JP3134042B2 - Sludge component ratio measuring device and component ratio measuring method - Google Patents

Sludge component ratio measuring device and component ratio measuring method

Info

Publication number
JP3134042B2
JP3134042B2 JP07187346A JP18734695A JP3134042B2 JP 3134042 B2 JP3134042 B2 JP 3134042B2 JP 07187346 A JP07187346 A JP 07187346A JP 18734695 A JP18734695 A JP 18734695A JP 3134042 B2 JP3134042 B2 JP 3134042B2
Authority
JP
Japan
Prior art keywords
pressure
sludge
volume content
neutron
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07187346A
Other languages
Japanese (ja)
Other versions
JPH0933452A (en
Inventor
英幸 宮本
昭雄 青木
修郎 猪川
清 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP07187346A priority Critical patent/JP3134042B2/en
Publication of JPH0933452A publication Critical patent/JPH0933452A/en
Application granted granted Critical
Publication of JP3134042B2 publication Critical patent/JP3134042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は汚泥の成分比測定
装置、特に気泡が混入しているような汚泥の成分比を高
精度で測定することができる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sludge component ratio measuring device, and more particularly to a device capable of measuring the component ratio of sludge containing air bubbles with high accuracy.

【0002】[0002]

【従来の技術】汚泥焼却設備においては、焼却炉の燃焼
制御を最適化するために、炉内に投入する汚泥の成分比
を知る必要がある。汚泥は水と有機物と無機物との混合
物であり、多くの場合気泡を混入している。汚泥中の水
と有機物と無機物との成分比は通常以下に説明する方法
によって測定される。また、この方法は重量差から各成
分比を求めるため、気泡の体積含有率は考慮しなくてよ
い。なお、成分比には体積比及び重量比による表示法が
あるが、ここでは最終的に体積成分比(体積含有率)と
して求める。
2. Description of the Related Art In sludge incineration equipment, it is necessary to know the component ratio of sludge to be introduced into an incinerator in order to optimize combustion control of the incinerator. Sludge is a mixture of water, organic matter, and inorganic matter, and often contains air bubbles. The component ratio of water, organic matter and inorganic matter in the sludge is usually measured by the method described below. Further, in this method, since each component ratio is obtained from the weight difference, it is not necessary to consider the volume content of bubbles. The component ratio may be represented by a volume ratio or a weight ratio. Here, the component ratio is finally determined as a volume component ratio (volume content).

【0003】まず採取した汚泥(W)をはかり瓶に量り
取り、これをなるべく少量の水で蒸発皿またはるつぼに
洗い入れ、水浴上で蒸発乾固する。次に、これを105
〜110℃で2時間乾燥し、デシケーター中で放冷した
後、質量を量り、この質量と蒸発皿の質量の差(Wd)
から、水重量含有率を算出する。
[0003] First, the collected sludge (W) is weighed into a weighing bottle, washed with an as little amount of water as possible in an evaporating dish or crucible, and evaporated to dryness on a water bath. Next, this is 105
After drying at ~ 110 ° C for 2 hours and allowing it to cool in a desiccator, weigh the mass and determine the difference between this mass and the mass of the evaporation dish (Wd).
The water weight content is calculated from

【0004】Rw=(Ww/W) Ww=W−Wd ただし、Rw:水重量含有率 W:採取した汚泥重量(g) Ww:採取した汚泥が含む水分の重量(g) Wd:蒸発乾固後の汚泥重量(g) 更に、蒸発乾固後の汚泥を蒸発皿のまま電気炉を用いて
600±25℃で1時間強熱灰化し、デシケーター中で
放冷した後、質量を量る。この質量と蒸発皿の質量の差
(Wa)から、有機物重量含有率を算出する。
Rw = (Ww / W) Ww = W-Wd where Rw: water weight content W: weight of collected sludge (g) Ww: weight of water contained in collected sludge (g) Wd: evaporation to dryness Weight of sludge after evaporating (g) Further, the sludge after evaporating to dryness was ash-ignited at 600 ± 25 ° C. for 1 hour using an electric furnace with the evaporating dish, allowed to cool in a desiccator, and weighed. From the difference (Wa) between this mass and the mass of the evaporating dish, the organic substance weight content is calculated.

【0005】Ro=(Wo/W) Wo=Wd−Wa ただし、Ro:有機物重量含有率 Wo:採取した汚泥が含む有機物の重量(g) Wa:蒸発乾固後の汚泥を、更に強熱した後の重量
(g) また、無機物の重量含有率は強熱残留物(Wa)より以
下の関係により求める。
Ro = (Wo / W) Wo = Wd-Wa where Ro is the weight content of organic matter and Wo is the weight of organic matter contained in the collected sludge (g). Wa is the sludge after evaporating to dryness. Subsequent weight (g) The weight content of the inorganic substance is determined from the residue on ignition (Wa) according to the following relationship.

【0006】Ra=(Wa/W) ただし、Ra:無機物重量含有率 これら各重量含有率Rw,Ro,Raを体積含有率T
w,To,Taにそれぞれ変換する。
Ra = (Wa / W) where Ra is the weight content of inorganic substance. Each of these weight content rates Rw, Ro, and Ra is the volume content rate T.
w, To, and Ta, respectively.

【0007】Tw=Rw/(Rw/ρw+Ro/ρo+
Ra/ρa) To=Ro/(Rw/ρw+Ro/ρo+Ra/ρa) Ta=Ra/[(Rw/ρw+Ro/ρo+Ra/ρ
a)ρa] ただし、Tw:水体積含有率 To:有機物体積含有率 Ta:無機物体積含有率 ρw:水の密度(g/cm3 ) ρo:有機物の密度(g/cm3 ) ρa:無機物の密度(g/cm3 ) 以上により、水、有機物、無機物の各体積含有率が求め
られるが、これは汚泥が含んでいた気泡体積を考慮して
いない値であり、炉内投入前汚泥の体積成分比とは一致
しない。
Tw = Rw / (Rw / ρw + Ro / ρo +
Ra / ρa) To = Ro / (Rw / ρw + Ro / ρo + Ra / ρa) Ta = Ra / [(Rw / ρw + Ro / ρo + Ra / ρ)
a) ρa] where, Tw: water volume content To: organic substance volume content Ta: inorganic volume content ρw: water density (g / cm 3 ) ρo: density of organic substance (g / cm 3 ) ρa: Density (g / cm 3 ) From the above, each volume content of water, organic matter, and inorganic matter is obtained, but this is a value that does not take into account the volume of bubbles contained in the sludge, Does not match the component ratio.

【0008】[0008]

【発明が解決しようとする課題】上述した従来技術を用
いて汚泥の成分比を測定する場合、採取した汚泥を蒸発
乾固、強熱する等、これら前処理過程に長時間を要して
いる。従って、測定結果を得るのが数時間後となるとい
う問題がある。
When measuring the component ratio of sludge using the above-mentioned prior art, it takes a long time for these pretreatment steps, such as evaporating the collected sludge to dryness and heating. . Therefore, there is a problem that the measurement result is obtained several hours later.

【0009】一方、汚泥の成分比は比較的安定している
が、大雨が降ったような場合には、道路の排水溝から泥
が下水管に流入し、汚泥の無機物体積含有率が急激に増
加する。即ち、上述した従来技術で測定した汚泥の成分
体積比では、必ずしも現状を反映したものではなく、汚
泥焼却炉の燃焼制御を最適化するには不向きである。し
かしながら、採取した汚泥の成分比を短時間に測定する
方法は、現在のところ開発されていない。
On the other hand, the component ratio of the sludge is relatively stable, but when heavy rain falls, the mud flows into the sewer pipe from the drainage ditch of the road, and the inorganic volume content of the sludge rapidly increases. To increase. That is, the component volume ratio of the sludge measured by the above-described conventional technology does not necessarily reflect the present condition, and is not suitable for optimizing the combustion control of the sludge incinerator. However, a method for measuring the component ratio of the collected sludge in a short time has not been developed at present.

【0010】更に、従来技術では炉内投入汚泥の各成分
を体積比で求めることができないため、投入前に定量計
量器で汚泥重量を測定する必要がある。従って、この発
明の目的は、採取した汚泥の成分体積比を、短時間で測
定することのできる成分比測定装置を提供することにあ
る。
Furthermore, in the prior art, since each component of the sludge put into the furnace cannot be determined by the volume ratio, it is necessary to measure the sludge weight with a quantitative meter before putting it. Accordingly, an object of the present invention is to provide a component ratio measuring device capable of measuring the component volume ratio of collected sludge in a short time.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明に係る汚泥の成分比測定装置は、(a)汚泥を
収容する耐圧容器と、(b)この耐圧容器内に収容され
た汚泥に外圧を印加する圧力印加手段と、(c)耐圧容
器の内圧を測定する内圧測定手段と、(d)耐圧容器内
に収容された汚泥に中性子を照射する中性子線源と、
(e)汚泥によって散乱される中性子を検出する中性子
検出器と、(f)検出散乱中性子の計数率を計数する中
性子計数手段と、(g)耐圧容器内の汚泥に向けて外部
からガンマ線を照射するガンマ線源と、(h)汚泥を透
過したガンマ線を検出するガンマ線検出器と、(i)検
出透過ガンマ線の計数率を計数するガンマ線計数手段
と、(j)少なくとも2つの異なる圧力の条件下で計数
された複数の中性子計数率と、これらの圧力の条件下の
いずれか1つの圧力の条件下で計数されたガンマ線計数
率とに基づき、汚泥中に含まれる有機物、無機物、水
分、気泡の体積含有率を求める演算手段と、を備えるこ
とを特徴とする。
Means for Solving the Problems To solve the above-mentioned problems, a sludge component ratio measuring apparatus according to the present invention comprises (a) a pressure-resistant container for storing sludge, and (b) a pressure-resistant container contained in the pressure-resistant container. Pressure applying means for applying an external pressure to the sludge, (c) an internal pressure measuring means for measuring the internal pressure of the pressure-resistant container, and (d) a neutron source for irradiating the sludge contained in the pressure-resistant container with neutrons,
(E) a neutron detector for detecting neutrons scattered by sludge, (f) neutron counting means for counting the counting rate of detected scattered neutrons, and (g) externally applying gamma rays to sludge in the pressure vessel. A gamma ray source, (g) a gamma ray detector for detecting gamma rays transmitted through sludge, (i) gamma ray counting means for counting the count rate of the detected transmitted gamma rays, and (j) at least two different pressure conditions. Based on the counted neutron count rates and the gamma ray count rate counted under any one of these pressure conditions, the volume of organic matter, inorganic matter, moisture, and bubbles contained in the sludge is calculated. Calculating means for calculating the content rate.

