JPS6311637Y2 - - Google Patents
Info
- Publication number
- JPS6311637Y2 JPS6311637Y2 JP18770080U JP18770080U JPS6311637Y2 JP S6311637 Y2 JPS6311637 Y2 JP S6311637Y2 JP 18770080 U JP18770080 U JP 18770080U JP 18770080 U JP18770080 U JP 18770080U JP S6311637 Y2 JPS6311637 Y2 JP S6311637Y2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- radiation
- signal
- rays
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005855 radiation Effects 0.000 claims description 38
- 238000005259 measurement Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 24
- 229910052717 sulfur Inorganic materials 0.000 description 24
- 239000011593 sulfur Substances 0.000 description 24
- 239000007788 liquid Substances 0.000 description 20
- 239000003208 petroleum Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000003209 petroleum derivative Substances 0.000 description 4
- 238000005070 sampling Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
【考案の詳細な説明】
本考案は特性の異なる2種の放射線を被測定体
に照射し、その被測定体と相互作用をもつた放射
線を検出し、夫々の検出信号を用いて所定の演算
をし、被測定体の成分に対応する信号を得る放射
線応用測定装置に関する。[Detailed description of the invention] This invention irradiates a measured object with two types of radiation with different characteristics, detects the radiation that interacts with the measured object, and performs a predetermined calculation using each detection signal. The present invention relates to a radiation applied measurement device that obtains signals corresponding to components of a measured object.
この種の装置の一つとして、石油製品の高発熱
量を連続的に測定する石油カロリー計がある。石
油カロリー計の原理は、石油製品が炭素C、水素
H及び硫黄Sから成り立つているとして、
60KeVのγ線を使い、炭素C、水素H及び硫黄
Sの吸収度を測定し、20KeVの吸収度から求め
た硫黄濃度と総合演算して、炭素C、水素H及び
硫黄Sの量を個々に求め、これらに高発熱量係数
をかけることによつて高発熱量を求めるようにな
つている。 One such device is a petroleum calorimeter that continuously measures the high calorific value of petroleum products. The principle of a petroleum calorie meter is that petroleum products are composed of carbon C, hydrogen H, and sulfur S.
Using 60KeV gamma rays, measure the absorption of carbon C, hydrogen H, and sulfur S, and calculate the amounts of carbon C, hydrogen H, and sulfur S individually by calculating the total amount with the sulfur concentration determined from the 20KeV absorption. The high calorific value is calculated by multiplying these by the high calorific value coefficient.
第1図は、公知の石油カロリー計の構成説明図
である。 FIG. 1 is an explanatory diagram of the configuration of a known petroleum calorie meter.
石油カロリー計は、サンプルをサンプリング装
置1によつて一定の条件に整えた後、管路2で接
続した振動式密度検出器3、硫黄検出器4、組成
検出器5を順次流すようになつている。各検出器
は以下の信号を出力する機能を有する。即ち、密
度検出器3は、(1)式に基づく周波数信号Fx及び
サンプル温度信号TDを出力する。 In the petroleum calorimeter, after a sample is prepared under certain conditions using a sampling device 1, the sample is sequentially passed through a vibrating density detector 3, a sulfur detector 4, and a composition detector 5, which are connected through a pipe 2. There is. Each detector has the function of outputting the following signals. That is, the density detector 3 outputs a frequency signal Fx and a sample temperature signal T D based on equation (1).
ρ={A(TD)}2−Fx/Fx2・B(TD) (1)
但し、
ρ…サンプル密度
Fx…振動子の発振周波数
A(TD)、B(TD)…サンプル温度の関数
また、硫黄検出器4は、線源41が放射するγ
線を特殊金属で構成した半球形ターゲツト42に
当てて得る約20KeVの特性X線を、液槽44に
照射し、その透過したX線を電離箱43で検出し
て、(2)式に基づく電離電流信号Is及びサンプル温
度信号Tsを出力する。 ρ={A(TD)} 2 −Fx/Fx 2・B(TD) (1) However, ρ...Sample density Fx...Oscillation frequency of the resonator A(TD), B(TD)...Function of the sample temperature , the sulfur detector 4 detects γ emitted by the radiation source 41.
