JPS6311654B2 - - Google Patents

Info

Publication number
JPS6311654B2
JPS6311654B2 JP4008280A JP4008280A JPS6311654B2 JP S6311654 B2 JPS6311654 B2 JP S6311654B2 JP 4008280 A JP4008280 A JP 4008280A JP 4008280 A JP4008280 A JP 4008280A JP S6311654 B2 JPS6311654 B2 JP S6311654B2
Authority
JP
Japan
Prior art keywords
resist
pattern
sensitivity
resists
ionizing radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4008280A
Other languages
Japanese (ja)
Other versions
JPS56137348A (en
Inventor
Juzo Shimazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP4008280A priority Critical patent/JPS56137348A/en
Publication of JPS56137348A publication Critical patent/JPS56137348A/en
Publication of JPS6311654B2 publication Critical patent/JPS6311654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置、フオトマスク等を製造す
るための微細加工技術に有用な電離放射線感応レ
ジストに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ionizing radiation sensitive resist useful in microfabrication techniques for manufacturing semiconductor devices, photomasks, and the like.

現在最も広く用いられているポジ型放射線レジ
スト〔ポリメチルメタクリレート(PMMA)〕
は、優れた解像力を有するものの電子線感度は5
×10-5C/cm2程度、X線感度は500mJ/cm2程度と
低感度であり、例えば通常のX線装置の場合ウエ
ハあたり2時間程度もの照射時間を要する。ま
た、ポジ型放射線レジストのなかで最も高感度な
性能を有すると思われるポリブデン―1―スルホ
ン(PBS)やポリフツ素化アルキルメタクリレ
ート(例えばFBM)はPMMAに比し1桁以上の
感度の改善がなされているが、それでもなおX線
の場合最低5〜10分程度の照射時間を要する。し
かもこれらのレジストの場合、前者は熱分解し易
い性質のために耐ドライエツチング性に劣り、後
者はガラス転移温度が低いために耐熱性が悪いと
いうふうにレジストとしての基本的特性において
欠点を有している。
Currently the most widely used positive radiation resist [polymethyl methacrylate (PMMA)]
Although it has excellent resolution, the electron beam sensitivity is 5.
×10 -5 C/cm 2 and X-ray sensitivity is low, about 500 mJ/cm 2 .For example, a normal X-ray device requires about 2 hours of irradiation time per wafer. In addition, polybutene-1-sulfone (PBS) and polyfluorinated alkyl methacrylate (e.g. FBM), which are thought to have the highest sensitivity performance among positive radiation resists, have improved sensitivity by more than an order of magnitude compared to PMMA. However, X-rays still require at least 5 to 10 minutes of irradiation time. Moreover, in the case of these resists, the former has poor dry etching resistance due to its tendency to thermally decompose, and the latter has shortcomings in its basic properties as a resist, such as poor heat resistance due to its low glass transition temperature. are doing.

一方、ネガ型放射線レジストはポジ型レジスト
に比べ高感度であり、例えばポリグリシジルメタ
クリレート(PGMA)やグリシジルメタクリレ
ート―エチルアクリレート共重合体(COP)は
電子線感度4×10-7C/cm2程度、X線感度10mJ/
cm2程度である。しかしながら、これらのネガ型レ
ジストといえども例えばX線の場合ウエハあたり
1分の照射時間をきることは困難であり、しかも
ネガ型レジスト特有のブリツジやスカムのために
解像性が劣りサブミクロンのパターニングを行う
ことは容易ではない。
On the other hand, negative-tone radiation resists have higher sensitivity than positive-tone resists; for example, polyglycidyl methacrylate (PGMA) and glycidyl methacrylate-ethyl acrylate copolymer (COP) have an electron beam sensitivity of about 4×10 -7 C/cm 2 , X-ray sensitivity 10mJ/
It is about cm2 . However, even with these negative resists, for example, in the case of X-rays, it is difficult to cut down the irradiation time to 1 minute per wafer, and furthermore, the resolution is poor due to bridges and scum peculiar to negative resists, and submicron Patterning is not easy.

このようにポジ型レジストは解像性に優れてい
るが感度や他のレジスト特性に欠点を有し、ネガ
型レジストは感度においてポジ型レジストに比べ
優れているが解像性において極端に劣るというふ
うに、従来のレジストでは高感度(低照射量)で
もつてしかもサブミクロンのパターニングを行う
ことは困難であつた。
In this way, positive resists have excellent resolution but have drawbacks in sensitivity and other resist properties, while negative resists have superior sensitivity compared to positive resists but are extremely inferior in resolution. Thus, it has been difficult to perform submicron patterning with conventional resists even with high sensitivity (low dose).

