JPS63116418A - Epitaxially growing method and system - Google Patents

Epitaxially growing method and system

Info

Publication number
JPS63116418A
JPS63116418A JP26182986A JP26182986A JPS63116418A JP S63116418 A JPS63116418 A JP S63116418A JP 26182986 A JP26182986 A JP 26182986A JP 26182986 A JP26182986 A JP 26182986A JP S63116418 A JPS63116418 A JP S63116418A
Authority
JP
Japan
Prior art keywords
epitaxial growth
reaction tube
gas
tube
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26182986A
Other languages
Japanese (ja)
Inventor
Toshio Yamagata
山形 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26182986A priority Critical patent/JPS63116418A/en
Publication of JPS63116418A publication Critical patent/JPS63116418A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the consumption of a compensating easily evaporating component material from decreasing and a grown layer from displacing in its composition by oxidizing it with oxidative gas plasma and reducing it with hydrogen gas plasma prior to an epitaxial growth. CONSTITUTION:A reaction tube 1 for performing an epitaxial growth, a gas introducing mechanism 2 connected to one end of the tube 1 for introducing oxidative gas and hydrogen gas to be able to switch, a pressure control mechanism 3 connected to the other one end of the tube 1 for holding the interior of the tube 1 at a predetermined vacuum degree, a pair of electrodes 4, 5 for holding part of the tube 1 from the exterior, and a high frequency power source 6 are provided. A growing substrate made of a CdTe single crystal plate and a base material made of Hg, Cd, Te are contained in a slider member 16, and Hg of easily evaporating component is contained in a retaining member 17. Then, an oxidation with oxidative plasma and a reduction with hydrogen plasma are executed. After reducing, an epitaxial growth is started.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体単結晶の上に結晶構造を秩序正しく成
長させるエピタクシャル成長方法、およびその方法の実
施に使用されるエピタクシャル成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epitaxial growth method for orderly growing a crystal structure on a semiconductor single crystal, and an epitaxial growth apparatus used to carry out the method.

[従来の技術] テルル化水銀カドミウム(HqCdTe)等の狭エネル
ギーギャップ半導体は高感度の赤外線検知器用材料とし
て知られており、これらの結晶を大面積かつ均一性良好
に製造するためには、一般に液相ないし気相のエピタク
シャル成長方法が用いられている。例えば液相エピタク
シャル成長方法は、特開昭58−138038号公報に
示されるように、基本的には第3図に示す如き装置によ
って実施されている。即ち、支持台31に設けられた凹
所32にテルル化カドミウム(CdTe)などの成長基
板33を埋設し、この支持台31上に、母材34が収容
された液槽35および36を載置したスライダ一部材3
7を摺動可能に配設する。これらは更に、石英から成る
反応管38内に配置され、図中矢印の方向に供給および
排出される水素ガスの雰囲気中で加熱される。スライダ
一部材31は順次摺動して、液槽35および36を成長
基板33上に移動させ、メルトバックによるクリーニン
グとエピタクシャル成長を行う。この加熱中には、母材
34ないし成長基板33の蒸発し易い成分、例えばテル
ル化水銀カドミウムであれば、別個に水銀を用意して蒸
発させ、エピタクシャル成長が行われる部分での蒸気圧
を平衡に保ち、均一な所定の組成となるように制御する
[Prior Art] Narrow energy gap semiconductors such as mercury cadmium telluride (HqCdTe) are known as materials for highly sensitive infrared detectors, and in order to manufacture these crystals over a large area and with good uniformity, it is generally necessary to Liquid phase or vapor phase epitaxial growth methods are used. For example, the liquid phase epitaxial growth method is basically carried out using an apparatus as shown in FIG. 3, as disclosed in Japanese Unexamined Patent Publication No. 58-138038. That is, a growth substrate 33 of cadmium telluride (CdTe) or the like is buried in a recess 32 provided in a support base 31, and liquid tanks 35 and 36 containing a base material 34 are placed on the support base 31. Slider part 3
7 is slidably arranged. These are further placed in a reaction tube 38 made of quartz and heated in an atmosphere of hydrogen gas supplied and discharged in the direction of the arrow in the figure. The slider member 31 sequentially slides to move the liquid tanks 35 and 36 onto the growth substrate 33 to perform melt-back cleaning and epitaxial growth. During this heating, if a component of the base material 34 or the growth substrate 33 that easily evaporates, for example mercury cadmium telluride, mercury is separately prepared and evaporated to balance the vapor pressure in the area where epitaxial growth is performed. control to maintain a uniform predetermined composition.