The liquid tank 44 is irradiated with characteristic X-rays of about 20 KeV obtained by applying the rays to a hemispherical target 42 made of a special metal, and the transmitted X-rays are detected by the ionization chamber 43. Outputs an ionization current signal Is and a sample temperature signal Ts.
Is=Iso e-〓t(〓hCh+〓cCc+〓sCs) (2)
但し、
Iso…液槽44が空の時の硫黄検出器4の電離
電流
ρ…サンプル密度
t…液槽44の実効長
μh、μc、μs…20KeVX線の水素、炭素、硫黄
の質量吸収係数(μh=μc)
Ch、Cc、Cs…石油製品中の水素、炭素、硫黄
の重量組成比(Ch+Cc+Cs=1が成り立
つ)
さらに、組成検出器5は、線源51が放射する
約60KeVのγ線を、液槽54に照射し、その透
過γ線を電離箱53で検出して、(3)式に基づく電
離電流信号Ic及びサンプル温度信号Tcを出力す
る。 Is=Iso e - 〓 t( 〓 hCh+ 〓 cCc+ 〓 sCs) (2) However, Iso... Ionization current of the sulfur detector 4 when the liquid tank 44 is empty ρ... Sample density t... Effective length of the liquid tank 44 μh , μc, μs…mass absorption coefficient of hydrogen, carbon, and sulfur for 20KeV X-ray (μh=μc) Ch, Cc, Cs…weight composition ratio of hydrogen, carbon, and sulfur in petroleum products (Ch+Cc+Cs=1) Furthermore, The composition detector 5 irradiates the liquid tank 54 with gamma rays of approximately 60 KeV emitted by the radiation source 51, detects the transmitted gamma rays in the ionization chamber 53, and generates an ionization current signal Ic and a signal based on equation (3). Outputs sample temperature signal Tc.
Ic=Ico e-〓t′(〓′hCh+〓′cCc+〓s′Cs) (3)
但し、
Ico…液槽54が空の時の組成検出器5の電離
電流
ρ…サンプル密度
t′…液槽54の実効長
μ′h、μ′c、μ′s…60KeVγ線の水素、炭素、硫黄
の質量吸収係数
Ch、Cc、Cs…石油製品中の水素、炭素、硫黄
の重量組成比(Ch+Cc+Cs=1が成り立
つ)
硫黄変換器6は、密度検出器3の出力信号Fx
及びTD並びに硫黄検出器4の出力信号Is及びTs
を入力とし、所定の演算をして硫黄濃度信号Cs
と基準温度に換算された密度信号ρを、カロリ変
換器7に出力すると共に、規格化された電流信号
is、idを外部に出力する機能を有する。カロリ変
換器7は、組成検出器5の出力信号Ic及びTc並
びに硫黄変換器6の出力信号Cs及びρを入力と
し、所定の演算をして高発熱量に対応する規格化
された電流信号ix及び理論空気量(又はC/H
比)に対応する電流信号igを出力する機能を有す
る。 Ic=Ico e - 〓 t ′ ( 〓′ hCh+ 〓′ cCc+ 〓 s ′ Cs) (3) However, Ico...Ionization current of the composition detector 5 when the liquid tank 54 is empty ρ...Sample density t'...Liquid Effective length of tank 54 μ′h, μ′c, μ′s…mass absorption coefficient of hydrogen, carbon, and sulfur for 60KeVγ rays Ch, Cc, Cs…weight composition ratio of hydrogen, carbon, and sulfur in petroleum products (Ch+Cc+Cs = 1) The sulfur converter 6 receives the output signal Fx of the density detector 3.
and TD and output signals Is and Ts of sulfur detector 4
As input, perform the prescribed calculation to obtain the sulfur concentration signal Cs
The density signal ρ converted to the reference temperature is output to the calorie converter 7, and the normalized current signal ρ is output to the calorie converter 7.
It has a function to output is and id externally. The calorie converter 7 inputs the output signals Ic and Tc of the composition detector 5 and the output signals Cs and ρ of the sulfur converter 6, performs predetermined calculations, and generates a standardized current signal ix corresponding to a high calorific value. and theoretical air volume (or C/H
It has the function of outputting a current signal ig corresponding to the ratio).