本発明は上記実情に鑑みなされたもので超高感
度(電子線の場合4×10-7C/cm2程度以下、X線
の場合10mJ/cm2程度以下の照射量)でもつてサ
ブミクロンの高密度レジストパターンを形成し得
る電離放射線感応ネガ型レジストを提供すること
を目的とするものである。
The present invention was developed in view of the above circumstances, and has ultra-high sensitivity (irradiation dose of approximately 4×10 -7 C/cm 2 or less for electron beams, and approximately 10 mJ/cm 2 or less for X-rays) and is capable of producing submicron The object of the present invention is to provide an ionizing radiation-sensitive negative resist that can form a high-density resist pattern.

すなわち、本発明の電離放射線感応ネガ型レジ
ストは一般式 〔但し、式中のRはHまたはCH3、XはF、Cl、
Br等のハロゲン原子を示す。〕 にて表わされる重合体〔〕、もしくはこの重合
体のモノマーと他のモノマーとの共重合体〔〕
から成ることを特徴とするものである。
That is, the ionizing radiation sensitive negative resist of the present invention has the general formula [However, in the formula, R is H or CH 3 , X is F, Cl,
Indicates a halogen atom such as Br. ] A polymer represented by [ ] or a copolymer of a monomer of this polymer and another monomer [ ]
It is characterized by consisting of the following.

上記〔〕のネガ型レジストとしては、例えば
ポリ(2,3―ジフロロアリルアクリレート)、
ポリ(2,3―ジクロロアリルメタクリレート)、
ポリ(2,3―ジブロモアリルアクリレート)、
ポリ(2,3―ジブロモアリルメタクリレート)
等を挙げることができる。
As the negative resist of [] above, for example, poly(2,3-difluoroallyl acrylate),
poly(2,3-dichloroallyl methacrylate),
poly(2,3-dibromoallyl acrylate),
Poly(2,3-dibromoallyl methacrylate)
etc. can be mentioned.

上記〔〕の共重合体における他のモノマーと
しては、重合体〔〕のモノマーと共重合できる
モノマーであればいずれでもよく、例えばスチレ
ン、α―メチルスチレングリシジルメタクリレー
ト、メチルメタクリレート、エチルアクリレー
ト、アクリロニトリル等を挙げることができる。
この場合、共重合体中に占める重合体〔〕のモ
ノマー量は高感度性能を維持する観点から30モル
%以上にすることが望ましい。
The other monomers in the above copolymer [] may be any monomer that can be copolymerized with the monomer of the polymer [], such as styrene, α-methylstyrene glycidyl methacrylate, methyl methacrylate, ethyl acrylate, acrylonitrile, etc. can be mentioned.
In this case, the monomer content of the polymer [] in the copolymer is desirably 30 mol % or more from the viewpoint of maintaining high sensitivity performance.

次に、本発明の電離放射線感応ネガ型レジスト
を用いてパターンを形成する方法を一例を示して
説明する。
Next, a method for forming a pattern using the ionizing radiation-sensitive negative resist of the present invention will be explained by showing an example.

まず、電離放射線感応ネガ型レジストをセロソ
ルブ系溶剤や芳香族炭化水素系溶剤等の適当な溶
媒で溶解し、レジスト溶液を調製する。つづい
て、このレジスト溶液をスピンナー等によつて半
導体基板もしくはマスク基材上に均一に塗布して
所望厚さのレジスト膜を被覆した後、残存溶媒を
とり除き基板との接着性を増すためにプリベーク
処理を施す。次いで、レジスト膜の所望部分を常
法に従つて電子線、X線等の電離放射線を照射し
て露光した後、例えば芳香族炭化水素系溶剤やア
ミド系溶剤等の適当な現像液で現像処理を行いレ
ジスト膜の非照射部分のみを選択的に溶解除去
し、さらに、アルコール系溶剤等のリンス液でリ
ンス処理を行いレジストパターンを形成する。そ
の後、レジストパターンをマスクとして露出する
基板部分をドライ又はウエツトエツチングにより
蝕刻して蝕刻パターンを形成する。
First, a resist solution is prepared by dissolving a negative resist sensitive to ionizing radiation in an appropriate solvent such as a cellosolve solvent or an aromatic hydrocarbon solvent. Next, this resist solution is applied uniformly onto the semiconductor substrate or mask substrate using a spinner or the like to coat a resist film of the desired thickness, and then the remaining solvent is removed to increase the adhesion to the substrate. Perform pre-bake treatment. Next, the desired portion of the resist film is exposed to ionizing radiation such as electron beams and X-rays according to a conventional method, and then developed with an appropriate developer such as an aromatic hydrocarbon solvent or an amide solvent. Then, only the non-irradiated portions of the resist film are selectively dissolved and removed, and further, a rinsing process is performed with a rinsing liquid such as an alcohol solvent to form a resist pattern. Thereafter, using the resist pattern as a mask, the exposed portion of the substrate is etched by dry or wet etching to form an etched pattern.