【0012】本発明に係る汚泥の成分比測定方法は、 (a)基準となる第1の圧力P及びこれとは異なる第2
の圧力P0 の各条件下で汚泥に中性子を照射し、それぞ
れの圧力の条件下において散乱される中性子計数率N,
0 をそれぞれ測定し、これら測定値の比(N0 /N)
に基づき第1圧力の条件下における汚泥に含まれる気泡
の体積含有率Svを下式を用いて算出する工程と、 Sv=P0 (N0 −N)/(P00 −PN) (b)第1圧力Pの条件下で汚泥にガンマ線を照射し、
汚泥を透過したガンマ線の計数率G2 を測定することに
より、この測定ガンマ線計数率G2 と、予め第1圧力P
の条件下で空気のみのサンプルについて求めておいたガ
ンマ線計数率G1と、ガンマ線計数率の比(G2 /G
1 )と、前記気泡体積含有率Svと、に基づき下式を用
いて汚泥の平均密度ρを算出する工程と、 ρ=[ln(G2 /G1 )]/(μX)+(2Sv−
1)ρv ただし、μは質量減弱係数(cm2 /g)、Xはガンマ
線透過経路長(cm)、ρvは空気の密度(g/cm
3 )、をそれぞれ表わす。 (c)第1圧力Pの条件下で測定された前記中性子計数
率Nと、予め第1圧力Pの条件下で求めておいた水のみ
の中性子計数率N1 との比(N/N1 )と、前記汚泥の
平均密度ρと、前記気泡の体積含有率Svと、に基づき
下式を用いて第1圧力Pの条件下での汚泥に含まれる有
機物の体積含有率Soを算出する工程と、 So=ρwHwMo[ρ−ρa+(ρa−ρv)Sv+
(ρa−ρw)(N/N1 )]/[(ρo−ρa)ρw
HwMo+(ρa−ρw)ρoHoMw] ただし、ρwは水の密度(g/cm3 )、ρoは有機物
の密度(g/cm3 )、ρaは無機物の密度(g/cm
3 )、ρvは空気の密度(g/cm3 )、Hwは水1分
子に含まれる水素原子数、Hoは有機物1分子に含まれ
る水素原子数、Mwは水の分子量、Moは有機物の分子
量、をそれぞれ表わす。 (d)第1圧力Pの条件下で測定された前記中性子計数
率Nと、予め第1圧力Pの条件下で求めておいた水のみ
の中性子計数率N1 との比(N/N1 )と、前記有機物
体積含有率Soとに基づき下式を用いて第1圧力Pの条
件下での汚泥に含まれる水分の体積含有率Swを算出す
る工程と、 Sw=[ρwHwMo(N/N1 )−ρoHoMwS
o]/(ρwHwMo) (e)前記気泡体積含有率Svと、前記有機物体積含有
率Soと、前記水分体積含有率Swとに基づき下式を用
いて第1圧力Pの条件下での汚泥に含まれる無機物の体
積含有率Saを算出する工程と、 Sa=1−(Sv+Sw+So) を有することを特徴とする。
The method for measuring the component ratio of sludge according to the present invention comprises the steps of: (a) a first pressure P serving as a reference and a second pressure P different from the first pressure P;
The sludge is irradiated with neutrons under each condition of the pressure P 0 , and the neutron counting rate N,
The N 0 were measured, the ratio of these measurements (N 0 / N)
Calculating the volume content rate Sv of bubbles contained in the sludge under the condition of the first pressure based on the following equation: Sv = P 0 (N 0 −N) / (P 0 N 0 −PN) ( b) irradiating the sludge with gamma rays under the condition of the first pressure P;
By measuring the count rate G 2 of the gamma rays transmitted through the sludge, the measured gamma ray count rate G 2 and the first pressure P
The ratio (G 2 / G) of the gamma ray counting rate G 1 and the gamma ray counting rate obtained for the sample containing only air under the condition of
1 ) and calculating the average density ρ of the sludge based on the bubble volume content Sv using the following equation: ρ = [ln (G 2 / G 1 )] / (μX) + (2Sv−
1) ρv where μ is the mass attenuation coefficient (cm 2 / g), X is the gamma ray transmission path length (cm), and ρv is the density of air (g / cm).
3 ), respectively. (C) The ratio (N / N 1) between the neutron count rate N measured under the condition of the first pressure P and the neutron count rate N 1 of only water previously determined under the condition of the first pressure P. ), The average density ρ of the sludge, and the volume content Sv of the air bubbles, and calculating the volume content So of the organic matter contained in the sludge under the condition of the first pressure P using the following equation. And So = ρwHwMo [ρ−ρa + (ρa−ρv) Sv +
(Ρa−ρw) (N / N 1 )] / [(ρo−ρa) ρw
HwMo + (ρa−ρw) ρoHoMw] where ρw is the density of water (g / cm 3 ), ρo is the density of organic matter (g / cm 3 ), and ρa is the density of inorganic matter (g / cm 3 ).
3 ), ρv is the density of air (g / cm 3 ), Hw is the number of hydrogen atoms contained in one molecule of water, Ho is the number of hydrogen atoms contained in one molecule of organic substance, Mw is the molecular weight of water, and Mo is the molecular weight of the organic substance. , Respectively. (D) The ratio (N / N 1 ) of the neutron count rate N measured under the condition of the first pressure P to the neutron count rate N 1 of only water previously determined under the condition of the first pressure P ) And calculating the volume content Sw of the water contained in the sludge under the condition of the first pressure P using the following equation based on the organic material volume content So: Sw = [ρwHwMo (N / N) 1 ) -ρoHoMwS
o] / (ρwHwMo) (e) On the basis of the bubble volume content Sv, the organic matter volume content So, and the water volume content Sw, the sludge under the condition of the first pressure P is obtained using the following equation. A step of calculating the volume content Sa of the contained inorganic material; and Sa = 1− (Sv + Sw + So).

【0013】本発明では、2種の放射線(中性子線とガ
ンマ線)を利用して汚泥の成分比計測を行う。放射線源
と汚泥と検出器の位置関係から、測定方法には散乱法と
透過法がある。散乱法は、汚泥に対して線源と検出器が
同一方向に位置している。検出器は、線源より放射され
た放射線のうち、汚泥で多重散乱され、ほぼ180度方
向転換されたものを検出している。透過法は、線源と検
出器の間に汚泥が位置しており、線源より放射された放
射線のうち汚泥中を透過してきたものを検出器により検
出する。本発明では、中性子線は散乱法で、γ線は透過
法により測定している。
In the present invention, the sludge component ratio is measured using two types of radiation (neutron rays and gamma rays). There are a scattering method and a transmission method as measurement methods based on the positional relationship between the radiation source, the sludge, and the detector. In the scattering method, a source and a detector are located in the same direction with respect to sludge. The detector detects the radiation radiated from the radiation source, which is multiply scattered by the sludge and turned around 180 degrees. In the transmission method, sludge is located between a radiation source and a detector, and among the radiations emitted from the radiation source, those transmitted through the sludge are detected by the detector. In the present invention, neutrons are measured by a scattering method, and γ-rays are measured by a transmission method.

【0014】[0014]

【発明の実施の形態】以下に放射線を用いた気泡体積含
有率、有機物体積含有率、水体積含有率、無機物体積含
有率の各測定法について図1を参照しながら説明する。
図1は、本発明の第1実施例に係る汚泥の成分比測定装
置を示すブロック構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION The methods for measuring the volume content of bubbles, the volume content of organic substances, the volume content of water, and the volume content of inorganic substances using radiation will be described below with reference to FIG.
FIG. 1 is a block diagram showing a sludge component ratio measuring apparatus according to a first embodiment of the present invention.

【0015】試料容器2は内部に汚泥1を収容してお
り、上(底)面をゴム膜3で構成することにより試料容
器2外部の圧力を汚泥1に伝達する。さらに、汚泥1に
かかる圧力条件の違いにより汚泥体積が変化した場合に
も、ゴム膜3の伸長により対応できる。試料容器2の側
面部分は、試料容器2全体に圧力をかけた場合に変形し
ないよう、ステンレス等の金属製である。試料容器2
は、圧力容器4内部に圧力媒体6に満たされた状態で納
められている。圧力媒体6は、圧力発生器5で発生させ
た圧力を圧力容器4内部および試料容器2に伝達する。
また、圧力容器4内部の圧力は圧力センサ7で測定す
る。
The sample container 2 contains the sludge 1 therein, and the pressure outside the sample container 2 is transmitted to the sludge 1 by forming the upper (bottom) surface with a rubber film 3. Further, even when the sludge volume changes due to a difference in pressure conditions applied to the sludge 1, it is possible to cope with the elongation of the rubber film 3. The side portion of the sample container 2 is made of metal such as stainless steel so as not to be deformed when pressure is applied to the entire sample container 2. Sample container 2
Is stored in the pressure vessel 4 in a state filled with the pressure medium 6. The pressure medium 6 transmits the pressure generated by the pressure generator 5 to the inside of the pressure vessel 4 and to the sample vessel 2.
The pressure inside the pressure vessel 4 is measured by the pressure sensor 7.

【0016】中性子線源10、γ線源12から各々放射
される速中性子線、γ線を圧力容器4の外部から汚泥1
に向けて照射する。中性子線源10から放射された速中
性子は汚泥1により多重散乱され熱中性子となり、中性
子検出器11によって検出される。中性子検出器11の
出力信号は前置増幅器14で増幅され、波高弁別器16
において雑音信号を取り除いた後、計数器18で計数さ
れる。またγ線源12から放射されたγ線の内、汚泥1
を透過してきたγ線はγ線検出器13によって検出され
る。γ線検出器13の出力信号は前置増幅器15で増幅
され、波高弁別器17において雑音信号を取り除いた
後、計数器19で計数される。最終的に、圧力センサ
7、計数器18、計数器19の各測定結果を演算処理器
20で演算処理して汚泥1の成分比を求めるようになっ
ている。
Fast neutron rays and γ-rays emitted from the neutron source 10 and the γ-ray source 12 are supplied to the sludge 1 from outside the pressure vessel 4.
Irradiate toward Fast neutrons emitted from the neutron source 10 are multiple-scattered by the sludge 1 to become thermal neutrons, and are detected by the neutron detector 11. The output signal of the neutron detector 11 is amplified by the preamplifier 14 and
After the noise signal is removed in step (1), the counter 18 counts. Among the γ-rays emitted from the γ-ray source 12, sludge 1
Γ-rays that have passed through are detected by the γ-ray detector 13. The output signal of the γ-ray detector 13 is amplified by the preamplifier 15, the noise signal is removed by the wave height discriminator 17, and the output signal is counted by the counter 19. Finally, the measurement results of the pressure sensor 7, the counter 18, and the counter 19 are arithmetically processed by the arithmetic processor 20 to determine the component ratio of the sludge 1.

【0017】[気泡体積含有率測定]気泡の体積含有率
は散乱法による中性子計測によって測定する。中性子線
源10から放射されるエネルギーの高い速中性子は汚泥
1によって散乱され、エネルギーを徐々に失っていく。
中性子に対する減速能は、他の元素と比較して水素がず
ば抜けて大きいため、汚泥1中の水、有機物を構成して
いる水素原子と主に衝突することによって中性子はエネ
ルギーを失い、最終的にはエネルギーの非常に小さい熱
中性子となる。中性子検出器11( 3He計数管)の検
出効率は、熱中性子に対して高く、速中性子に対しては
低いので、結局中性子計数率(=中性子計数値/計測時
間)は汚泥1中の水、有機物含有比を反映した量とな
る。中性子検出器11の測定有効範囲体積Ve(cm
3 )内の汚泥1に含まれる水素原子数Nt(個)と、中
性子検出器11によって測定された計測器17の中性子
計数率N(cpm)との間には比例関係が成立するから N=KNt …(1) ただし、Kは比例定数(cpm/個)を表わす。
[Measurement of Bubble Volume Content] The volume content of bubbles is measured by neutron measurement by a scattering method. Fast neutrons with high energy emitted from the neutron source 10 are scattered by the sludge 1 and gradually lose energy.
Since the moderating power for neutrons is much higher than hydrogen by other elements, neutrons lose energy by colliding mainly with water in the sludge 1 and hydrogen atoms constituting organic matter, and eventually lose energy. Becomes thermal neutrons with very low energy. Detection efficiency of neutron detector 11 (3 the He counters) is high for thermal neutrons is lower for fast neutrons, the water eventually neutron count rate (= the neutron count / measurement time) is sludge 1 The amount reflects the organic matter content ratio. Effective range volume Ve (cm) of the neutron detector 11
3 ) Since there is a proportional relationship between the number of hydrogen atoms Nt (pieces) contained in the sludge 1 and the neutron counting rate N (cpm) of the measuring device 17 measured by the neutron detector 11, N = KNt (1) where K represents a proportionality constant (cpm / piece).