このように、従来の石油カロリ計は、硫黄検出
器及び組成検出器を個々に、即ち、2個の線源及
び2個の電離箱(センサ部)を具備する構成にな
つているので、コスト高になつていた。また、検
出器の数が多いと、それらを連結する管路も多く
なるが、通常、これらの管路にスチームトレース
を施す必要があるので、それだけ流路構成を複雑
にする欠点があつた。 In this way, the conventional petroleum calorie meter is configured to have a sulfur detector and a composition detector individually, that is, two radiation sources and two ionization chambers (sensor parts), which reduces the cost. I was getting high. Furthermore, as the number of detectors increases, the number of pipes connecting them also increases, and it is usually necessary to provide steam tracing to these pipes, which has the disadvantage of complicating the flow path configuration.
本考案は、かゝる点に鑑みてなされものであ
り、本考案は、コストを下げ、構成を簡単にする
ために、被測定体に対向して設置するターゲツト
と、相対する側壁に第1及び第2の照射窓を有す
る箱体であつて、第1照射窓を被測定体側に、ま
た、第2照射窓をターゲツト側に向けて、被測定
体とターゲツトとの間に設置し、線源の一次放射
線及びターゲツトの特性X線を被測定体に照射せ
しめる線源収納部と、被測定体への一次放射線と
被測定体への特性X線とを交互に遮えぎる手段
と、被測定体と相互作用をもつた一次放射線及び
特性X線を検出するセンサ部とを有するようにな
つている。 The present invention has been made in view of the above, and in order to reduce costs and simplify the configuration, the present invention includes a target installed opposite to the object to be measured, and a first target installed on the opposite side wall. and a box having a second irradiation window, which is installed between the object to be measured and the target, with the first irradiation window facing the object to be measured and the second irradiation window facing the target; A radiation source housing part for irradiating the object to be measured with the primary radiation of the source and the characteristic X-rays of the target; a means for alternately blocking the primary radiation to the object to be measured and the characteristic X-rays to the object; It has a sensor section that detects primary radiation and characteristic X-rays that interact with the object to be measured.
以下、図面を参照し、本考案について詳しく説
明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.
第2A図及び第2B図は、本考案の一実施例に
よる装置の構成説明図である。 FIGS. 2A and 2B are explanatory diagrams of the configuration of an apparatus according to an embodiment of the present invention.
第2A図及び第2B図において、石油カロリ計
のサンプル流路は、第1図と同じように、サンプ
ルをサンプリング装置、振動式密度検出器(いず
れも図示せず)に流した後、硫黄・組成検出器8
に流す構成となつている。そして、密度検出器か
ら(1)式に基づく周波数信号Fx及びサンプル温度
信号TDを、また、硫黄・組成検出器8から(2)式
又は(3)式に基づく電離電流信号Is又はIc及びサン
プル温度信号Toを信号演算・制御部9に入力し、
所定の演算をして高発熱量、理論空気量、硫黄濃
度及び密度に、夫々対応する規格化された電流信
号ix,ig,is及びidを出力するようになつている。 In Figures 2A and 2B, the sample flow path of the petroleum calorie meter is the same as in Figure 1, after passing the sample through a sampling device and a vibrating density detector (none of which are shown). Composition detector 8
The structure is such that it flows to Then, the frequency signal Fx and sample temperature signal TD based on equation (1) are sent from the density detector, and the ionization current signal Is or Ic and sample temperature signal based on equation (2) or (3) are sent from the sulfur/composition detector 8. Input the temperature signal To to the signal calculation/control section 9,
A predetermined calculation is performed to output standardized current signals ix, ig, is, and id corresponding to high calorific value, theoretical air amount, sulfur concentration, and density, respectively.