しかして、本発明の電離放射線感応ネガ型レジ
ストは一般式に示すようにアクリル系またはメタ
クリル系ポリマーのエステル側鎖部分に、放射線
による架橋反応性の高いアリル基にこれも放射線
による反応性の高いハロゲン原子が結合したハロ
ゲン化アリル基を導入したものであるから、放射
線に対してきわめて高い架橋反応性を示すもので
ある。さらに他のガラス転移温度の高いポリマー
との共重合体にすることによつてレジスト特性を
向上させることもできるし、また例えばポリスチ
レンのような解像性や耐ドライエツチング性の優
れたポリマーとの共重合体にすることによつて高
感度性能に加えて高解像力や優れた耐ドライエツ
チング性を兼ね備えたレジスト材料とすることが
できる。
Therefore, as shown in the general formula, the ionizing radiation-sensitive negative resist of the present invention has an ester side chain moiety of an acrylic or methacrylic polymer that has an allyl group that is highly crosslinking-reactive due to radiation, which also has high reactivity due to radiation. Since it has a halogenated allyl group bonded to a halogen atom, it exhibits extremely high crosslinking reactivity to radiation. Furthermore, resist properties can be improved by copolymerizing with other polymers with high glass transition temperatures, or with polymers with excellent resolution and dry etching resistance, such as polystyrene. By forming a copolymer, it is possible to obtain a resist material that has not only high sensitivity but also high resolution and excellent dry etching resistance.

次に本発明の実施例を説明する。 Next, examples of the present invention will be described.

実施例 1 ポリ(2,3―ジブロモアリルアクリレート)
をエチルセロソルブアセテートに溶解してレジス
ト溶解を調製した。このレジスト溶液をスピンナ
ーによりシリコンウエハ上に塗布して厚さ1μmの
レジスト膜を被覆し、さらに窒素中で80℃、30分
間プリベーク処理した。ひきつづき、金パターン
を有するシリコンX線マスクを介してレジスト膜
の所望部分に軟X線(AlKα線、波長8.34Å)を
2mJ/cm2の照射量で選択的に照射した後、キシレ
ンで1分間の現像処理を行い次いでイソプロパノ
ールで30秒間リンス処理を行つてレジストパター
ンを形成した。得られたレジストパターンを走査
型電子顕微鏡(SEM)によつて観察したところ
ブリツジやスカムの少い良好なレジストパターン
が形成されており、サブミクロン(最高約0.5μm
スペース)の解像性を有することが確認された。
Example 1 Poly(2,3-dibromoallyl acrylate)
A resist solution was prepared by dissolving in ethyl cellosolve acetate. This resist solution was applied onto a silicon wafer using a spinner to cover a resist film with a thickness of 1 μm, and was further prebaked at 80° C. for 30 minutes in nitrogen. Subsequently, soft X-rays (AlKα rays, wavelength 8.34 Å) are applied to desired portions of the resist film through a silicon X-ray mask with a gold pattern.
After selective irradiation with an irradiation dose of 2 mJ/cm 2 , a resist pattern was formed by developing with xylene for 1 minute and rinsing with isopropanol for 30 seconds. When the obtained resist pattern was observed using a scanning electron microscope (SEM), it was found that a good resist pattern with few bridging and scum was formed.
It was confirmed that the image had a resolution of