【0018】試料容器2は採取した汚泥1を充填した容
器であり、容器外部の圧力を汚泥1に伝達可能な構造と
なっている。試料容器2の大きさ(内容積V(cm
3 ))は中性子検出器11の測定有効範囲体積Veより
十分に大きく、如何なる圧力条件下であっても汚泥体積
がこれより小さくなることはない。よって今後体積Ve
内の汚泥成分比と中性子計数率の関係について述べる。
The sample container 2 is a container filled with the collected sludge 1, and has a structure capable of transmitting the pressure outside the container to the sludge 1. Size of sample container 2 (internal volume V (cm
3 )) is sufficiently larger than the effective range volume Ve of the neutron detector 11, and the sludge volume does not become smaller under any pressure conditions. Therefore, the volume Ve
The relation between the sludge component ratio and the neutron count rate in the inside is described.

【0019】測定有効範囲体積Ve内の第1圧力P(a
tm)(基準圧力)の条件下での気泡、水、有機物、無
機物の各体積をVv(cm3 ),Vw(cm3 ),Vo
(cm3 ),Va(cm3 )とすると、 Vv+Vw+Vo+Va=Ve 両辺をVeで除せば、第1圧力Pの条件下での気泡、
水、有機物、無機物の各体積含有率Sv,Sw,So,
Saの関係式として次式(2)が得られる。
The first pressure P (a) within the effective measurement range volume Ve
tm) (reference pressure), the volumes of air bubbles, water, organic substances, and inorganic substances are expressed as Vv (cm 3 ), Vw (cm 3 ), Vo
(Cm 3 ) and Va (cm 3 ), Vv + Vw + Vo + Va = Ve If both sides are divided by Ve, bubbles under the condition of the first pressure P,
Each volume content Sv, Sw, So, of water, organic matter, inorganic matter,
The following equation (2) is obtained as the relational expression of Sa.

【0020】 Sv+Sw+So+Sa=1 …(2) また、一連の測定が汚泥1を試料容器2に封入して行わ
れることと、水、有機物、無機物の体積が圧力に依らず
ほぼ一定であることから、測定中次の関係が保たれてい
る。
Sv + Sw + So + Sa = 1 (2) Further, since a series of measurements is performed with the sludge 1 sealed in the sample container 2 and the volumes of water, organic substances, and inorganic substances are almost constant regardless of pressure, The following relationship holds during the measurement.

【0021】 Vo=mVw (0≦m<1) …(3) Va=nVw (0≦n<1) …(4) ここでm,nは定数であり、一般的に汚泥1の主成分は
水であるから上式のように仮定してよい。式(3)及び
式(4)の各両辺をVeで除したものを式(2)に代入
すれば、 Sv+(1+m+n)Sw=1 m+n=k(定数)とおくと、 Sv+(1+k)Sw=1 …(5) となる。
Vo = mVw (0 ≦ m <1) (3) Va = nVw (0 ≦ n <1) (4) where m and n are constants, and the main component of sludge 1 is generally Since it is water, it may be assumed as in the above equation. By substituting the two sides of Equations (3) and (4) by Ve into Equation (2), if Sv + (1 + m + n) Sw = 1 m + n = k (constant), then Sv + (1 + k) Sw = 1 (5)

【0022】水素を多量に含む汚泥成分は水と有機物で
あるから、体積Ve中に含まれる水、有機物が含有する
水素原子数を各々Nw(個)、No(個)とするとNt
は、 Nt=Nw+No と表される。ここで水素密度を定義しておく。水の水素
原子密度(個/cm3 )をDwとし、有機物の水素原子
密度(個/cm3 )をDoとすると、 Dw=Hw[ρwNa/Mw] …(6) Do=Ho[ρoNa/Mo] …(7) であるから、Nw,Noはそれぞれ Nw=Hw[ρwNa/Mw](VeSw) No=Ho[ρoNa/Mo](VeSo) である。上式中において、Hw:水1分子に含まれる水
素原子数、Ho:有機物1分子に含まれる水素原子数、
ρw:水の密度(g/cm3 )、ρo:有機物の密度
(g/cm3 )、Na:アボガドロ数(個/mol)、
Mw:水の分子量、Mo:有機物の分子量である。式
(6)及び式(7)の右辺[]内は、単位体積に含まれ
る水、有機物の分子数であって、これにHw,Hoを乗
じれば水、有機物の水素密度が求められる。
Since the sludge component containing a large amount of hydrogen is water and organic matter, if the number of hydrogen atoms contained in water and the organic matter in the volume Ve is Nw (number) and No (number), respectively, Nt
Is expressed as Nt = Nw + No. Here, the hydrogen density is defined. Hydrogen atom density of water (pieces / cm 3) and Dw, the organic hydrogen atom density (number / cm 3) and Do, Dw = Hw [ρwNa / Mw] ... (6) Do = Ho [ρoNa / Mo ] (7), Nw and No are respectively Nw = Hw [ρwNa / Mw] (VeSw) No = Ho [ρoNa / Mo] (VeSo) In the above formula, Hw: the number of hydrogen atoms contained in one molecule of water, Ho: the number of hydrogen atoms contained in one molecule of an organic substance,
ρw: density of water (g / cm 3 ), ρo: density of organic matter (g / cm 3 ), Na: Avogadro number (pieces / mol),
Mw: molecular weight of water, Mo: molecular weight of organic matter. The numbers on the right side of the formulas (6) and (7) indicate the number of molecules of water and organic substances contained in the unit volume, and by multiplying this by Hw and Ho, the hydrogen density of water and organic substances can be obtained.

【0023】したがって体積Ve中の水素原子数Ntは Nt=Nw+No =Hw[ρwNa/Mw](VeSw) +Ho[ρoNa/Mo](VeSo) =(NaVe/MwMo)(HwρwSwMo+HoρoSoMw) =(NaVe/MwMo) (HwρwMo+mHoρoMw)Sw(式(3)より) と表される。このときの中性子計数率Nは、上式(1)
より N=KNt =K(NaVe/MwMo)(HwρwMo+mHoρoMw)Sw となる。
Accordingly, the number of hydrogen atoms Nt in the volume Ve is Nt = Nw + No = Hw [ρwNa / Mw] (VeSw) + Ho [ρoNa / Mo] (VeSo) = (NaVe / MwMo) (HwρwSwMo + HoρoSoMw) = (NaVeMw) (HwρwMo + mHoρoMw) Sw (from equation (3)). At this time, the neutron counting rate N is calculated by the above equation (1).
Thus, N = KNt = K (NaVe / MwMo) (HwρwMo + mHorpoMw) Sw.

【0024】次に、図1の圧力発生器5により圧力を発
生させ、気体もしくは液体の圧力媒体6により圧力容器
4内に圧力を伝達する。圧力容器4内には試料容器2が
納められており、また圧力容器4と試料容器2の間は圧
力媒体6により満たされている。この試料容器2は先述
したように容器外部(つまり圧力容器4内部)の圧力を
汚泥1に伝達可能な構造となっている。ところでγ線透
過法により無機物体積含有率を測定するためには、汚泥
1中のγ線透過経路長が常に一定であることが必要であ
り、γ線の透過経路を含む試料容器2の断面形状は如何
なる圧力条件下であっても変形してはならない。したが
って水平方向にγ線を照射している場合では、試料容器
2の上面と底面をゴム膜3とするか、あるいは上下方向
のピストン機構によって上(底)面が移動することによ
り、試料容器2外部の圧力を試料容器2内部に伝達しつ
つ、汚泥1の体積変化に対応できる構造が要求される。
Next, pressure is generated by the pressure generator 5 shown in FIG. 1 and the pressure is transmitted into the pressure vessel 4 by the gas or liquid pressure medium 6. The sample container 2 is accommodated in the pressure container 4, and the space between the pressure container 4 and the sample container 2 is filled with a pressure medium 6. The sample container 2 has a structure capable of transmitting the pressure outside the container (that is, inside the pressure container 4) to the sludge 1 as described above. By the way, in order to measure the inorganic substance volume content by the γ-ray transmission method, it is necessary that the γ-ray transmission path length in the sludge 1 is always constant, and the cross-sectional shape of the sample container 2 including the γ-ray transmission path Must not deform under any pressure conditions. Therefore, when γ-rays are radiated in the horizontal direction, the upper and lower surfaces of the sample container 2 are made of the rubber film 3 or the upper (bottom) surface is moved by a vertical piston mechanism, so that the sample container 2 A structure that can respond to the volume change of the sludge 1 while transmitting the external pressure to the inside of the sample container 2 is required.

【0025】いま、圧力容器4内部を第1圧力Pから第
2圧力P0 (atm)まで昇圧したとすると、試料容器
2上(底)面のゴム膜3あるいはピストン機構により圧
力が試料容器2内部に伝達される。第2圧力P0 のとき
の気泡体積をVv0 (cm3)とすれば、ボイルの法則
から、 Vv0 =VvP/P0 …(8) の関係が成立する。P0 >PであるからVv0 <Vvと
なり気泡の体積は減少し、これに伴い汚泥1全体の体積
VもV0 (g/cm3 )に減少する。このとき試料容器
2はゴム膜3の伸長もしくはピストンの移動により内容
積を変化させ、汚泥1のVからV0 への体積変化を吸収
しつつ、常に圧力を汚泥1に伝達する。汚泥1の全体積
はV0 に変化するが、中性子計数率に影響するのは有効
測定範囲内の汚泥(体積Ve)だけである。
Now, assuming that the pressure inside the pressure vessel 4 is increased from the first pressure P to the second pressure P 0 (atm), the pressure is increased by the rubber film 3 on the top (bottom) surface of the sample container 2 or the piston mechanism. It is transmitted inside. Assuming that the volume of the bubble at the second pressure P 0 is Vv 0 (cm 3 ), the relationship of Vv 0 = VvP / P 0 (8) is established from Boyle's law. Since P 0 > P, Vv 0 <Vv, and the volume of the bubbles decreases, and accordingly, the volume V of the entire sludge 1 also decreases to V 0 (g / cm 3 ). At this time, the internal volume of the sample container 2 is changed by the extension of the rubber film 3 or the movement of the piston, and the pressure is constantly transmitted to the sludge 1 while absorbing the volume change of the sludge 1 from V to V 0 . Although the total volume of the sludge 1 changes to V 0 , only the sludge (volume Ve) within the effective measurement range affects the neutron counting rate.

【0026】この体積Ve内では、式(8)の関係にし
たがって気泡の体積が減少するが、その減少分を水、有
機物、無機物が式(3)及び式(4)の関係を保ちつつ
置換していく。試料容器2はVeに比べ十分に大きくV
0 >Veであるから、第2圧力P0 での気泡の体積含有
率Sv0 は体積Veを基準として計算してよく、式
(8)より Sv0 =Vv0 /Ve=(VvP/P0 )/Ve=(P/P0 )Sv …(9) これに伴って、第2圧力P0 の条件下では水、有機物、
無機物の体積含有率も各々Sw0 ,So0 ,Sa0 に変
わっており、上式(2)と同様に、 Sv0 +Sw0 +So0 +Sa0 =1 と表わすことができ、式(5)と同様に次式(10)の
ように表わされる。
Within this volume Ve, the volume of the bubbles is reduced according to the relationship of equation (8), and the reduced amount is replaced by water, organic substances and inorganic substances while maintaining the relations of equations (3) and (4). I will do it. The sample container 2 has a sufficiently large V
0> because it is Ve, the volume content Sv 0 of bubbles in the second pressure P 0 may calculate the volume Ve as a reference, Sv from equation (8) 0 = Vv 0 / Ve = (VvP / P 0 ) / Ve = (P / P 0 ) Sv (9) Accordingly, under the condition of the second pressure P 0 , water, organic matter,
The volume content of the inorganic substance is also changed to Sw 0 , So 0 , and Sa 0 , and can be expressed as Sv 0 + Sw 0 + So 0 + Sa 0 = 1 as in the above equation (2). Similarly, it is expressed by the following equation (10).