硫黄・組成検出器8は、特殊金属で構成した半
球形ターゲツト82と、管路2に結合し連続して
サンプルを流す液槽84と、電離箱83と、相対
する側壁に照射窓86a及び86bを有し、
241Amの線源81を収納して成る線源収納部8
5と、信号演算・制御部9からの信号で制御され
る駆動部87及び側壁に貫通穴88aを有する筒
体であつて、駆動部87の回転軸に直結するシヤ
ツタ88から成るシヤツタ機構とを有する。そし
て、シヤツタ機構は、シヤツタ88を線源収納部
85の周囲を回転させ、照射窓86a,86bと
を交互に遮えぎるようになつている。即ち、第2
A図に示すように、シヤツタ88で照射窓86b
を遮えぎり、照射窓86aから、線源81の一次
放射線であるエネルギーレベル60KeVのγ線を
液槽84に照射し、また、第2B図に示すよう
に、シヤツタ88で照射窓86aを遮えぎり、照
射窓86bからターゲツト82に線源81の一次
放射線を当てゝ得るターゲツトの特性X線である
エネルギーレベル20KeVのX線を液槽84に照
射するようになつている。なお、図示されていな
いが、硫黄・組成検出器8は液槽84に、サンプ
ルの温度を検出するセンサを有する。 The sulfur/composition detector 8 includes a hemispherical target 82 made of a special metal, a liquid tank 84 connected to the pipe line 2 and through which the sample flows continuously, an ionization chamber 83, and irradiation windows 86a and 86b on opposing side walls. has
A radiation source storage unit 8 that stores a 241Am radiation source 81
5, and a shutter mechanism consisting of a drive section 87 controlled by a signal from the signal calculation/control section 9 and a shutter 88, which is a cylindrical body having a through hole 88a in the side wall and is directly connected to the rotation shaft of the drive section 87. have The shutter mechanism rotates the shutter 88 around the radiation source storage section 85 to alternately block the irradiation windows 86a and 86b. That is, the second
As shown in Figure A, the shutter 88 opens the irradiation window 86b.
The liquid tank 84 is irradiated with gamma rays with an energy level of 60 KeV, which is the primary radiation of the radiation source 81, from the irradiation window 86a, and as shown in FIG. 2B, the irradiation window 86a is shielded with a shutter 88. Finally, the liquid tank 84 is irradiated with X-rays having an energy level of 20 KeV, which are the characteristic X-rays of the target, which can make the primary radiation of the radiation source 81 irradiate the target 82 through the irradiation window 86b. Although not shown, the sulfur/composition detector 8 has a sensor in the liquid tank 84 that detects the temperature of the sample.
信号演算・制御部9は、マイクロコンピユータ
を中心にした回路構成となつており、マルチプレ
クサ91と、このマルチプレクサ91を介して与
えられる各信号を初段回路でホールドし、所定の
演算をして、信号ix,ig,is及びidを出力する演
算部92と、マルチプレクサ91、演算部92、
駆動部87等を制御する制御部93とを有する。 The signal calculation/control unit 9 has a circuit configuration centered around a microcomputer, and a multiplexer 91 and each signal given through the multiplexer 91 is held in the first stage circuit, performs a predetermined calculation, and outputs the signal. a calculation unit 92 that outputs ix, ig, is, and id, a multiplexer 91, a calculation unit 92,
It has a control section 93 that controls the drive section 87 and the like.
次に、上記石油カロリ計の動作について説明す
る。 Next, the operation of the petroleum calorie meter will be explained.
いま、液槽84に、密度検出器を通過したサン
プルを連続して流している状態にて、制御部93
からの信号で駆動部87をオンにし、シヤツタ8
8を定速回転させる。この定速回転によつて、照
射窓86aからのγ線は、液槽84へ、また、照
射窓86bからのγ線は、ターゲツト82へと交
互に照射する。このため、電離箱83の検出信号
は、20KeVの特性X線による(2)式に基づく電離
電流信号Is及び60KeVのγ線による(3)式に基づく
電離電流信号Icから成る時系列信号となる。した
がつて、硫黄・組成検出器8は、電離電流信号Is
及びIcから成る時系列信号とサンプル温度信号
Toを並列的に出力することになる。 Now, while the sample that has passed through the density detector is continuously flowing into the liquid tank 84, the controller 93
The drive section 87 is turned on by the signal from the shutter 8.
Rotate 8 at a constant speed. By this constant speed rotation, the γ-rays from the irradiation window 86a are alternately irradiated to the liquid tank 84, and the γ-rays from the irradiation window 86b are alternately irradiated to the target 82. Therefore, the detection signal of the ionization chamber 83 is a time-series signal consisting of the ionizing current signal Is based on equation (2) due to characteristic X-rays of 20 KeV and the ionizing current signal Ic based on equation (3) based on equation (3) due to 60 KeV gamma rays. . Therefore, the sulfur/composition detector 8 detects the ionizing current signal Is
A time series signal consisting of and Ic and a sample temperature signal
To will be output in parallel.