尚、通常、この成長を開始するに先立ち、反応管38や
成長基板33、母材34等は十分に洗浄して有機物を除
去し、更に水素ガス雰囲気中で加熱保持して、成長基板
33や母材34の還元処理を行うが、これは、成長基板
33や母材34に付着した有機物成分やその表面に形成
された薄い酸化層又は吸着酸素が母材融液中に混入して
、成長基板33との界面やエピタクシャル成長層に不純
物として取り込まれ、結晶特性が劣化することを防止す
るためである。
Normally, before starting this growth, the reaction tube 38, growth substrate 33, base material 34, etc. are thoroughly cleaned to remove organic matter, and then heated and maintained in a hydrogen gas atmosphere to remove the growth substrate 33, base material 34, etc. The base material 34 is reduced, but this is because organic components attached to the growth substrate 33 and base material 34, thin oxide layers formed on their surfaces, or adsorbed oxygen are mixed into the base material melt and the growth is reduced. This is to prevent impurities from being incorporated into the interface with the substrate 33 or into the epitaxially grown layer and deteriorating the crystal properties.

[発明が解決しようとする問題点] しかし、汚染の原因となるのは、表面に付着した有機物
等の洗浄に用いる薬品や治具自体も同様であり、また洗
浄後に反応管中へ組み立てる段階でも空気中の汚染物が
僅かながら付着してしまう。
[Problems to be solved by the invention] However, contamination is caused by the chemicals and jigs themselves used to clean organic matter adhering to the surface, and also by the process of assembling them into the reaction tube after cleaning. A small amount of contaminants in the air will adhere to it.

更に、水素ガスにより還元処理を行う温度は必然的に母
材の融点以下に制限され、充分な処理を行うには長時間
を要し、一方、そのような温度でも前記易蒸発成分は容
易に散逸するため、補償用の易蒸発成分材料を大量に用
意する必要がある。また、その場合、蒸気圧の平衡を長
時間保つことは大変困難であり、母材の組成変化によっ
て、成長する結晶組成のずれが発生し易いという問題点
もおった。
Furthermore, the temperature at which the reduction treatment is carried out with hydrogen gas is necessarily limited to below the melting point of the base material, and it takes a long time to carry out sufficient treatment.On the other hand, even at such temperatures, the easily vaporized components are Because of the dissipation, it is necessary to prepare a large amount of easily evaporable component material for compensation. Further, in this case, it is very difficult to maintain vapor pressure equilibrium for a long time, and there is also the problem that the composition of the growing crystal tends to shift due to changes in the composition of the base material.

これらの問題点は、上記の開管式の液相エピタクシャル
成長方法のみでなく、成長基板や母材を密閉反応管中へ
封入して行う閉管式の液相エピタクシャル成長方法でも
、気相エピタクシャル成長方法でも共通の悩みである。
These problems arise not only in the open-tube liquid phase epitaxial growth method described above, but also in the closed-tube liquid phase epitaxial growth method in which the growth substrate and base material are sealed in a closed reaction tube. This is a common problem when it comes to growth methods.

本発明は、このような問題点を解決するためになされた
もので、有機物による汚染を完全に除去し、また補償用
の易蒸発成分材料の消費量を低減でき、かつ組成ずれの
生じ難いエピタクシャル成長方法およびその成長装置を
提供することを目的とする。
The present invention was made in order to solve these problems, and it is possible to completely remove contamination caused by organic substances, reduce the consumption of easily evaporable component materials for compensation, and create an epitaxial structure that is less prone to compositional deviations. The purpose of the present invention is to provide a growth method and a growth device.