【0027】 Sv0 +(1+k)Sw0 =1 …(10) 式(5)及び式(10)からkを消去し、さらに式
(9)を用いてSv0 を消去すると、次式(11)を得
る。
Sv 0 + (1 + k) Sw 0 = 1 (10) If k is deleted from Expressions (5) and (10), and Sv 0 is deleted using Expression (9), the following Expression (11) is obtained. Get)

【0028】 Sw0 /Sw=(P0 −PSv)/[P0 (1−Sv)] …(11) また、このとき体積Ve内に含まれている水素原子数N
0 (個)は、 Nt0 =(NaVe/MwMo)(HwρwMo+mHo
ρoMw)Sw0 であるから、第2圧力P0 の条件下での中性子計数率N
0 (cpm)は、式(1)より N0 =KNt0 =K(NaVe/MwMo)(HwρwMo+mHoρoMw)Sw0 となる。第1圧力P及び第2P0 の条件下での中性子計
数率N,N0 の比をとると式(11)の関係から N0 /N=Sw0 /Sw=(P0 −PSv)/[P0
(1−Sv)] これを変形して次式(12)を得る。
Sw 0 / Sw = (P 0 −PSv) / [P 0 (1−Sv)] (11) Also, at this time, the number N of hydrogen atoms contained in the volume Ve
t 0 (pieces) is Nt 0 = (NaVe / MwMo) (HwρwMo + mHo)
ρoMw) Since Sw 0 , the neutron count rate N under the condition of the second pressure P 0
From equation (1), 0 (cpm) becomes N 0 = KNt 0 = K (NaVe / MwMo) (HwρwMo + mHoρoMw) Sw 0 . Taking the ratio of the neutron count rates N and N 0 under the conditions of the first pressure P and the second P 0 , N 0 / N = Sw 0 / Sw = (P 0 −PSv) / [ P 0
(1-Sv)] By transforming this, the following equation (12) is obtained.

【0029】 Sv=P0 (N0 −N)/(P00 −PN) …(12) 第1圧力Pの条件下での気泡体積含有率Svを得る。な
お、第2圧力P0 の条件下での気泡体積含有率Sv0
式(8)より、 Sv0 =SvP/P0 である。
Sv = P 0 (N 0 −N) / (P 0 N 0 −PN) (12) The bubble volume content Sv under the condition of the first pressure P is obtained. Note that the bubble volume content Sv 0 under the condition of the second pressure P 0 is Sv 0 = SvP / P 0 from the equation (8).

【0030】以上により第1圧力Pの条件下での中性子
計数率N、第2圧力P0 の条件下での中性子計数率N
0 、および第1圧力P、第2圧力P0 を測定すること
で、第1圧力Pの条件下での気泡体積含有率Svおよび
第2圧力P0 の条件下での気泡体積含有率Sv0 が求め
られた。
As described above, the neutron count rate N under the condition of the first pressure P and the neutron count rate N under the condition of the second pressure P 0
0, and the first pressure P, by measuring the second pressure P 0, the bubble volume content Sv 0 under conditions of the bubble volume fraction Sv and second pressure P 0 at the conditions of the first pressure P Was required.

【0031】なお、上記説明においては第1圧力Pから
昇圧して第2圧力P0 としたが、降圧して第2圧力P0
としてもよい。このときP0 <PであるからVv0 >V
vとなり、気泡の体積は増大する。これに伴い汚泥1全
体の体積VもV0 に増大するが、その他の点では昇圧し
た場合の説明と同一である。 [有機物、水、無機物の体積含有率測定]図2及び図3
を参照しながら中性子計数率およびγ線計数率の測定結
果に基づきSw,So,Saのそれぞれを求める手順を
説明する。
In the above description, the pressure is increased from the first pressure P to the second pressure P 0. However, the pressure is decreased and the second pressure P 0 is increased.
It may be. At this time, since P 0 <P, Vv 0 > V
v, the volume of the bubble increases. Accordingly, the volume V of the entire sludge 1 also increases to V 0 , but the other points are the same as those described in the case where the pressure is increased. [Measurement of volume content of organic matter, water and inorganic matter] FIGS. 2 and 3
The procedure for obtaining each of Sw, So, and Sa based on the measurement results of the neutron count rate and the γ-ray count rate will be described with reference to FIG.

【0032】上記の気泡体積含有率測定の場合と同様に
第1圧力Pの条件下での汚泥1の成分比を次式(2)の
ようにおく。 Sv+Sw+So+Sa=1 …(2) まず中性子計数率(cpm)は汚泥に含まれる水素原子
数に比例するから、考慮すべき汚泥の成分は水素を多量
に含む水と有機物である。そこで上式(2)において、 SH =Sw+So とおき、 SSw=Sw/SH SSo=So/SH と定義すれば、下記の関係式が得られる。なお、SSw
は汚泥内の(水+有機物)部分を基準とした水の混合比
を表わし、SSoは汚泥内の(水+有機物)部分を基準
とした有機物の混合比を表わす。
As in the case of the measurement of the bubble volume content, the component ratio of the sludge 1 under the condition of the first pressure P is set as in the following equation (2). Sv + Sw + So + Sa = 1 (2) First, the neutron count rate (cpm) is proportional to the number of hydrogen atoms contained in the sludge. Therefore, the components of the sludge to be considered are water containing a large amount of hydrogen and organic matter. Therefore, in the above equation (2), if SH = Sw + So and SSw = Sw / SH SSo = So / SH, the following relational expression is obtained. Note that SSw
Represents the mixing ratio of water based on the (water + organic material) portion in the sludge, and SSo represents the mixing ratio of the organic material based on the (water + organic material) portion in the sludge.

【0033】SSw+SSo=1 図2は中性子計数率を説明するための概念図である。以
下、この概念図を参照しながらモデル化したサンプル
A,B1,B2,B3に対する中性子計測を考え、各試
料での中性子計数率を定義して水体積含有率を表す式を
導く。ただし、いずれの測定においても圧力条件は第1
圧力Pとする。
SSw + SSo = 1 FIG. 2 is a conceptual diagram for explaining the neutron counting rate. Hereinafter, neutron measurement on the modeled samples A, B1, B2, and B3 will be considered with reference to this conceptual diagram, and a neutron count rate for each sample will be defined to derive an equation representing the water volume content. However, the pressure condition is the first in any measurement.
Let the pressure be P.

【0034】 サンプルA) 水(Sw=1):N1 (cpm) サンプルB1) 汚泥(0<SSw<1,0<SSo<
1):N2 (=N)(cpm) サンプルB2) 有機物+無機物+気泡(SSo=
1):N3 (cpm) サンプルB3) 水+無機物+気泡(SSw=1):N
4 (cpm) なお、上述の中性子計数率N2 は気泡体積含有率の測定
で測定したNと等しい。
Sample A) Water (Sw = 1): N 1 (cpm) Sample B1) Sludge (0 <SSw <1, 0 <SSo <
1): N 2 (= N) (cpm) Sample B2) Organic substance + inorganic substance + bubble (SSo =
1): N 3 (cpm) Sample B3) Water + inorganic substance + bubble (SSw = 1): N
4 (cpm) The neutron count rate N 2 described above is equal to N measured in the measurement of the bubble volume content.

【0035】ところで上式(6),(7)より、 Do/Dw=ρoHoMw/(ρwHwMo) である。N3 とN4 では同体積の有機物と水を測定して
いるから、両者の関係は水素密度比Do/Dwにより次
式(13)のように表わされる。
From the above equations (6) and (7), Do / Dw = ρoHoMw / (ρwHwMo). Since N 3 and N 4 measure the same volume of organic matter and water, the relationship between the two is expressed by the hydrogen density ratio Do / Dw as in the following equation (13).

【0036】 N3 =[ρoHoMw/(ρwHwMo)]N4 …(13) また、中性子計数率N1 とN4 は水の体積比の違いから
次式(14)の関係がある。
N 3 = [ρoHoMw / (ρwHwMo)] N 4 (13) Further, the neutron count rates N 1 and N 4 have the relationship of the following equation (14) due to the difference in the volume ratio of water.

【0037】 N4 =(1−Sv−Sa)N1 …(14) 次に、図3を用いて上記中性子計数率N2 からサンプル
B1中の(水+有機物)部分における水と有機物の混合
比[SSw(またはSSo)]が求められることを説明
する。
N 4 = (1−Sv−Sa) N 1 (14) Next, referring to FIG. 3, mixing of water and an organic substance in the (water + organic substance) portion in the sample B1 from the neutron count rate N 2. The fact that the ratio [SSw (or SSo)] is determined will be described.

【0038】図3は、横軸にサンプルB1中の(水+有
機物)部分における水と有機物の混合比[SSw(また
はSSo)]をとり、縦軸に中性子計数率をとって、水
と有機物の混合比に対する中性子計数率の依存性を示す
特性線図である。いま、SSwが0から1に変化して中
性子計数率がN3 からN4 に変化したことから、サンプ
ルB1のN2 は次のように表わされる。
FIG. 3 shows the mixture ratio of water and organic matter [SSw (or SSo)] in the (water + organic matter) portion of sample B1 on the horizontal axis, and the neutron count rate on the vertical axis, and the water and organic matter FIG. 4 is a characteristic diagram showing the dependence of the neutron counting rate on the mixing ratio of the neutrons. Now, since SSw has changed from 0 to 1 and the neutron count rate has changed from N 3 to N 4 , N 2 of sample B1 is expressed as follows.

【0039】 N2 =N3 +(N4 −N3 )SSw =N3 +(N4 −N3 )[Sw/SH ] =N3 +(N4 −N3 )[Sw/(Sw+So)] =N3 +(N4 −N3 )[Sw/(1−Sv−Sa)] これをSwについて解くと下式(15)を得る。N 2 = N 3 + (N 4 −N 3 ) SSw = N 3 + (N 4 −N 3 ) [Sw / SH] = N 3 + (N 4 −N 3 ) [Sw / (Sw + So) ] = N 3 + (N 4 -N 3) obtain [Sw / (1-Sv- Sa)] following equation solving for Sw (15).

【0040】 Sw=[(N2 −N3 )/(N4 −N3 )](1−Sv−Sa) =(ρwHwMoN2 −ρoHoMwN4 )(1−Sv−Sa) /[(ρwHwMo−ρoHoMw)N4 ](式(13)より) =[ρwHwMoN2 −ρoHoMw(1−Sv−Sa)N1 ] /[(ρwHwMo−ρoHoMw)N1 ](式(14)より) …(15) また、式(2)より 1−Sv−Sa=Sw+So であるから、これを上式(15)に代入してSwについ
て整理すると下記のように変形することができる。
Sw = [(N 2 −N 3 ) / (N 4 −N 3 )] (1−Sv−Sa) = (ρwHwMoN 2 −ρoHoMwN 4 ) (1−Sv−Sa) / [(ρwHwMo−ρoHoMw) ) N 4 ] (from equation (13)) = [ρwHwMoN 2 −ρoHoMw (1-Sv-Sa) N 1 ] / [(ρwHwMo−ρoHoMw) N 1 ] (from equation (14)) (15) From equation (2), 1−Sv−Sa = Sw + So. Therefore, substituting this into equation (15) and rearranging Sw allows the following modification.

【0041】 Sw=[ρwHwMo(N2 /N1 )−ρoHoMwSo] /(ρwHwMo) …(15−1) 先述したようにN2 は気泡体積含有率測定で測定したN
と等しいので、結局は次の関係式が得られる。
Sw = [ρwHwMo (N 2 / N 1 ) −ρoHoMwSo] / (ρwHwMo) (15-1) As described above, N 2 is the N measured by the bubble volume content measurement.
Therefore, the following relational expression is eventually obtained.