実施例 2 2,3―ジブロモアリルアクリレート―スチレ
ン共重合体(2,3―ジブロモアリルアクリレー
ト含量50モル%)をエチルセロソルブアセテート
に溶解してレジスト溶液を調製した。このレジス
ト溶液をスピンナーによりクロムマスク基板上に
塗布して厚さ7000Åのレジスト膜を被覆し、さら
に窒素中で80℃、30分間のプリベーク処理を施し
た。つづいて、レジスト膜の所望部分に電子線描
画装置(加速電圧20kV)を用いて3×10-7C/cm2
の照射量でパターン描画を行つた後、実施例1と
同様の現像、リンス処理を施してレジストパター
ンを形成した。その後、排気圧3×10-1Torr、
出力200W、C Cl4とO2の混合ガスによる反応
性イオンエツチングにより、レジストパターンか
ら露出するクロム膜を4分間エツチングしたとこ
ろ、サブミクロンのクロム膜パターンを有する良
好なフオトマスクが得られた。
Example 2 A resist solution was prepared by dissolving a 2,3-dibromoallyl acrylate-styrene copolymer (2,3-dibromoallyl acrylate content: 50 mol %) in ethyl cellosolve acetate. This resist solution was applied onto a chromium mask substrate using a spinner to cover a resist film with a thickness of 7000 Å, and further prebaked at 80° C. for 30 minutes in nitrogen. Subsequently, a desired portion of the resist film was exposed to 3×10 -7 C/cm 2 using an electron beam drawing device (acceleration voltage 20 kV).
After pattern drawing was performed with a dose of irradiation, the same development and rinsing treatments as in Example 1 were performed to form a resist pattern. After that, the exhaust pressure is 3×10 -1 Torr,
When the chromium film exposed from the resist pattern was etched for 4 minutes by reactive ion etching using a mixed gas of C Cl 4 and O 2 at an output of 200 W, a good photomask with a submicron chromium film pattern was obtained.

実施例 3 ポリ(2,3―ジクロロアリルメタクリレー
ト)をモノクロルベンゼンに溶解してレジスト溶
解を調製した。実施例1と同様にして塗布及びプ
リベークを行いシリコンウエハ上に厚さ1μmのレ
ジスト膜を形成した。ひきつづき、実施例1と同
様にしてレジスト膜の所望部分に軟X線を5mJ/
cm2の照射量で選択的に照射した後、ジメチルホル
ムアミドで1分間の現像処理を行い次いでイソプ
ロパノールで30秒間リンス処理を行つてレジスト
パターンを形成した。得られたレジストパターン
をSEMによつて観察したところ切れが良く優れ
たエツジ直線性を有するレジストパターンが形成
されており、サブミクロン(1.3μmラインアンド
0.7μmスペース)の解像性を有することが解認さ
れた。
Example 3 A resist solution was prepared by dissolving poly(2,3-dichloroallyl methacrylate) in monochlorobenzene. Coating and prebaking were performed in the same manner as in Example 1 to form a 1 μm thick resist film on a silicon wafer. Subsequently, in the same manner as in Example 1, soft X-rays were applied to the desired portion of the resist film at 5 mJ/
After selective irradiation with a dose of cm 2 , a resist pattern was formed by developing with dimethylformamide for 1 minute and rinsing with isopropanol for 30 seconds. When the obtained resist pattern was observed using SEM, it was found that a resist pattern with good sharpness and excellent edge linearity was formed.
It was confirmed that it has a resolution of 0.7 μm space).

実施例 4 2,3―ジクロロアリルアクリレート―グリシ
ジルメタクリレート共重合体(2,3―ジクロロ
アリルアクリレート含量50モル%)をモノクロル
ベンゼンに溶解してレジスト溶液を調製した。実
施例2と同様にして塗布及びプリベークを行いク
ロムマスク基板上に厚さ7000Åのレジスト膜を形
成した。つづいて、実施例2と同様にして1×
10-7C/cm2の照射量で電子線描画を行つた後、ジ
メチルホルムアミドで1分間の現像処理を行い次
いでイソプロパノールで30秒間リンス処理を行つ
てレジストパターンを形成した。その後、やはり
実施例2と同様にしてレジストパターンから露出
するクロム膜をエツチングしたところ、サブミク
ロンのクロム膜パターンを有する良好なフオトマ
スクが得られた。
Example 4 A resist solution was prepared by dissolving a 2,3-dichloroallyl acrylate-glycidyl methacrylate copolymer (2,3-dichloroallyl acrylate content: 50 mol%) in monochlorobenzene. Coating and prebaking were performed in the same manner as in Example 2 to form a resist film with a thickness of 7000 Å on the chrome mask substrate. Subsequently, in the same manner as in Example 2, 1×
After performing electron beam writing at an irradiation dose of 10 -7 C/cm 2 , a resist pattern was formed by developing with dimethylformamide for 1 minute and then rinsing with isopropanol for 30 seconds. Thereafter, the chromium film exposed from the resist pattern was etched in the same manner as in Example 2, and a good photomask having a submicron chromium film pattern was obtained.