一方、信号演算・制御部9の制御部93は、シ
ヤツタ88の回転に同期する信号、即ち、
(i) 20KeVの特性X線が液槽84を照射してい
る時(照射窓86bを遮へい。Ts時と言う)。 On the other hand, the control unit 93 of the signal calculation/control unit 9 generates a signal synchronized with the rotation of the shutter 88, namely: (i) When the liquid tank 84 is irradiated with characteristic X-rays of 20 KeV (the irradiation window 86b is shielded). Ts time).
(ii) 60KeVのγ線が液槽84を照射している時
(照射窓86aを遮へい。Tc時と言う)。(ii) When the liquid tank 84 is irradiated with 60 KeV gamma rays (the irradiation window 86a is shielded; this is referred to as Tc time).
(iii) 放射線のいずれも液槽84を照射していない
時(照射窓86a及び86bを遮へい。To時
と言う)。(iii) When no radiation is irradiating the liquid tank 84 (the irradiation windows 86a and 86b are shielded; referred to as To time).
に同期する信号をマルチプレクサ91に与え、
Ts時に信号Is、Tc時に信号Ic、To時に信号To、
Fx及びTDを夫々演算部92に入力して、初段回
路にホールドする。そして、これらの信号をもと
に、演算部92は所定の演算をし、信号ix,ig,
is及びidを出力する。give the multiplexer 91 a signal synchronized with
Signal Is when Ts, signal Ic when Tc, signal To when To,
Fx and TD are each input to the calculation unit 92 and held in the first stage circuit. Then, based on these signals, the calculation section 92 performs predetermined calculations and outputs the signals ix, ig,
Output is and id.
第3A図は、本考案の他の実施例による装置の
構成説明図である。 FIG. 3A is an explanatory diagram of the configuration of an apparatus according to another embodiment of the present invention.
第3A図において、第2A図及び第2B図と同
一符号は同一意味で用いられており、こゝでの説
明を省略する。この実施例による装置の特徴は、
線源収納部85と液槽84との間に、円板状のシ
ヤツタ89を配設し、このシヤツタ89を信号演
算・制御部9からの信号で制御される駆動部87
で回転駆動するシヤツタ機構を有する点にある。
シヤツタ89は、第3B図に示すように、円板状
の部材の板面に、回転軸89Cを挟んで貫通穴8
9aと89b1〜89b4を有し、線源81の一
次放射線とターゲツトの特性X線を交互に遮えぎ
るようになつている。即ち、第3A図に示すよう
に、シヤツタ89は板面でターゲツトの特性X線
を遮えぎる位置で、貫通穴89aを照射窓86a
に対向させる位置にあり、線源81の一次放射線
のみが液槽84を照射することになり、この位置
からシヤツタ89を180゜回転させた位置で、板面
の89b5の部分(第3B図参照)で照射窓86
aからの線源の一次放射線を遮えぎり、ターゲツ
トの特性X線のみが貫通穴89b1〜89b4を
通じて液槽84を照射するようになつている。 In FIG. 3A, the same reference numerals as in FIGS. 2A and 2B have the same meanings, and the explanation thereof will be omitted. The features of the device according to this embodiment are:
A disk-shaped shutter 89 is disposed between the radiation source storage section 85 and the liquid tank 84, and this shutter 89 is controlled by a drive section 87 that is controlled by signals from the signal calculation/control section 9.
It has a shutter mechanism that is rotationally driven.
As shown in FIG. 3B, the shutter 89 has a through hole 8 in the plate surface of a disc-shaped member with a rotating shaft 89C in between.
9a and 89b1 to 89b4, and are designed to alternately block the primary radiation of the radiation source 81 and the characteristic X-rays of the target. That is, as shown in FIG. 3A, the shutter 89 connects the through hole 89a to the irradiation window 86a at a position where the plate surface blocks the characteristic X-rays of the target.