【0042】 Sw=[ρwHwMo(N/N1 )−ρoHoMwSo] /(ρwHwMo) …(15−2) ところで、γ線測定系で測定しているγ線計数率(=γ
線計数値/測定時間)の意味は次の通りである。一般に
γ線源12から放射されたγ線は、試料により散乱され
方向を変えるので、試料を透過してγ線検出器13に入
射する透過γ線強度I(=γ線計数率G1 ,G2 )(c
pm)は下式(16)で表わされる。
Sw = [ρwHwMo (N / N 1 ) −ρoHoMwSo] / (ρwHwMo) (15-2) By the way, the γ-ray counting rate (= γ) measured by the γ-ray measurement system
The meaning of (line count value / measurement time) is as follows. Generally, γ-rays emitted from the γ-ray source 12 are scattered by the sample and change direction, so that the transmitted γ-ray intensity I (= γ-ray count rates G 1 , G 2 ) (c
pm) is represented by the following equation (16).

【0043】 I=B・G・exp(−μρt) …(16) ただし、G:試料入射γ線強度(cpm) μ:質量減弱係数(cm2 /g) ρ:試料の平均密度(g/cm3 ) t:透過経路長(cm) B:ビルドアップ係数 Gはγ線源の放射能により規定された定数である。入射
したγ線を減弱するγ線と物質との相互作用は、光電効
果、コンプトン散乱及び電子対生成があり、これらの反
応断面積(相互作用の確率)は物質及び入射γ線のエネ
ルギーに依存する。
I = B · G · exp (−μρt) (16) where G: sample incident γ-ray intensity (cpm) μ: mass attenuation coefficient (cm 2 / g) ρ: average density of the sample (g / g) cm 3 ) t: transmission path length (cm) B: build-up coefficient G is a constant defined by the radioactivity of the γ-ray source. The interaction between γ-rays and substances that attenuate incident γ-rays includes photoelectric effect, Compton scattering, and electron pair generation, and their reaction cross section (probability of interaction) depends on the energy of the substance and incident γ-rays. I do.

【0044】ところで、コンプトン散乱が主な損失過程
である場合、式(16)の質量減弱係数μは元素に依ら
ずほぼ一定であるので、本測定方法ではコンプトン散乱
が主なエネルギー損失過程であるようなエネルギーを持
つγ線を利用する。
When Compton scattering is the main loss process, the mass attenuation coefficient μ in equation (16) is almost constant irrespective of the element. Therefore, in this measurement method, Compton scattering is the main energy loss process. A gamma ray having such energy is used.

【0045】さらに、汚泥1を収容する試料容器2のγ
線透過経路方向での変形も無いのでtも一定であり、γ
線検出器13で検出した透過γ線計数率は透過経路中の
汚泥密度ρに依存した量となる。つまり、透過γ線強度
Iを測定することにより、汚泥1の平均密度を知ること
ができる。なお、γ線源から放射されるγ線は必ずしも
指向性が良くないため、散乱γ線がγ線検出器13に入
射する事象が発生する。この見かけ上の透過γ線強度I
の増加を、ビルドアップ係数Bで補正している。
Further, γ of the sample container 2 containing the sludge 1
Since there is no deformation in the direction of the light transmission path, t is constant, and γ
The transmission γ-ray count rate detected by the line detector 13 is an amount dependent on the sludge density ρ in the transmission path. That is, by measuring the transmitted γ-ray intensity I, the average density of the sludge 1 can be known. Since γ-rays emitted from the γ-ray source do not always have good directivity, an event occurs in which scattered γ-rays enter the γ-ray detector 13. This apparent transmitted γ-ray intensity I
Is corrected by the build-up coefficient B.

【0046】ところで、第1圧力Pの条件下での汚泥1
の成分比は次式(2)の関係にある。 Sv+Sw+So+Sa=1 …(2) いま、第1圧力Pの条件下でのγ線測定を考える。
Incidentally, the sludge 1 under the condition of the first pressure P
Is in the relationship of the following equation (2). Sv + Sw + So + Sa = 1 (2) Now, γ-ray measurement under the condition of the first pressure P is considered.

【0047】試料容器2および圧力容器4の片側肉厚の
合計をh(cm)、汚泥1中のγ線透過長をX(cm)
とする。また、それぞれの質量減弱係数については空気
をμv(cm2 /g)、水をμw(cm2 /g)、有機
物をμo(cm2 /g)、無機物をμa(cm2
g)、容器壁をμs(cm2 /g)とする。また、それ
ぞれの密度については空気をρv(g/cm3 )、水を
ρW(g/cm3 )、有機物をρo(g/cm3 )、無
機物をρa(g/cm3 )、容器壁をρs(g/cm
3 )とする。さらに、圧力容器4への入射γ線数がG
(cpm)、試料が汚泥1のときの透過γ線数をG2
(cpm)とすると、式(16)の関係より G2 =B・G・exp{−μvρvSvX} ・exp{−μwρwSwX}・exp{−μoρoS
oX} ・exp{−μaρaSaX}・exp{−μsρs2
h} また、試料容器2内が空気のみのとき(つまり空の状
態)の透過γ線数G1 (cpm)は、 G1 =B・G・exp{−μvρvX・exp{−μs
ρs2h} となる。
The total thickness of one side of the sample container 2 and the pressure container 4 is h (cm), and the γ-ray transmission length in the sludge 1 is X (cm).
And Regarding the respective mass attenuation coefficients, air is μv (cm 2 / g), water is μw (cm 2 / g), organic matter is μo (cm 2 / g), and inorganic matter is μa (cm 2 / g).
g), and the container wall is set to μs (cm 2 / g). For the respective densities, air is ρv (g / cm 3 ), water is ρW (g / cm 3 ), organic matter is ρo (g / cm 3 ), inorganic matter is ρa (g / cm 3 ), and the container wall is ρs (g / cm
3 ). Further, the number of gamma rays incident on the pressure vessel 4 is G
(Cpm), the number of transmitted γ-rays when the sample was sludge 1 was G 2
Assuming that (cpm), from the relationship of Expression (16), G 2 = BGBexp {−μvρvSvX} · exp {−μwρwSwX} · exp {−μoρoS
oX} · exp {-μaρSaX} · exp {-μsρs2
h} When the sample container 2 contains only air (that is, in an empty state), the number of transmitted γ-rays G 1 (cpm) is given by: G 1 = BG = exp ・ -μvρvX ・ exp {-μs
ρs2h}.

【0048】これらより G2 /G1 =exp{−μvρv(Sv−1)X} ・exp{−μwρwSwX} ・exp{−μoρoSoX} ・exp{−μaρaSaX} ここで質量減弱係数は物質によらずほぼ一定であるか
ら、 μ(cm2 /g)=μv=μw=μo=μa この関係を代入し、さらに自然対数をとると ln(G2 /G1 )=−μρv(Sv−1)X −μρwSwX−μρoSoX−μρaSaX =−μX[ρv(Sv−1) −ρwSw−ρoSo−ρaSa] これをさらに変形して ρvSv+ρwSw+ρoSo+ρaSa=[ln(G
2 /G1 )]/(μX)+(2Sv−1)ρv 従って、汚泥の平均密度ρ(g/cm3 )は次式(1
7)で与えられる。
From these, G 2 / G 1 = exp {-μvρv (Sv-1) X} · exp {-μwρwSwX} · exp {-μoρoSoX} · exp {-μaρaSaX} Here, the mass attenuation coefficient does not depend on the substance. Since this is almost constant, μ (cm 2 / g) = μv = μw = μo = μa This relationship is substituted, and the natural logarithm is obtained. In (G 2 / G 1 ) = − μρv (Sv−1) X −μρwSwX−μρoSoX−μρaSaX = −μX [ρv (Sv−1) −ρwSw−ρoSo−ρaSa] This is further transformed to ρvSv + ρwSw + ρoSo + ρaSa = [ln (G
2 / G 1 )] / (μX) + (2Sv−1) ρv Therefore, the average density ρ (g / cm 3 ) of the sludge is given by the following equation (1)
7).

【0049】 ρvSv+ρwSw+ρoSo+ρaSa=ρ …(17) よって、平均密度ρは次式(18)のように求まる。 ρ=[ln(G2 /G1 )]/(μX)+(2Sv−1)ρv …(18) ところで、以上に述べてきたことから次の関係式が成立
している。
ΡvSv + ρwSw + ρoSo + ρaSa = ρ (17) Accordingly, the average density ρ is obtained as in the following equation (18). ρ = [ln (G 2 / G 1 )] / (μX) + (2Sv−1) ρv (18) By the way, the following relational expression is established from the above description.

【0050】 Sw=[ρwHwMo(N/N1 )−ρoHoMwSo] /(ρwHwMo) …(15−2) Sa=1−(Sv+Sw+So)(式(2)より) …(19) ρ=ρvSv+ρwSw+ρoSo+ρaSa …(17) 上式(15−2)及び(19)を式(17)に代入して
Soについて解くと、次式(20)のようになる。
Sw = [ρwHwMo (N / N 1 ) −ρoHoMwSo] / (ρwHwMo) (15-2) Sa = 1− (Sv + Sw + So) (from equation (2)) (19) ρ = ρvSv + ρwSw + ρoSo + ρaSa By substituting the equations (15-2) and (19) into the equation (17) and solving for So, the following equation (20) is obtained.

【0051】 So=ρwHwMo[ρ−ρa+(ρa−ρv)Sv +(ρa−ρw)(N/N1 )] /[(ρo−ρa)ρwHwMo +(ρa−ρw)ρoHoMw] …(20) よって、求めたSoを用いて式(15−2)からSwが
求まる。さらに、So,Swが解けたのでSaも解け
る。このようにしてSo,Sw,Saを全て決定するこ
とができる。
So = ρwHwMo [ρ−ρa + (ρa−ρv) Sv + (ρa−ρw) (N / N 1 )] / [(ρo−ρa) ρwHwMo + (ρa−ρw) ρoHoMw] (20) Sw is obtained from equation (15-2) using the obtained So. Further, since So and Sw have been solved, Sa can also be solved. Thus, So, Sw, and Sa can all be determined.

【0052】また、以上の説明においては、圧力条件と
して第1圧力Pを想定し、第1圧力Pのときの汚泥成分
比So,Sw,Saをそれぞれ求めた。これと同様にし
て圧力条件を第2圧力P0 に想定し、第2圧力P0 のと
きの汚泥成分の各体積含有率So0 ,Sw0 ,Sa0
求めることもできる。この場合はSo,Sw,Saを求
める説明文中において、第1圧力Pを第2圧力P0 と、
SvをSv0 と、SoをSo0 と、SwをSw0 と、S
aをSa0 と、NをN0 と、それぞれ読み換えればよ
い。
In the above description, the first pressure P was assumed as the pressure condition, and the sludge component ratios So, Sw, and Sa at the first pressure P were determined. Similarly, assuming that the pressure condition is the second pressure P 0 , the respective volume contents So 0 , Sw 0 , and Sa 0 of the sludge component at the second pressure P 0 can be obtained. In this case, in the description for obtaining So, Sw, and Sa, the first pressure P is set to the second pressure P 0 ,
Sv is Sv 0 , So is So 0 , Sw is Sw 0 , S
a may be replaced with Sa 0 and N may be replaced with N 0 .