以上詳述した如く、本発明によれば電離放射線
に対して極めて高感度(電子線の場合4×
10-7C/cm2程度以下、X線の場合10mJ/cm2程度以
下の照射量)でかつサブミクロンの高密度レジス
トパターンを形成し得る電離放射線感応ネガ型レ
ジストを提供できるものである。
As detailed above, the present invention has extremely high sensitivity to ionizing radiation (4× in the case of electron beams)
It is possible to provide an ionizing radiation-sensitive negative resist that can form a submicron high-density resist pattern with an irradiation dose of about 10 -7 C/cm 2 or less, or about 10 mJ/cm 2 or less in the case of X-rays).

Claims (1)

【特許請求の範囲】 1 一般式 〔但し、式中のRはHまたはCH3、XはF、Cl、
Br等のハロゲン原子を示す。〕 にて表わされる重合体、もしくはこの重合体のモ
ノマーと他のモノマーとの共重合体から成ること
を特徴とする電離放射線感応ネガ型レジスト。
[Claims] 1. General formula [However, in the formula, R is H or CH 3 , X is F, Cl,
Indicates a halogen atom such as Br. ] An ionizing radiation-sensitive negative resist characterized by comprising a polymer represented by: or a copolymer of a monomer of this polymer and another monomer.
JP4008280A 1980-03-28 1980-03-28 Negative type ionized radiation sensitive resist Granted JPS56137348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4008280A JPS56137348A (en) 1980-03-28 1980-03-28 Negative type ionized radiation sensitive resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4008280A JPS56137348A (en) 1980-03-28 1980-03-28 Negative type ionized radiation sensitive resist

Publications (2)

Publication Number Publication Date
JPS56137348A JPS56137348A (en) 1981-10-27
JPS6311654B2 true JPS6311654B2 (en) 1988-03-15

Family

ID=12570973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4008280A Granted JPS56137348A (en) 1980-03-28 1980-03-28 Negative type ionized radiation sensitive resist

Country Status (1)

Country Link
JP (1) JPS56137348A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024969A (en) * 1990-02-23 1991-06-18 Reche John J Hybrid circuit structure fabrication methods using high energy electron beam curing

Also Published As

Publication number Publication date
JPS56137348A (en) 1981-10-27

Similar Documents

Publication Publication Date Title
JP2824350B2 (en) Device manufacturing method
JP4216705B2 (en) Photoresist pattern forming method
JP3368888B2 (en) Organometallic polymers and uses thereof
JPS60229026A (en) Manufacture of electronic device
JP2005514659A5 (en)
JPH07181679A (en) Manufacture of chemically amplified resist
US4764247A (en) Silicon containing resists
KR100574482B1 (en) Organic polymer for anti-reflective coating layer and preparation thereof
US4096290A (en) Resist mask formation process with haloalkyl methacrylate copolymers
KR20030089063A (en) Forming method of photoresist pattern
JP2707785B2 (en) Resist composition and pattern forming method
JPS5949536A (en) Formation of micropattern
JP2002198283A (en) Resist pattern formation method
JPH05257284A (en) Radiation-sensitive material and pattern forming method using same
JPS58118641A (en) Radiation sensitive positive type resist for forming fine pattern
JPS6311654B2 (en)
US6586156B2 (en) Etch improved resist systems containing acrylate (or methacrylate) silane monomers
US4556619A (en) Negative-type acetalized polyvinyl alcohol resist sensitive to ionizing radiation
US4415653A (en) Method of making sensitive positive electron beam resists
EP0064864B1 (en) Method of making sensitive positive electron beam resists
JPS5828571B2 (en) Resist formation method for microfabrication
JP2557817B2 (en) Ionizing radiation sensitive negative resist
JPH0381143B2 (en)
JPH0358104B2 (en)
Fedynyshyn et al. Fluoroaromatic resists for 157-nm lithography