The liquid tank 84 is irradiated with only the primary radiation of the radiation source 81, and when the shutter 89 is rotated 180 degrees from this position, a portion 89b5 of the plate surface (see Fig. 3B) ) with the irradiation window 86
The primary radiation from the source is blocked, and only the characteristic X-rays from the target irradiate the liquid tank 84 through the through holes 89b1 to 89b4.
このような硫黄・組成検出器8′においても、
液槽84にサンプルを流し、シヤツタ89を定速
回転させて、第2A図及び第2B図の装置と同じ
ように、電離電流信号Is及びIcから成る時系列信
号とサンプル温度信号Toを並列的に得ることが
できる。したがつて、信号演算・制御部9の制御
部93から、マルチプレクサ91に、シヤツタ8
9の回転に同期する信号、即ち、第2A図及び第
2B図の装置におけるTs時、Tc時、To時に発生
する信号に相当する信号を与えて、信号Is,Ic,
To,Fx及びTDを演算部92に入力し、所定の
演算をして信号ix,ig,is及びidを出力すること
ができる。 Also in such a sulfur/composition detector 8',
The sample is poured into the liquid tank 84, the shutter 89 is rotated at a constant speed, and the time series signal consisting of the ionization current signals Is and Ic and the sample temperature signal To are generated in parallel, as in the apparatus shown in FIGS. 2A and 2B. can be obtained. Therefore, the shutter 8 is sent from the control section 93 of the signal calculation/control section 9 to the multiplexer 91.
The signals Is, Ic,
To, Fx, and TD can be input to the calculation section 92, and predetermined calculations can be performed to output signals ix, ig, is, and id.
なお、上記実施例は、石油カロリ計について説
明したが、本考案はこれに限定するものではな
く、他の放射線応用測定装置であつてもよい。 In addition, although the said Example demonstrated the petroleum calorie meter, this invention is not limited to this, and may be another radiation application measurement apparatus.
また、センサ部が電離箱であるが、他のセン
サ、例えば半導体素子であつてもよい。 Further, although the sensor section is an ionization chamber, it may be another sensor, for example, a semiconductor element.
以上説明したように、本考案の放射線応用測定
装置によれば、1個の線源から特性の異なる2種
の放射線を得て被測定体に照射し、被測定体と相
互作用をもつた放射線を同一のセンサ部で検出す
るようになつているので、装置のコストを低減す
ることができ、また、検出器周辺、例えばサンプ
ル流路の構成を簡単にすることができる。 As explained above, according to the radiation applied measurement device of the present invention, two types of radiation with different characteristics are obtained from one radiation source and irradiated onto the measured object, and the radiation that interacts with the measured object is generated. are detected by the same sensor section, the cost of the apparatus can be reduced, and the configuration around the detector, for example, the sample flow path, can be simplified.
第1図は、従来の石油カロリ計の構成説明図、
第2A図及び第2B図は、本考案の一実施例によ
る石油カロリ計の構成説明図、第3A図は、本考
案の他の実施例による石油カロリ計の構成説明
図、第3B図は、第3A図の装置のシヤツタの構
成説明図である。
1……サンプリング装置、3……密度検出器、
4……硫黄検出器、5……組成検出器、8及び
8′……硫黄・組成検出器、81……線源、82
……ターゲツト、83……電離箱、84……液
槽、85……線源収納部、86a及び86b……
照射窓、87……駆動部、88及び89……シヤ
ツタ、9……信号演算・制御部。
Figure 1 is an explanatory diagram of the configuration of a conventional petroleum calorie meter.
2A and 2B are diagrams illustrating the configuration of a petroleum calorie meter according to one embodiment of the present invention, FIG. 3A is a diagram illustrating the configuration of a petroleum calorie meter according to another embodiment of the present invention, and FIG. 3B is FIG. 3A is an explanatory diagram of the structure of the shutter of the apparatus shown in FIG. 3A. 1... Sampling device, 3... Density detector,
4...Sulfur detector, 5...Composition detector, 8 and 8'...Sulfur/composition detector, 81...Radiation source, 82
...Target, 83...Ionization chamber, 84...Liquid tank, 85...Radiation source storage section, 86a and 86b...
Irradiation window, 87... drive unit, 88 and 89... shutter, 9... signal calculation/control unit.