【0053】なお、以上述べてきた方法においては第1
圧力Pの条件下、第2圧力P0 の条件下での各測定値か
ら第一圧力P下での汚泥成分の各体積含有率Sv,S
w,So,Saを求めた。しかし以下の式により第1圧
力Pの条件下での各体積含有率から、任意の圧力P0 0
下での汚泥成分の各体積含有率を求めることもできる。
圧力P0 0 の条件下での気泡、水、有機物、無機物の各
体積含有率をSv0 0 ,Sw0 0 ,So0 0 ,Sa0 0
とする。
In the method described above, the first method is used.
From the measured values under the condition of the pressure P and the condition of the second pressure P 0 , the respective volume contents Sv and S of the sludge component under the first pressure P
w, So, and Sa were determined. However, from the following formula, from each volume content under the condition of the first pressure P, an arbitrary pressure P 0 0
The respective volume content of the sludge components below can also be determined.
It bubbles under a pressure P 0 0, water, organic substances, 0 Sv 0 each volume content of inorganic matter, Sw 0 0, So 0 0 , Sa 0 0
And

【0054】まず、気泡体積含有率Sv0 0 は式(8)
の関係から下式(21)が成立する。 Sv0 0 =SvP/P0 0 …(21) 第1圧力P下では式(3)と式(4)から Vw+Vo+Va=(1+m+n)Vw 上式の両辺をVeで除して次式(22)とする。
[0054] First, the bubble volume content Sv 0 0 formula (8)
The following equation (21) is established from the relationship. Sv 0 0 = SvP / P 0 0 (21) Under the first pressure P, Vw + Vo + Va = (1 + m + n) Vw from the equations (3) and (4) by dividing both sides of the above equation by Ve and the following equation (22) And

【0055】 Sw+So+Sa=(1+m+n)Sw …(22) 同様に圧力P0 0 では、 Vw0 0 +Vo0 0 +Va0 0 =(1+m+n)Vw0
0 よって、次式(23)が成り立つ。
[0055] Sw + So + Sa = (1 + m + n) Sw ... (22) in the pressure P 0 0 Similarly, Vw 0 0 + Vo 0 0 + Va 0 0 = (1 + m + n) Vw 0
0 Therefore, the following equation (23) is established.

【0056】 Sw0 0 +So0 0 +Sa0 0 =(1+m+n)Sw0 0 …(23) ゆえに、式(22)と式(23)からSw0 0 /Swが
求まる。 Sw0 0 /Sw=(Sw0 0 +So0 0 +Sa0 0 )/(Sw+So+Sa) =(1−Sv0 0 )/(1−Sv) 式(21)を用いてSv0 0 を消去し、さらにSw0 0
について解くと、次式(24)を得る。
Sw 0 0 + So 0 0 + Sa 0 0 = (1 + m + n) Sw 0 0 (23) Therefore, Sw 0 0 / Sw is obtained from Expressions (22) and (23). Sw 0 0 / Sw = erases Sv 0 0 using (Sw 0 0 + So 0 0 + Sa 0 0) / (Sw + So + Sa) = (1-Sv 0 0) / (1-Sv) equation (21), further Sw 0 0
Is solved, the following equation (24) is obtained.

【0057】 Sw0 0 =Sw(P0 0 −PSv)/[P0 0 (1−Sv)] …(24) 同様にして有機物体積含有率So0 0 も次式(25)で
与えられる。
[0057] Sw 0 0 = Sw (P 0 0 -PSv) / [P 0 0 (1-Sv)] ... (24) Similarly organics volume content So. 0 0 also given by the following equation (25).

【0058】 So0 0 =So(P0 0 −PSv)/[P0 0 (1−Sv)] …(25) 結局、無機物体積含有率Sa0 0 は次式(26)のよう
に求まる。
[0058] So 0 0 = So (P 0 0 -PSv) / [P 0 0 (1-Sv)] ... (25) Finally, inorganic volume content Sa 0 0 is determined by the following equation (26).

【0059】 Sa0 0 =1−Sv0 0 −Sw0 0 −So0 0 …(26) このように第1圧力Pの条件下での各体積含有率から任
意の圧力P0 0 の条件下での各体積含有率を求めること
ができる。
[0059] Sa 0 0 = 1-Sv 0 0 -Sw 0 0 -So 0 0 ... (26) under the conditions of any pressure P 0 0 from each volume content under the conditions of the thus first pressure P Can be obtained for each volume content.

【0060】同様に第2圧力P0 の条件下での汚泥の各
体積含有率Sv0 ,Sw0 ,So0,Sa0 を求め、こ
れを用いて任意の圧力P0 0 の条件下での各体積含有率
Sv0 0 ,Sw0 0 ,So0 0 ,Sa0 0 を求めること
もできる。この場合に、各式(21),(24),(2
5)においてPをP0 と、SvをSv0 と、SwをSw
0 と、SoをSo0 と、それぞれ読みかえればよい。
[0060] obtained in the same manner a second pressure P each volume content Sv 0 sludge under conditions of 0, Sw 0, So 0, Sa 0, under conditions of any pressure P 0 0 Using this each volume content Sv 0 0, Sw 0 0, So 0 0, Sa 0 0 can also be determined. In this case, equations (21), (24), (2)
In 5), P is P 0 , Sv is Sv 0 , and Sw is Sw
0 and So may be read as So 0 , respectively.

【0061】以上に述べてきたように、圧力、中性子計
数率、γ線計数率をそれぞれ測定し、これらの測定値に
基づき所定の関係式を用いて演算することにより、短時
間で汚泥に含まれる各成分の体積含有率を得ることがで
きる。すなわち汚泥にかける圧力を、第1圧力Pと第2
圧力P0 の二条件に設定し、それぞれの圧力と中性子計
数率を測定し、また第1圧力Pもしくは第2圧力P0
いずれかのときにγ線計数率を測定する。この測定結果
である2つの圧力値、2つの中性子計数率、1つのγ線
計数率を用いて演算処理器により演算し、汚泥中の気泡
体積含有率、水体積含有率、有機物体積含有率、無機物
体積含有率を求めることができる。
As described above, the pressure, the neutron count rate, and the γ-ray count rate are each measured, and the sludge is included in the sludge in a short time by calculating using the predetermined relational expression based on these measured values. The volume content of each component can be obtained. That is, the pressure applied to the sludge is divided into the first pressure P and the second pressure P.
Set in two conditions of pressure P 0, the respective pressure and neutron count rate is measured, also measures the γ-ray count rate at the time of either the first pressure P or the second pressure P 0. The two pressure values, the two neutron count rates, and the one γ-ray count rate, which are the measurement results, are calculated by an arithmetic processor using the arithmetic processing unit, and the bubble volume content, the water volume content, the organic matter volume content in the sludge, The inorganic volume content can be determined.

【0062】上記汚泥の成分比測定装置によれば、中性
子計数率、γ線計数率は汚泥中の特定原子の存在比のみ
にほぼ依存した量であるため、測定に際して汚泥の前処
理を必要としない。加えて中性子およびγ線と特定原子
との反応は即発性であり、中性子検出器およびγ線検出
器はこの反応結果を測定するため、測定時間も短時間で
ある。
According to the above sludge component ratio measuring device, the neutron count rate and the γ-ray count rate are amounts that substantially depend only on the abundance ratio of specific atoms in the sludge. do not do. In addition, the reaction between neutrons and γ-rays and specific atoms is prompt, and the neutron detector and γ-ray detector measure the reaction results, so that the measurement time is short.

【0063】次に、上記実施例の装置において、中性子
線源10に 252Cf(放射性同位体)、γ線源12に
137Cs(放射性同位体)をそれぞれ用いて、汚泥1の
大気圧下での各成分の体積含有率を測定した場合につい
て説明する。
Next, in the apparatus of the above embodiment, 252 Cf (radioisotope) was applied to the neutron source 10 and
The case where the volume content of each component of the sludge 1 under atmospheric pressure is measured using 137 Cs (radio isotope) will be described.

【0064】先述したように、汚泥1中の気泡、水、有
機物、無機物の各体積含有率Sv,Sw,So,Sa
は、 Sv=P0 (N0 −N)/(P00 −PN) …(12) So=ρwHwMo[ρ−ρa+(ρa−ρv)Sv …(20) +(ρa−ρw)(N/N1 )] /[(ρo−ρa)ρwHwMo +(ρa−ρw)ρoHoMw] Sw=[ρwHwMo(N/N1 )−ρoHoMwSo] /(ρwHwMo) …(15−2) Sa=1−(Sv+Sw+So) …(19) ρ=[ln(G2 /G1 )]/(μX)+(2Sv−1)ρv …(18) によって求めることができる。
As described above, the volume contents Sv, Sw, So, and Sa of the bubbles, water, organic substances, and inorganic substances in the sludge 1 are described.
Sv = P 0 (N 0 −N) / (P 0 N 0 −PN) (12) So = ρwHwMo [ρ−ρa + (ρa−ρv) Sv (20) + (ρa−ρw) (N / N 1 )] / [(ρo−ρa) ρwHwMo + (ρa−ρw) ρoHoMw] Sw = [ρwHwMo (N / N 1 ) −ρoHoMwSo] / (ρwHwMo) (15-2) Sa = 1− (Sv + Sw + So) ) (19) ρ = [ln (G 2 / G 1 )] / (μX) + (2Sv−1) ρv (18)

【0065】上式においてN1 ,G1 は計算に必要な定
数であって、予め測定しておく必要がある。N1 は水を
試料とした時の中性子計数率であり、G1 は試料を空気
とした時のγ線計数率である。これを定数として演算処
理器20に予め入力しておく。
In the above equation, N 1 and G 1 are constants required for calculation and need to be measured in advance. N 1 is a neutron count rate when water is used as a sample, and G 1 is a γ-ray count rate when water is used as a sample. This is input to the arithmetic processing unit 20 in advance as a constant.

【0066】試料容器2に採取した汚泥1を詰め込み、
成分比の測定を行う。初めに気泡体積含有率の測定を行
う。2つの圧力条件を大気圧[P=1(atm)]と5
気圧[P0 =5(atm)]とし、空気を圧力媒体6と
した。汚泥1を収容した試料容器2を圧力容器4内部に
納め、まず大気圧の条件で中性子計数率を測定する。
A sample container 2 is filled with the collected sludge 1,
The component ratio is measured. First, the measurement of the bubble volume content is performed. The two pressure conditions are atmospheric pressure [P = 1 (atm)] and 5
The pressure was set to [P 0 = 5 (atm)], and air was used as the pressure medium 6. The sample container 2 containing the sludge 1 is placed inside the pressure container 4, and first the neutron counting rate is measured under the condition of atmospheric pressure.

【0067】252Cfから放射される平均約2MeVの
速中性子は、主に汚泥1中の水素原子によって散乱さ
れ、エネルギーを徐々に失っていく。最終的にはエネル
ギーの非常に小さい熱中性子となり、中性子検出器11
によって検出された結果、計数器18において計数率N
を得る。
Fast neutrons emitted from 252 Cf with an average of about 2 MeV are mainly scattered by hydrogen atoms in the sludge 1 and gradually lose energy. Eventually, thermal neutrons with very low energy are generated, and the neutron detector 11
As a result, the counting rate N
Get.

【0068】次にバルブ9を閉じ、バルブ8を開にして
圧力発生器5から圧力容器4に圧縮空気を供給する。圧
力センサーにより圧力容器4内部が5気圧で安定したこ
とを確認し、バルブ8を閉じる。この時、試料容器2内
部の汚泥1にも5気圧の圧力が加わっている。汚泥1に
含まれる気泡は式(8)にしたがって体積を減少させる
が、試料容器2はゴム膜3の働きにより汚泥1に圧力容
器4内部と等しい圧力を加えつつ汚泥1の体積変化に対
応する。また、側面がステンレス製であるために側面部
分の変形は生じず、中性子線源10、中性子検出器1
1、試料容器2の相対位置関係は一定に保たれる。汚泥
1に5気圧加えた条件で中性子計数率を測定し、計数器
18において計数率N0 を得る。以上、測定したP,P
0 ,N,N0 を演算処理器20に入力し、式(12)に
基づいた計算から汚泥1の大気圧下での気泡体積含有率
Svを求める。
Next, the valve 9 is closed and the valve 8 is opened to supply compressed air from the pressure generator 5 to the pressure vessel 4. After the pressure sensor 4 confirms that the inside of the pressure vessel 4 is stabilized at 5 atm, the valve 8 is closed. At this time, a pressure of 5 atm is also applied to the sludge 1 inside the sample container 2. The bubbles contained in the sludge 1 decrease in volume according to the formula (8), but the sample container 2 responds to the volume change of the sludge 1 while applying the same pressure to the sludge 1 as the inside of the pressure container 4 by the action of the rubber film 3. . Further, since the side surface is made of stainless steel, the side surface portion is not deformed, and the neutron source 10 and the neutron detector 1 are not deformed.
1. The relative positional relationship between the sample containers 2 is kept constant. The neutron count rate is measured under the condition that 5 atm is added to the sludge 1, and the counter 18 obtains the count rate N 0 . The measured P, P
0 , N, and N 0 are input to the arithmetic processor 20, and the bubble volume content Sv of the sludge 1 under the atmospheric pressure is calculated from the calculation based on the equation (12).

