至第(3)項のいずれかに記載の乾式除
湿材。
(4) The dry dehumidifying material according to any one of claims (1) to (3), which contains 2 to 25 wt% of a binder.
(5)ポロシティが0.2cc/g以上である特許請求
の範囲第(1)項乃至第(4)項のいずれかに記載の乾
式除湿材。
(5) The dry dehumidifying material according to any one of claims (1) to (4), which has a porosity of 0.2 cc/g or more.
(6)乾式除湿材が線上押出物の集積塊形状である特許
請求の範囲第(1)項乃至第(5)項のいずれかに記載
の乾式除湿材。
(6) The dry dehumidifying material according to any one of claims (1) to (5), wherein the dry dehumidifying material is in the form of an aggregate of linear extrudates.
(7)乾式除湿材がハニカム形状である特許請求の範囲
第(1)項乃至第(6)項のいずれかに記載の乾式除湿
材。
(7) The dry dehumidifier according to any one of claims (1) to (6), wherein the dry dehumidifier has a honeycomb shape.
(8)乾式除湿材の流体通過方向の両端面に網状又はハ
ニカム状の強度補強部材を略密接させて設けた特許請求
の範囲第(1)項乃至第(7)項のいずれかに記載の乾
式除湿材。
(8) The method according to any one of claims (1) to (7), wherein net-like or honeycomb-like strength reinforcing members are provided in substantially close contact with both end faces of the dry dehumidifying material in the fluid passage direction. Dry dehumidifier.
(9)乾式除湿材の流体通過方向の両端面に樹脂を含侵
させ強度補強をした特許請求の範囲第(1)項乃至第(
8)項のいずれかに記載の乾式除湿材。
(9) Claims (1) to (2) in which both end faces of the dry dehumidifying material in the fluid passage direction are impregnated with resin to strengthen the strength.
8) The dry dehumidifying material described in any of paragraphs 8).
(10)結合剤が無機結合剤である特許請求の範囲第(
1)項乃至第(9)項のいずれかに記載の乾式除湿材。
(10) Claim No. 1, wherein the binder is an inorganic binder (
The dry dehumidifying material according to any one of items 1) to (9).
JP26484186A 1986-11-05 1986-11-05 Dry dehumidifying material Pending JPS63116727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26484186A JPS63116727A (en) 1986-11-05 1986-11-05 Dry dehumidifying material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26484186A JPS63116727A (en) 1986-11-05 1986-11-05 Dry dehumidifying material

Publications (1)

Publication Number Publication Date
JPS63116727A true JPS63116727A (en) 1988-05-21

Family

ID=17408955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26484186A Pending JPS63116727A (en) 1986-11-05 1986-11-05 Dry dehumidifying material

Country Status (1)

Country Link
JP (1) JPS63116727A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144121A (en) * 1988-11-25 1990-06-01 Shintouhoku Kagaku Kogyo Kk Solid desiccant having deodorizing function and its production
JPH02290220A (en) * 1988-07-02 1990-11-30 Tokai Kagaku Kogyosho:Kk Plate-like desiccating agent
FR2687332A1 (en) * 1992-02-19 1993-08-20 Inst Francais Du Petrole PRODUCT FOR THE DEHUMIDIFICATION OF A GAS.
WO2008070293A3 (en) * 2006-10-18 2008-08-07 Univ Maryland Low- impact delivery system for in situ treatment of contaminated sediment
JP2009226265A (en) * 2008-03-19 2009-10-08 Univ Waseda Water selectivity adsorbent and manufacturing method
US7824129B2 (en) 2006-10-18 2010-11-02 Menzie-Cura & Associates, Inc. Low-impact delivery system for in situ treatment of contaminated sediment
US7896800B2 (en) 2003-09-24 2011-03-01 Karl Storz Gmbh & Co. Kg Endoscope for medical and non-medical purposes
JP2014237121A (en) * 2013-05-10 2014-12-18 富士フイルム株式会社 Moisture-absorbing material, method for manufacturing the same, and packaging material
GB2574476A (en) * 2018-06-08 2019-12-11 Tsang Hung Hsu Dehumidifying cake