Claims (1)
し、該被測定体と相互作用をもつた放射線を検出
し、該検出信号をもとに所定の演算をして被測定
体の成分を測定する放射線応用測定装置におい
て、 前記被測定体に対向して設置するターゲツト
と、相対する側壁に第1及び第2の照射窓を有す
る箱体であつて、該第1照射窓を前記被測定体側
に、また、第2照射窓を前記ターゲツト側に向け
て、該被測定体とターゲツトとの間に設置し、線
源の一次放射線及びターゲツトの特性X線を前記
被測定体に照射せしめる線源収納部と、前記被測
定体への一次放射線と前記被測定体への特性X線
とを交互に遮えぎる手段と、前記被測定体と相互
作用をもつた一次放射線及び特性X線を検出する
センサ部とを具備することを特徴とする放射線応
用測定装置。[Claims for Utility Model Registration] Two types of radiation with different characteristics are irradiated onto a measured object, the radiation that interacts with the measured object is detected, and a predetermined calculation is performed based on the detected signal. A radiation applied measurement device for measuring components of a measured object, comprising: a target installed opposite to the measured object; and a box having first and second irradiation windows on opposing side walls; An irradiation window is placed between the object to be measured and the target, with one irradiation window facing the object to be measured and a second irradiation window facing the target. A radiation source storage unit for irradiating the object to be measured, a means for alternately blocking primary radiation to the object to be measured and characteristic X-rays to the object to be measured, and a means for interacting with the object to be measured. A radiation applied measurement device comprising: a sensor unit that detects primary radiation and characteristic X-rays.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18770080U JPS6311637Y2 (en) | 1980-12-29 | 1980-12-29 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18770080U JPS6311637Y2 (en) | 1980-12-29 | 1980-12-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57112240U JPS57112240U (en) | 1982-07-12 |
JPS6311637Y2 true JPS6311637Y2 (en) | 1988-04-05 |
Family
ID=29990726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18770080U Expired JPS6311637Y2 (en) | 1980-12-29 | 1980-12-29 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6311637Y2 (en) |
-
1980
- 1980-12-29 JP JP18770080U patent/JPS6311637Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57112240U (en) | 1982-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4499380A (en) | Apparatus and method for determining the hydrogen content of a substance | |
US3766383A (en) | Techniques and apparatus for calibrating the kilovoltage indicator on diagnostic x-ray generators | |
KR0171081B1 (en) | Apparatus and method for measuring physical characteristics of materials | |
JPS6311637Y2 (en) | ||
US3505520A (en) | Measuring the incombustible content of mine dust using backscatter of low energy gamma rays | |
JPH05508016A (en) | Device and method for measuring the composition of bulk materials using intermittent neutron beams | |
JPS6311636Y2 (en) | ||
JPS6311638Y2 (en) | ||
NL8300039A (en) | REFERENCE DETECTION DEVICE FOR MULTIDETECTOR TOMODENS SITOMETER AND TOMODENS SITOMETER INCLUDING SUCH A DEVICE. | |
GB1103562A (en) | Improvements in radiometric analysis | |
JPH05249020A (en) | Method for measuring steam density by neutron method | |
Bloess et al. | Determination of the neutrino spectrum in the CERN 1967 neutrino experiment | |
CN114965523A (en) | Coal ash content detection device based on gamma ray | |
US4136281A (en) | Energy fluence meter for x-rays | |
JP3134042B2 (en) | Sludge component ratio measuring device and component ratio measuring method | |
AU772405B2 (en) | Method and apparatus for on line analysis | |
JPS6319004B2 (en) | ||
US4001589A (en) | Radiometric analyzer with plural radiation sources and detectors | |
KURANZ¹ | Measurement of moisture and density in soils by the nuclear method | |
Santo et al. | Soil bulk density and water content measurements by gamma-ray attenuation techniques | |
JPH05650B2 (en) | ||
US3597615A (en) | Determining the content of chemical elements or isotopes thereof in a specimen by utilizing the effect of recoilless resonance absorption or scattering of gamma rays | |
Nikolaev | Progress in the development of track radiometers for radon measurements | |
JPH07260664A (en) | Moisture meter | |
SU951108A1 (en) | Radioisotope column moisture/density meter |