【0069】また気泡体積含有率測定で大気圧[P=1
(atm)]に設定した時を利用してγ線計数率G2
測定しておく。 137Csから放射される0.66MeV
のエネルギーを持ったγ線の多くは、汚泥1により散乱
され方向を変えるが、一部は散乱されずに透過してγ線
検出器13に入射して検出される。式(18)では質量
減弱係数μとして、汚泥の主成分が水であることから
0.66MeVのγ線に対する水の質量減弱係数を採用
してμ=0.085(cm2 /g)、密度として水:ρ
w=1.0(g/cm3 )、有機物:ρo=1.5(g
/cm3 )、無機物:ρa=2.44(g/cm3 )、
空気:ρv=1.293×10-3(g/cm3 )を予め
演算処理器20に入力しておく。ここで、Xは汚泥1中
のγ線透過経路長であり、試料容器2に依存した量であ
る。計数器19から得たγ線計数率G2 、更に先述した
Svを演算処理器20に入力し、式(18)から平均密
度ρ(g/cm3 )を算出する。
Further, the atmospheric pressure [P = 1
(Atm)], the γ-ray counting rate G 2 is measured in advance. 0.66 MeV emitted from 137 Cs
Most of the γ-rays having the above energy are scattered by the sludge 1 and change direction, but a part of the γ-rays is transmitted without being scattered and is incident on the γ-ray detector 13 and detected. In equation (18), as the mass attenuation coefficient μ, the main component of the sludge is water, so the mass attenuation coefficient of water with respect to γ-ray of 0.66 MeV is adopted, μ = 0.085 (cm 2 / g), density As water: ρ
w = 1.0 (g / cm 3 ), organic matter: ρo = 1.5 (g
/ Cm 3 ), inorganics: ρa = 2.44 (g / cm 3 ),
Air: ρv = 1.293 × 10 −3 (g / cm 3 ) is input to the arithmetic processor 20 in advance. Here, X is the γ-ray transmission path length in the sludge 1 and is an amount dependent on the sample container 2. The γ-ray counting rate G 2 obtained from the counter 19 and the above-described Sv are input to the arithmetic processing unit 20, and the average density ρ (g / cm 3 ) is calculated from the equation (18).

【0070】気泡体積含有率を求めるために計測した計
数器18から得た中性子計数率N、そしてHw=2,M
w=18(水の分子式:H2 Oより)、有機物はセルロ
ース(C6105 )で代表してHo=10,Mo=1
62、更に先述したSv,ρを用いて演算処理器20に
て式(20),(15−2),(19)からSo,S
w,Saが計算される。
The neutron count rate N obtained from the counter 18 measured to determine the bubble volume content rate, and Hw = 2, M
w = 18 (water molecular formula: from H 2 O), organic substance is represented by cellulose (C 6 H 10 O 5 ), and Ho = 10, Mo = 1.
62, using the above-described Sv and ρ, the arithmetic processor 20 calculates So, S from the equations (20), (15-2) and (19).
w and Sa are calculated.

【0071】上記の第1実施例では、圧力条件の一つに
大気圧を採用して、大気圧下の気泡、有機物、水、無機
物の各体積含有率を求めたが、任意の異なる圧力条件で
各種計測値を測定し、最終的に式(21),(24),
(25),(26)を用いて大気圧下の気泡、有機物、
水、無機物の各体積含有率を求めることも可能である。
In the first embodiment, the atmospheric pressure is adopted as one of the pressure conditions, and the volume contents of bubbles, organic substances, water and inorganic substances under the atmospheric pressure are determined. Various measured values are measured by the formulas, and finally, equations (21), (24),
Using (25) and (26), bubbles under atmospheric pressure, organic substances,
It is also possible to determine each volume content of water and inorganic substances.

【0072】また、上記の第1実施例においては、無機
物体積含有率、有機物(水)体積含有率を求める際に予
め測定したG1 ,N1 を使用して計算により汚泥1の成
分比を求めたが、汚泥平均密度とG2 の較正曲線を予め
求めておくことにより汚泥平均密度を、また有機物
(水)体積含有率とN/N1 の較正曲線を予め求めてお
き、気泡体積含有率に応じた補正をすることで有機物
(水)体積含有率を各々求めることもできる。
In the first embodiment, the component ratio of the sludge 1 is calculated by using G 1 and N 1 measured in advance when calculating the volume content of the inorganic substance and the volume content of the organic substance (water). The sludge average density was determined in advance by determining the sludge average density and the calibration curve of G 2 , and the organic matter (water) volume content rate and the N / N 1 calibration curve were determined in advance to obtain the bubble volume content. The organic matter (water) volume content can also be obtained by performing correction according to the rate.

【0073】さらに、図4に示す第2実施例の装置のよ
うに、試料容器兼圧力容器22内部に隔壁(仕切)23
を設けてピストン機構により汚泥21と圧力媒体25を
分離しつつ圧力発生器24で発生させた圧力を圧力媒体
25により汚泥21に伝達させてもよい。また、隔壁2
3の代わりに試料容器兼用の圧力容器22内部にゴム膜
を固定して汚泥21と圧力媒体25を分離しつつ圧力発
生器24で発生させた圧力を圧力媒体25により汚泥2
1に伝達させてもよい。
Further, as in the apparatus of the second embodiment shown in FIG.
The pressure generated by the pressure generator 24 may be transmitted to the sludge 21 by the pressure medium 25 while separating the sludge 21 and the pressure medium 25 by the piston mechanism. Also, partition 2
The pressure generated by the pressure generator 24 while separating the sludge 21 and the pressure medium 25 by fixing a rubber film inside the pressure vessel 22 also serving as a sample container instead of
1 may be transmitted.

【0074】さらに、第1実施例においては中性子線源
10として 252Cfを使用したが、この代わりにAm−
Be等他の中性子線源を用いてもよい。同様に第1実施
例の装置ではγ線源12として 137Csを使用したが、
この代わりに 192Ir等他のγ線源を用いてもよい。
Further, in the first embodiment, 252 Cf was used as the neutron beam source 10, but instead of Am-
Other neutron sources such as Be may be used. Similarly, in the apparatus of the first embodiment, 137 Cs was used as the γ-ray source 12.
Instead, another γ-ray source such as 192 Ir may be used.

【0075】図5は、横軸に従来の測定方法(比較例)
により得られた水体積含有率をとり、縦軸に本発明の測
定方法(実施例)により得られた水体積含有率をとって
両者の相関を示すグラフ図である。
FIG. 5 shows a conventional measurement method on the horizontal axis (comparative example).
FIG. 4 is a graph showing the correlation between the water volume content obtained by the method and the water volume content obtained by the measurement method (Example) of the present invention on the vertical axis.

【0076】図6は、横軸に従来の測定方法(比較例)
により得られた有機物体積含有率をとり、縦軸に本発明
の測定方法(実施例)により得られた有機物体積含有率
をとって両者の相関を示すグラフ図である。
FIG. 6 shows the conventional measuring method (comparative example) on the horizontal axis.
FIG. 5 is a graph showing the correlation between the organic substance volume content obtained by the method of Example 1 and the organic substance volume content obtained by the measurement method (Example) of the present invention on the vertical axis.

【0077】図7は、横軸に従来の測定方法(比較例)
により得られた無機物体積含有率をとり、縦軸に本発明
の測定方法(実施例)により得られた無機物体積含有率
をとって両者の相関を示すグラフ図である。
FIG. 7 shows the conventional measuring method (comparative example) on the horizontal axis.
FIG. 4 is a graph showing the correlation between the inorganic substance volume content obtained by the method of Example 1 and the vertical axis representing the inorganic volume content obtained by the measurement method (Example) of the present invention.

【0078】図5乃至図7から明らかなように、実施例
の結果は比較例の結果との間に強い相関性があり、本発
明の測定方法が信頼性の高い高精度のものであることが
判明した。
As is clear from FIGS. 5 to 7, the results of the examples have a strong correlation with the results of the comparative examples, and the measurement method of the present invention has high reliability and high accuracy. There was found.

【0079】[0079]

【発明の効果】以上詳細に説明したように本発明に係わ
る汚泥の成分比測定装置では、気泡が混入した汚泥の成
分比を短時間で測定することができる。このため汚泥焼
却設備等においては投入汚泥の成分比を、適時、焼却炉
の燃焼制御情報としてフィードバックすることが可能と
なる。従って常に最適化された条件で炉を運転すること
により、炉の処理効率が向上される。
As described above in detail, the sludge component ratio measuring apparatus according to the present invention can measure the component ratio of sludge mixed with air bubbles in a short time. For this reason, in the sludge incineration equipment and the like, the component ratio of the input sludge can be fed back as appropriate as combustion control information of the incinerator. Therefore, by operating the furnace under always optimized conditions, the processing efficiency of the furnace is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る汚泥の成分比測定装
置を切り欠いて模式的に示すブロック構成図である。
FIG. 1 is a block diagram schematically showing a device for measuring a sludge component ratio according to a first embodiment of the present invention in a cut-away manner.

【図2】各試料に対する中性子計数率の定義を説明する
ための模式図である。
FIG. 2 is a schematic diagram for explaining a definition of a neutron counting rate for each sample.

【図3】水/有機物体積含有率の測定原理を説明するた
めの特性線図である。
FIG. 3 is a characteristic diagram for explaining the principle of measuring the water / organic substance volume content.

【図4】第2実施例に係る汚泥の成分比測定装置を切り
欠いて模式的に示すブロック構成図である。
FIG. 4 is a block diagram schematically showing a sludge component ratio measuring device according to a second embodiment, with a cutout;

【図5】従来の測定法により得られた水体積含有率と本
測定法により得られた水体積含有率との関係を示すグラ
フ図である。
FIG. 5 is a graph showing the relationship between the water volume content obtained by a conventional measurement method and the water volume content obtained by the present measurement method.

【図6】従来の測定法により得られた有機物体積含有率
と本測定法により得られた有機物体積含有率との関係を
示すグラフ図である。
FIG. 6 is a graph showing the relationship between the organic substance volume content obtained by a conventional measurement method and the organic substance volume content obtained by the present measurement method.

【図7】従来の測定法により得られた無機物体積含有率
と本測定法により得られた無機物体積含有率との関係を
示すグラフ図である。
FIG. 7 is a graph showing the relationship between the volumetric content of an inorganic substance obtained by a conventional measuring method and the volumetric content of an inorganic substance obtained by the present measuring method.