[問題点を解決するための手段] 本発明は、エピタクシャル成長を行うのに先立ち、その
エピタクシャル成長を行う反応管内で、成長基板および
母材に対し、まず酸化性ガスプラズマ雰囲気で酸化処理
を行い、続いて水素ガスプラズマ雰囲気で還元処理を行
うことを特徴とするエピタクシャル成長方法およびエピ
タクシャル成長を行う反応管と、その反応管の1端に結
合され、酸化性ガス、水素ガスおよび置換ガスを切換え
可能に導入するガス導入機構と、その反応管の別の1端
に結合され、反応管の内部を所定の真空度に保つ圧力制
御機構と、反応管の一部又は全部を外部から挟持する一
対の電極と、それらの電極に高周波電力を供給する電源
とを備えて、反応管内でガスプラズマを発生させること
を特徴とするエピタクシャル成長装置である。
[Means for Solving the Problems] In the present invention, prior to performing epitaxial growth, the growth substrate and base material are first subjected to oxidation treatment in an oxidizing gas plasma atmosphere in a reaction tube in which the epitaxial growth is performed. , an epitaxial growth method characterized by subsequent reduction treatment in a hydrogen gas plasma atmosphere, a reaction tube for performing epitaxial growth, and a reaction tube connected to one end of the reaction tube to switch between an oxidizing gas, a hydrogen gas, and a replacement gas. a pressure control mechanism connected to another end of the reaction tube to keep the inside of the reaction tube at a predetermined degree of vacuum; and a pair of pressure control mechanisms that sandwich part or all of the reaction tube from the outside. This epitaxial growth apparatus is characterized in that it is equipped with electrodes and a power source that supplies high-frequency power to these electrodes to generate gas plasma within a reaction tube.

[作 用] 酸素ガス、N20ガス等の酸化性ガスや水素ガスをプラ
ズマ励起すると、それぞれのガスはイオン化されると共
に活性化状態になり、反応性が非常に高まる。従って、
これらのガスを供給しながらプラズマ励起することによ
り、酸化性ガスプラズマ雰囲気中で゛は有機物が酸化分
解されてH20ヤCO2になって排出され、また、水素
ガスプラズマ雰囲気中では、従来のように加熱せず、低
温に保ったままで充分な還元作用を生じさせることがで
き、成長基板、母材表面の酸化膜や吸着酸素を除去する
ことができる。特に、これらは、実際にエピタクシャル
成長を行う反応管内に成長基板や母材を設置した状態で
行い得るので、理想的な清浄状態に保ったままエピタク
シャル成長へ移行することができる。更に、すべて低温
で処理されるため、易蒸発成分の散逸は無視できる程度
でおり、また補償用の易蒸発成分材料の消費間も少ない
[Function] When an oxidizing gas such as oxygen gas or N20 gas or hydrogen gas is excited by plasma, each gas is ionized and becomes activated, greatly increasing its reactivity. Therefore,
By excitation of plasma while supplying these gases, organic substances are oxidized and decomposed in an oxidizing gas plasma atmosphere and are emitted as H20 and CO2.In addition, in a hydrogen gas plasma atmosphere, unlike conventional A sufficient reduction effect can be generated without heating and while the temperature is maintained at a low temperature, and oxide films and adsorbed oxygen on the surfaces of the growth substrate and base material can be removed. In particular, these can be performed with the growth substrate and base material placed in the reaction tube in which epitaxial growth is actually performed, so it is possible to proceed to epitaxial growth while maintaining ideal clean conditions. Furthermore, since all processes are carried out at low temperatures, the dissipation of easily evaporable components is negligible, and the consumption of compensating easily evaporable component materials is also short.

[実施例] 以下、本発明の実施例について、図面を参照して詳細に
説明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明に係わるエピタクシャル成長装置の一
実施例を示す概略構成図であり、第2図は、そのA−A
’線による部分断面図でおる。これらの各図において、
エピタクシャル成長装置は、エピタクシャル成長を行う
反応管1と、該反応管1の一端に結合され、酸化性ガス
と水素ガスとを切換え可能に導入するガス導入機構2と
、前記反応管1の別な一端に結合され、反応管1の内部
を所定の真空度に保つ圧力制御機構3と、反応管1の一
部を外部から挟持する一対の電極4および5と、それら
の電極4および5に高周波電力を供給する電源6とで概
略構成されている。
FIG. 1 is a schematic configuration diagram showing an embodiment of an epitaxial growth apparatus according to the present invention, and FIG.
This is a partial cross-sectional view taken along the line '. In each of these figures,
The epitaxial growth apparatus includes a reaction tube 1 for performing epitaxial growth, a gas introduction mechanism 2 connected to one end of the reaction tube 1 for introducing an oxidizing gas and a hydrogen gas in a switchable manner, and another part of the reaction tube 1. A pressure control mechanism 3 that is connected to one end and keeps the inside of the reaction tube 1 at a predetermined degree of vacuum, a pair of electrodes 4 and 5 that sandwich a part of the reaction tube 1 from the outside, and a high frequency It is roughly configured with a power source 6 that supplies electric power.