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539240A (en) * 1978-09-11 1980-03-19 Kuraray Co Ltd Hygroscopic agent for drying air
JPS5687417A (en) * 1979-12-14 1981-07-16 H Ii I:Kk Exchanger for heat and/or humidity
JPS57165033A (en) * 1981-04-03 1982-10-09 Fuji Debuison Kagaku Kk Hygroscopic agent and preparation thereof
JPS6054094A (en) * 1983-09-01 1985-03-28 三菱電機株式会社 Control circuit for light emitting diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539240A (en) * 1978-09-11 1980-03-19 Kuraray Co Ltd Hygroscopic agent for drying air
JPS5687417A (en) * 1979-12-14 1981-07-16 H Ii I:Kk Exchanger for heat and/or humidity
JPS57165033A (en) * 1981-04-03 1982-10-09 Fuji Debuison Kagaku Kk Hygroscopic agent and preparation thereof
JPS6054094A (en) * 1983-09-01 1985-03-28 三菱電機株式会社 Control circuit for light emitting diode

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290220A (en) * 1988-07-02 1990-11-30 Tokai Kagaku Kogyosho:Kk Plate-like desiccating agent
JPH02144121A (en) * 1988-11-25 1990-06-01 Shintouhoku Kagaku Kogyo Kk Solid desiccant having deodorizing function and its production
JPH0822366B2 (en) * 1988-11-25 1996-03-06 新東北化学工業株式会社 Solid desiccant with deodorizing function
FR2687332A1 (en) * 1992-02-19 1993-08-20 Inst Francais Du Petrole PRODUCT FOR THE DEHUMIDIFICATION OF A GAS.
US7896800B2 (en) 2003-09-24 2011-03-01 Karl Storz Gmbh & Co. Kg Endoscope for medical and non-medical purposes
WO2008070293A3 (en) * 2006-10-18 2008-08-07 Univ Maryland Low- impact delivery system for in situ treatment of contaminated sediment
US7824129B2 (en) 2006-10-18 2010-11-02 Menzie-Cura & Associates, Inc. Low-impact delivery system for in situ treatment of contaminated sediment
JP2009226265A (en) * 2008-03-19 2009-10-08 Univ Waseda Water selectivity adsorbent and manufacturing method
JP2014237121A (en) * 2013-05-10 2014-12-18 富士フイルム株式会社 Moisture-absorbing material, method for manufacturing the same, and packaging material
GB2574476A (en) * 2018-06-08 2019-12-11 Tsang Hung Hsu Dehumidifying cake

Similar Documents

Publication Publication Date Title
ES2284246T3 (en) ZEOLITAS OF COMPACT STRUCTURE, A PROCESS FOR ITS PRODUCTION AND USE.
CA2152361C (en) Langmuir moderate type 1 desiccant for air
KR101454099B1 (en) Zeolite containing wash coats for adsorber heat exchangers and temperature controlled adsorbers
JPS6025369B2 (en) Wear-resistant granular zeolite and its manufacturing method
RU2087186C1 (en) Alumina-based sorbent and method of preparing thereof
JPS63116727A (en) Dry dehumidifying material
JP2016215126A (en) Water vapor adsorbent having hygroscopic salt carried on granulated body of amorphous aluminum silicate
JPH07257917A (en) Preparation of active composite and active composite manufactured by said method
EP3366748B1 (en) A composite material for thermochemical storage and a method for forming a composite material
US3594982A (en) Process for drying unsaturated organic gaseous compounds
JPH0710330B2 (en) Dry dehumidifier
US3567645A (en) Silica desiccants and method of manufacture
JPH05146676A (en) Honeycomb-like ceramic body containing adsorptive zeolite and production thereof
JPS63264125A (en) Dry dehumidifying component
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JP5140278B2 (en) Desiccant material and air dehumidification method using the same
RU2169606C2 (en) Composite drier for gases and liquids
WO1993000152A1 (en) Use of crystalline molecular sieves containing charged octahedral sites in cyclic desiccating processes
US3151951A (en) Drying method
JPS60132643A (en) Molded zeolite
US3623993A (en) Alumina desiccant for drying unsaturated organic gaseous compounds
JPH0523584A (en) Adsorptive ceramic porous element and its manufacture
JPH02153818A (en) Production of zeolite moldings
RU2780182C1 (en) Regenerated dehumidifier unit with povidone
JP2019072686A (en) Steam absorbent and manufacturing method therefor