ガス導入機構2は、酸化性ガスとして酸素ガスを供給す
る第1のガス供給源7a、水素ガスを供給する第2のガ
ス供給源7bおよび置換ガスとして窒素ガスを供給する
第3のガス供給源7Cと、これらのガスを切り換える弁
8a、8bおよび8Cと、それぞれの流量を制御する流
量制御器9a、9bおよび9Cとから成る。
The gas introduction mechanism 2 includes a first gas supply source 7a that supplies oxygen gas as an oxidizing gas, a second gas supply source 7b that supplies hydrogen gas, and a third gas supply source that supplies nitrogen gas as a replacement gas. 7C, valves 8a, 8b and 8C for switching these gases, and flow rate controllers 9a, 9b and 9C for controlling the respective flow rates.

圧力制御機構3は、トラップ10を介して反応管1に結
合され、真空弁11と、メカニカル・ブースターポンプ
12と、油回転ポンプ13とで成り、反応管1内の真空
排気および安定したガスプラズマが形成される真空度保
持のために使用される。トラップ10は、メカニカル・
ブースターポンプ12および油回転ポンプ13からの油
蒸気の逆流による汚染を防ぐと共に、エピタクシャル成
長時に送出されてくる水素ガス中のHg蒸気をトラップ
するものでおる。また、このトラップ10には、このよ
うな水素ガスを排出し、燃焼するために、弁14を介し
て、水素燃焼部15が接続されている。
The pressure control mechanism 3 is connected to the reaction tube 1 via a trap 10, and includes a vacuum valve 11, a mechanical booster pump 12, and an oil rotary pump 13, and controls vacuum evacuation inside the reaction tube 1 and stable gas plasma. It is used to maintain the degree of vacuum created. Trap 10 is a mechanical
This prevents contamination due to backflow of oil vapor from the booster pump 12 and oil rotary pump 13, and traps Hg vapor in the hydrogen gas sent out during epitaxial growth. Further, a hydrogen combustion section 15 is connected to this trap 10 via a valve 14 in order to discharge and burn such hydrogen gas.

反応管1の内部には、成長基板33および母材34を収
容したスライダ一部材16と易蒸発性成分材料を収容す
る受は部材17とが設置されている。反応管1の外部の
一部には、既に述べたように、電極4および5が配設さ
れているが、他の部分には主ヒータ18と副ヒータ19
とが巻設されている。主ヒータ18は前記母材34を溶
融し、エピタクシャル成長を行うためのもので、副ヒー
タ19は前記易蒸発性成分の蒸気圧を制御するためのも
のでおる。
Inside the reaction tube 1, a slider member 16 containing a growth substrate 33 and a base material 34, and a receiver member 17 containing an easily evaporable component material are installed. As mentioned above, the electrodes 4 and 5 are arranged in a part of the outside of the reaction tube 1, and the main heater 18 and the sub-heater 19 are arranged in the other part.
is wrapped around it. The main heater 18 is for melting the base material 34 and performing epitaxial growth, and the sub-heater 19 is for controlling the vapor pressure of the easily evaporable component.

次に、上記の成長装置を使用する本発明のエピタクシャ
ル成長方法について、テルル化水銀カドミウム結晶をエ
ピタクシャル成長させる一実施例によって説明する。
Next, the epitaxial growth method of the present invention using the above-mentioned growth apparatus will be explained by way of an example in which a mercury cadmium telluride crystal is epitaxially grown.

まず、Cd工e単結晶板から成る成長基板と、Hc+、
Cd、Teの単体もしくは化合物から成る母材とをスラ
イダ一部材16に収容し、易蒸発性成分であるHCIを
受は部材17に収容して、前者は一対の電極4および5
に対応する位置に、後者は副ヒータ19に対応する位置
に配置する。次に、本発明の特徴でおる酸化性ガスプラ
ズマによる酸化処理と、水素ガスプラズマによる還元処
理とを下記の如く行う。
First, a growth substrate consisting of a Cd/e single crystal plate, Hc+,
A base material consisting of a single substance or a compound of Cd and Te is housed in a slider member 16, and HCI, which is an easily evaporable component, is housed in a receiver member 17.
The latter is placed at a position corresponding to the sub-heater 19. Next, oxidation treatment using oxidizing gas plasma, which is a feature of the present invention, and reduction treatment using hydrogen gas plasma are performed as described below.

まず、圧力制御機構3の真空弁11を全開し、油式回転
ポンプ13およびメカニカル・ブースターポンプ12に
より反応管1内を真空排気した後、弁8aおよび流量制
御器9aを操作することにより第1のガス供給2117
aから一定流旧の酸素ガスを酸化性ガスとして反応管1
内へ導入し、かつ真空弁11の制御により反応管1内を
所定の真空度に保持し続ける。この際の真空度は、安定
した酸素ガスプラズマを形成できる値として、1〜10
0Pa程度の適当な範囲に設定される。
First, the vacuum valve 11 of the pressure control mechanism 3 is fully opened, and the inside of the reaction tube 1 is evacuated by the oil rotary pump 13 and the mechanical booster pump 12, and then the first gas supply 2117
A constant flow of old oxygen gas is used as an oxidizing gas from reaction tube 1.
The inside of the reaction tube 1 is maintained at a predetermined degree of vacuum by controlling the vacuum valve 11. The degree of vacuum at this time is 1 to 10, which is a value that can form a stable oxygen gas plasma.
It is set to an appropriate range of about 0 Pa.

続いて、電源6より前記電極4および5に高周波電力を
印加し、電極4および5に挟持された反応管1内に酸素
ガスプラズマを発生させる。すると、この部分に活性化
酸素が生じ、これが成長基板や母材、反応管内壁等に付
着した有機物を酸化分解し、有機物は気体となって排出
される。プラズマに晒される時間は、高周波電力や有機
物汚染の程度にもよるが、数時間程度で充分である。
Subsequently, high frequency power is applied from the power source 6 to the electrodes 4 and 5 to generate oxygen gas plasma in the reaction tube 1 sandwiched between the electrodes 4 and 5. Then, activated oxygen is generated in this area, which oxidizes and decomposes organic matter adhering to the growth substrate, base material, inner wall of the reaction tube, etc., and the organic matter is discharged as a gas. The time for exposure to plasma depends on the high frequency power and the degree of organic contamination, but several hours is sufficient.

酸化処理が終了すると、酸素ガスの供給を停止し、反応
管1内を再び真空排気したのち、弁8bおよび流量制御
器9bを操作することにより第2のガス供給源7bから
一定流吊の水素ガスを反応管1内へ導入し、酸素ガスの
場合と同様にして、水素ガスプラズマを発生させる。こ
うして発生した活性化水素により、基板や母材の表面に
もともと形成されていた酸化膜や上記の酸化処理中に形
成された酸化膜および吸着酸素は還元され、除去かつ排
出される。この時間も、数時間程度で充分である。
When the oxidation process is completed, the supply of oxygen gas is stopped, the inside of the reaction tube 1 is evacuated again, and a constant flow of hydrogen is supplied from the second gas supply source 7b by operating the valve 8b and the flow rate controller 9b. A gas is introduced into the reaction tube 1, and hydrogen gas plasma is generated in the same manner as in the case of oxygen gas. The activated hydrogen thus generated reduces, removes, and discharges the oxide film originally formed on the surface of the substrate or base material, the oxide film formed during the above-mentioned oxidation treatment, and the adsorbed oxygen. A few hours is also sufficient for this time.

この還元処理復、圧力制御機構3の真空弁11を閉じ、
水素燃焼部15への弁14を開いて水素ガスの排出を切
り換えると共に、スライダ一部材16を主ヒータ18に
対応する位置まで移動し、エピタクシャル成長を開始す
る。エピタクシャル成長そのものは、公知の方法と同様
に、主ヒータ18で成長部の温度設定を行い、副ヒータ
19で受は部材17の温度即ち易蒸発成分であるHQの
蒸気圧を制御して行う。所望の厚さのエピタクシャル成
長が終了した後髪よ、両ヒータ18および19の加熱を
停止し、弁8Cおよび流量制御器9Cを操作することに
より第3のガス供給源7Cから窒素ガスを置換ガスとし
て供給し、水素ガスの供給を停止して処理を完了する。
After this reduction process, close the vacuum valve 11 of the pressure control mechanism 3,
The valve 14 to the hydrogen combustion section 15 is opened to switch the discharge of hydrogen gas, and the slider member 16 is moved to a position corresponding to the main heater 18 to start epitaxial growth. The epitaxial growth itself is carried out by controlling the temperature of the growth section using the main heater 18 and controlling the temperature of the member 17, that is, the vapor pressure of HQ, which is an easily evaporated component, using the sub-heater 19, in the same manner as in the known method. After epitaxial growth to a desired thickness is completed, the heating of both heaters 18 and 19 is stopped, and nitrogen gas is replaced from the third gas supply source 7C by operating the valve 8C and the flow rate controller 9C. The process is completed by stopping the supply of hydrogen gas.

こうしてエピタクシャル成長したHqCdTe結晶は、
有機物や酸素の混入による特性劣化、即ちキャリア濃度
の増加などのない良質なものとなり、また従来の如く水
素雰囲気中で加熱して還元する方法に比較して、易蒸発
性成分であるHQの消費量が半減され、エピタクシャル
成長における組成の安定性も向上することになった。
The HqCdTe crystal epitaxially grown in this way is
The product is of good quality without deterioration of characteristics due to the contamination of organic matter or oxygen, that is, an increase in carrier concentration, and the consumption of HQ, which is an easily evaporable component, is reduced compared to the conventional method of reducing by heating in a hydrogen atmosphere. The amount was reduced by half, and the stability of the composition during epitaxial growth was also improved.

尚、ここでは、HqCdTeの開管式液相エピタクシャ
ル成長の例を用いて説明したが、他の易蒸発性成分を含
む化合物半導体結晶のエピタクシャル成長の場合にも適
用できることは言うまでもない。また閉管式液相エピタ
クシャル成長の場合は、反応管全体を電極で挟み込み、
同様にプラズマ酸化処理および還元処理を行った後、反
応管の両端を封止し、エピタクシャル成長を行えばよく
、気相エピタクシャル成長も全く同様である。
Although the explanation has been given here using an example of open-tube liquid phase epitaxial growth of HqCdTe, it goes without saying that the present invention can also be applied to the case of epitaxial growth of compound semiconductor crystals containing other easily evaporable components. In the case of closed tube liquid phase epitaxial growth, the entire reaction tube is sandwiched between electrodes.
After similarly performing plasma oxidation treatment and reduction treatment, both ends of the reaction tube may be sealed and epitaxial growth may be performed, and vapor phase epitaxial growth is also performed in exactly the same manner.

[発明の効果コ 以上、説明したとおり、本発明によれば、エピタクシャ
ル成長に先立って酸化性ガスプラズマによる酸化処理と
水素ガスプラズマによる還元処理とを行うことにより、
有機物や酸素の混入のない良質な結晶を得ることができ
、加熱を必要としないので、補償用易蒸発成分材料の消
費量低減および成長層の組成ずれの防止が可能なエピタ
クシャル成長方法およびその成長装置を提供することが
できる。
[Effects of the Invention] As explained above, according to the present invention, by performing oxidation treatment using oxidizing gas plasma and reduction treatment using hydrogen gas plasma prior to epitaxial growth,
An epitaxial growth method and its growth that can obtain high-quality crystals without contamination of organic matter or oxygen, and do not require heating, thereby reducing the consumption of compensating easily evaporable component materials and preventing composition shifts in the grown layer. equipment can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の構成図、第2図はそのA−
A’線による部分断面図、第3図は従来例の構成図でお
る。 1.38・・・反応管     2・・・ガス導入機構
3・・・圧力制御機構    4,5・・・電極6・・
・電源        7・・・ガス供給源10・・・
トラップ      11・・・真空弁12・・・ブー
スターポンプ  13・・・油回転ポンプ14・・・弁
         15・・・水素燃焼部16、37・
・・スライダ一部材 17・・・受は部材18・・・主
ヒータ      19・・・副ヒータ31・・・支持
台       32・・・凹所33・・・成長基板 
     34・・・母材35、36・・・液槽 代理人弁理士  舘  野  千恵子 第3図
Figure 1 is a configuration diagram of one embodiment of the present invention, and Figure 2 is its A-
FIG. 3, a partial sectional view taken along line A', is a configuration diagram of a conventional example. 1.38...Reaction tube 2...Gas introduction mechanism 3...Pressure control mechanism 4,5...Electrode 6...
・Power supply 7...Gas supply source 10...
Trap 11... Vacuum valve 12... Booster pump 13... Oil rotary pump 14... Valve 15... Hydrogen combustion section 16, 37.
...Slider part 17...Base is member 18...Main heater 19...Sub-heater 31...Support stand 32...Recess 33...Growth substrate
34... Base material 35, 36... Liquid tank agent Chieko Tateno Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)エピタクシャル成長を行うのに先立ち、そのエピ
タクシャル成長を行う反応管内で、成長基板および母材
に対し、まず酸化性ガスプラズマ雰囲気で酸化処理を行
い、続いて水素ガスプラズマ雰囲気で還元処理を行うこ
とを特徴とするエピタクシャル成長方法。
(1) Prior to performing epitaxial growth, the growth substrate and base material are first oxidized in an oxidizing gas plasma atmosphere and then reduced in a hydrogen gas plasma atmosphere in the reaction tube where the epitaxial growth is performed. An epitaxial growth method characterized by:
(2)エピタクシャル成長を行う反応管と、該反応管の
1端に結合され、酸化性ガス、水素ガスおよび置換ガス
を切換え可能に導入するガス導入機構と、その反応管の
別な1端に結合され、反応管の内部を所定の真空度に保
つ圧力制御機構と、反応管の一部または全部を外部から
挟持する一対の電極と、それらの電極に高周波電力を供
給する電源とを備えて、反応管内でガスプラズマを発生
させることを特徴とするエピタクシャル成長装置。
(2) A reaction tube for epitaxial growth; a gas introduction mechanism connected to one end of the reaction tube for switchably introducing oxidizing gas, hydrogen gas, and replacement gas; It is equipped with a pressure control mechanism that is coupled to maintain a predetermined degree of vacuum inside the reaction tube, a pair of electrodes that sandwich part or all of the reaction tube from the outside, and a power source that supplies high-frequency power to these electrodes. , an epitaxial growth apparatus characterized by generating gas plasma in a reaction tube.
JP26182986A 1986-11-05 1986-11-05 Epitaxially growing method and system Pending JPS63116418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26182986A JPS63116418A (en) 1986-11-05 1986-11-05 Epitaxially growing method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26182986A JPS63116418A (en) 1986-11-05 1986-11-05 Epitaxially growing method and system

Publications (1)

Publication Number Publication Date
JPS63116418A true JPS63116418A (en) 1988-05-20

Family

ID=17367312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26182986A Pending JPS63116418A (en) 1986-11-05 1986-11-05 Epitaxially growing method and system

Country Status (1)

Country Link
JP (1) JPS63116418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211197A (en) * 2007-01-30 2008-09-11 Fujikura Ltd Method of cleaning oxide substrate and method of manufacturing oxide semiconductor thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211197A (en) * 2007-01-30 2008-09-11 Fujikura Ltd Method of cleaning oxide substrate and method of manufacturing oxide semiconductor thin film

Similar Documents

Publication Publication Date Title
JP6095825B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
US6539891B1 (en) Chemical deposition reactor and method of forming a thin film using the same
JP5722595B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
US20020098297A1 (en) Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
US11087959B2 (en) Techniques for a hybrid design for efficient and economical plasma enhanced atomic layer deposition (PEALD) and plasma enhanced chemical vapor deposition (PECVD)
JP4250834B2 (en) Method for forming a thin film by catalytic sputtering
US8932405B2 (en) Apparatus for low-temperature epitaxy on a plurality semiconductor substrates
JP2680202B2 (en) Vapor phase growth method and apparatus
JPH01139763A (en) Membrane deposition process
US5443030A (en) Crystallizing method of ferroelectric film
JPS63116418A (en) Epitaxially growing method and system
JPH04277628A (en) Removal of unreacted gas and reaction-suppressing apparatus
JP6021977B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JPH06172990A (en) Method for forming thin film and device therefor
JP2003224079A (en) Heat treating method, heat treating device and manufacturing method for silicon epitaxial wafer
US6281122B1 (en) Method for forming materials
JPS62213132A (en) Epitaxial growth method and epitaxial growth apparatus
JP2004039976A (en) Method for cleaning substrate treating device
JP2005175408A (en) Method of forming oxidized/nitrified insulating thin-film
JP2511845B2 (en) Processing equipment for vapor phase growth
JP2006108595A (en) Semiconductor device manufacturing method
JP3168276B2 (en) Crystal growth equipment
TW202309332A (en) Method for depositing thin film
JPS6179230A (en) Method for processing semiconductor substrate
JPS62287079A (en) Plasma cvd apparatus