【符号の説明】[Explanation of symbols]

1…汚泥、2…試料容器、3…ゴム膜、4…圧力容器
(耐圧容器)、5…圧力発生器、6…圧力媒体、7…圧
力センサ、8,9…バルブ、10…中性子線源、11…
中性子検出器、12…ガンマ線源、13…ガンマ線検出
器、14…前置増幅器、15…前置増幅器、16…波高
弁別器、17…波高弁別器、18,19…計数器、20
…演算処理器、21…汚泥、22…試料容器兼圧力容
器、23…隔壁、24…圧力発生器、25…圧力媒体、
26…圧力センサ、27,28…バルブ。
DESCRIPTION OF SYMBOLS 1 ... sludge, 2 ... sample container, 3 ... rubber film, 4 ... pressure container (pressure-resistant container), 5 ... pressure generator, 6 ... pressure medium, 7 ... pressure sensor, 8, 9 ... valve, 10 ... neutron beam source , 11 ...
Neutron detector, 12: gamma ray source, 13: gamma ray detector, 14: preamplifier, 15: preamplifier, 16: wave height discriminator, 17: wave height discriminator, 18, 19: counter, 20
... arithmetic processor, 21 ... sludge, 22 ... sample container and pressure vessel, 23 ... partition wall, 24 ... pressure generator, 25 ... pressure medium,
26: pressure sensor, 27, 28: valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 猪川 修郎 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 宇山 清 神奈川県横浜市鶴見区小野町61番1号 エヌケーケープラント建設株式会社内 (56)参考文献 特開 平9−43170(JP,A) 特開 平7−243994(JP,A) 特開 平7−243995(JP,A) 特開 昭58−223039(JP,A) 特開 昭61−71341(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 23/00 - 23/227 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shuro Inokawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Kiyoshi Uyama 61-1 Onocho, Tsurumi-ku, Yokohama-shi, Kanagawa JP-A-9-43170 (JP, A) JP-A-7-243994 (JP, A) JP-A-7-243995 (JP, A) JP-A-58-223039 (JP) JP, A) JP-A-61-71341 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 23/00-23/227 JICST file (JOIS)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 汚泥中に含まれる有機物、無機物、水
分、気泡の各成分の体積含有率をそれぞれ測定する汚泥
の成分比測定装置であって、(a)汚泥を収容する耐圧
容器と、(b)この耐圧容器内に収容された汚泥に外圧
を印加する圧力印加手段と、(c)耐圧容器の内圧を測
定する内圧測定手段と、(d)耐圧容器内に収容された
汚泥に中性子を照射する中性子線源と、(e)汚泥によ
って散乱される中性子を検出する中性子検出器と、
(f)検出散乱中性子の計数率を計数する中性子計数手
段と、(g)耐圧容器内の汚泥に向けて外部からガンマ
線を照射するガンマ線源と、(h)汚泥を透過したガン
マ線を検出するガンマ線検出器と、(i)検出透過ガン
マ線の計数率を計数するガンマ線計数手段と、(j)少
なくとも2つの異なる圧力の条件下で計数された複数の
中性子計数率と、これらの圧力の条件下のいずれか1つ
の圧力の条件下で計数されたガンマ線計数率とに基づ
き、汚泥中に含まれる有機物、無機物、水分、気泡の体
積含有率を求める演算手段と、を備えることを特徴とす
る汚泥の成分比測定装置。
1. A sludge component ratio measuring device for measuring the volume content of each of organic, inorganic, moisture, and air bubbles contained in sludge, comprising: (a) a pressure-resistant container containing sludge; b) a pressure applying means for applying an external pressure to the sludge accommodated in the pressure-resistant container, (c) an internal pressure measuring means for measuring the internal pressure of the pressure-resistant container, and (d) a neutron to the sludge accommodated in the pressure-resistant container. A neutron source for irradiation, and (e) a neutron detector for detecting neutrons scattered by the sludge;
(F) a neutron counting means for counting the count rate of detected scattered neutrons; (g) a gamma ray source for irradiating gamma rays to sludge in the pressure vessel from the outside; and (h) gamma rays for detecting gamma rays transmitted through the sludge. A detector; (i) gamma ray counting means for counting the count rate of detected transmitted gamma rays; (j) a plurality of neutron count rates counted under at least two different pressure conditions; Calculating means for determining the volume content of organic matter, inorganic matter, moisture, and bubbles contained in the sludge based on the gamma ray counting rate counted under any one of the pressure conditions. Component ratio measurement device.
【請求項2】 前記耐圧容器は、汚泥収容用の試料容器
と、この試料容器を内部に格納する外部容器と、を備
え、 前記試料容器は、気体もしくは液体を圧力媒体として前
記圧力印加手段により外圧を印加されて内外圧力差を生
じると内圧と外圧とが実質的に同じになるように変位又
は変形する可動部分と、実質的に変位又は変形しない剛
性部分とを有することを特徴とする請求項1記載の汚泥
の成分比測定装置。
2. The pressure-resistant container comprises a sample container for accommodating sludge, and an external container for storing the sample container therein, wherein the sample container is formed by a gas or a liquid as a pressure medium by the pressure applying means. Claims characterized by having a movable portion which is displaced or deformed so that an internal pressure and an external pressure become substantially the same when an external pressure is applied to generate an internal / external pressure difference, and a rigid portion which is not substantially displaced or deformed. Item 7. The sludge component ratio measuring device according to Item 1.
【請求項3】 前記中性子線源、前記中性子検出器、前
記ガンマ線源、前記ガンマ線検出器のそれぞれは、前記
外部容器の外側に設けられていることを特徴とする請求
項2記載の汚泥の成分比測定装置。
3. The sludge component according to claim 2, wherein each of the neutron source, the neutron detector, the gamma ray source, and the gamma ray detector is provided outside the outer container. Ratio measuring device.
【請求項4】 前記耐圧容器は、内部を汚泥収容部分と
圧力印加部分とに仕切る仕切部材を有し、この仕切部材
は汚泥の体積変化に合わせて内容積を変化させることが
でき、かつ前記圧力印加部分に印加された圧力を汚泥に
伝達しうることを特徴とする請求項1記載の汚泥の成分
比測定装置。
4. The pressure-resistant container has a partition member for partitioning the inside into a sludge storage portion and a pressure application portion, and the partition member can change the internal volume in accordance with a change in the volume of the sludge. The sludge component ratio measuring device according to claim 1, wherein the pressure applied to the pressure application portion can be transmitted to the sludge.
【請求項5】 前記中性子線源、前記中性子検出器、前
記ガンマ線源、前記ガンマ線検出器のそれぞれは、前記
耐圧容器の外側に設けられていることを特徴とする請求
項4記載の汚泥の成分比測定装置。
5. The sludge component according to claim 4, wherein each of the neutron source, the neutron detector, the gamma ray source, and the gamma ray detector is provided outside the pressure-resistant container. Ratio measuring device.
【請求項6】 汚泥中に含まれる有機物、無機物、水
分、気泡の各成分の体積含有率をそれぞれ測定する汚泥
の成分比測定方法であって、 (a)基準となる第1の圧力P及びこれとは異なる第2
の圧力P0 の各条件下で汚泥に中性子を照射し、それぞ
れの圧力の条件下において散乱される中性子計数率N,
0 をそれぞれ測定し、これら測定値の比(N0 /N)
に基づき第1圧力の条件下における汚泥に含まれる気泡
の体積含有率Svを下式を用いて算出する工程と、 Sv=P0 (N0 −N)/(P00 −PN) (b)第1圧力Pの条件下で汚泥にガンマ線を照射し、
汚泥を透過したガンマ線の計数率G2 を測定することに
より、この測定ガンマ線計数率G2 と、予め第1圧力P
の条件下で空気のみのサンプルについて求めておいたガ
ンマ線計数率G1と、ガンマ線計数率の比(G2 /G
1 )と、前記気泡体積含有率Svと、に基づき下式を用
いて汚泥の平均密度ρを算出する工程と、 ρ=[ln(G2 /G1 )]/(μX)+(2Sv−
1)ρv ただし、μは質量減弱係数(cm2 /g)、 Xはガンマ線透過経路長(cm)、 ρvは空気の密度(g/cm3 )、をそれぞれ表わす。 (c)第1圧力Pの条件下で測定された前記中性子計数
率Nと、予め第1圧力Pの条件下で求めておいた水のみ
の中性子計数率N1 との比(N/N1 )と、前記汚泥の
平均密度ρと、前記気泡の体積含有率Svと、に基づき
下式を用いて第1圧力Pの条件下での汚泥に含まれる有
機物の体積含有率Soを算出する工程と、 So=ρwHwMo[ρ−ρa+(ρa−ρv)Sv+
(ρa−ρw)(N/N1 )]/[(ρo−ρa)ρw
HwMo+(ρa−ρw)ρoHoMw] ただし、ρwは水の密度(g/cm3 )、 ρoは有機物の密度(g/cm3 )、 ρaは無機物の密度(g/cm3 )、 ρvは空気の密度(g/cm3 )、 Hwは水1分子に含まれる水素原子数、 Hoは有機物1分子に含まれる水素原子数、 Mwは水の分子量、 Moは有機物の分子量、をそれぞれ表わす。 (d)第1圧力Pの条件下で測定された前記中性子計数
率Nと、予め第1圧力Pの条件下で求めておいた水のみ
の中性子計数率N1 との比(N/N1 )と、前記有機物
体積含有率Soとに基づき下式を用いて第1圧力Pの条
件下での汚泥に含まれる水分の体積含有率Swを算出す
る工程と、 Sw=[ρwHwMo(N/N1 )−ρoHoMwS
o]/(ρwHwMo) (e)前記気泡体積含有率Svと、前記有機物体積含有
率Soと、前記水分体積含有率Swとに基づき下式を用
いて第1圧力Pの条件下での汚泥に含まれる無機物の体
積含有率Saを算出する工程と、 Sa=1−(Sv+Sw+So) を有することを特徴とする汚泥の成分比測定方法。
6. A sludge component ratio measuring method for measuring a volume content of each component of organic matter, inorganic matter, moisture, and air bubbles contained in sludge, wherein (a) a first pressure P as a reference; The second different from this
The sludge is irradiated with neutrons under each condition of the pressure P 0 , and the neutron counting rate N,
The N 0 were measured, the ratio of these measurements (N 0 / N)
Calculating the volume content rate Sv of bubbles contained in the sludge under the condition of the first pressure based on the following equation: Sv = P 0 (N 0 −N) / (P 0 N 0 −PN) ( b) irradiating the sludge with gamma rays under the condition of the first pressure P;
By measuring the count rate G 2 of the gamma rays transmitted through the sludge, the measured gamma ray count rate G 2 and the first pressure P
The ratio (G 2 / G) of the gamma ray counting rate G 1 and the gamma ray counting rate obtained for the sample containing only air under the condition of
1 ) and calculating the average density ρ of the sludge based on the bubble volume content Sv using the following equation: ρ = [ln (G 2 / G 1 )] / (μX) + (2Sv−
1) ρv Here, μ represents a mass attenuation coefficient (cm 2 / g), X represents a gamma ray transmission path length (cm), and ρv represents an air density (g / cm 3 ). (C) The ratio (N / N 1 ) of the neutron count rate N measured under the condition of the first pressure P to the neutron count rate N 1 of only water previously determined under the condition of the first pressure P ), The average density ρ of the sludge, and the volume content Sv of the air bubbles, and calculating the volume content So of the organic matter contained in the sludge under the condition of the first pressure P using the following equation. And So = ρwHwMo [ρ−ρa + (ρa−ρv) Sv +
(Ρa−ρw) (N / N 1 )] / [(ρo−ρa) ρw
HwMo + (ρa-ρw) ρoHoMw ] However, Rodaburyu the density of water (g / cm 3), ρo is the density of the organic matter (g / cm 3), ρa is the density of the inorganic (g / cm 3), ρv is the air Density (g / cm 3 ), Hw represents the number of hydrogen atoms contained in one molecule of water, Ho represents the number of hydrogen atoms contained in one molecule of an organic substance, Mw represents the molecular weight of water, and Mo represents the molecular weight of the organic substance. (D) The ratio (N / N 1 ) of the neutron count rate N measured under the condition of the first pressure P to the neutron count rate N 1 of only water previously determined under the condition of the first pressure P ) And calculating the volume content Sw of the water contained in the sludge under the condition of the first pressure P using the following equation based on the organic material volume content So: Sw = [ρwHwMo (N / N) 1 ) -ρoHoMwS
o] / (ρwHwMo) (e) Sludge under the condition of the first pressure P using the following formula based on the bubble volume content Sv, the organic matter volume content So, and the water volume content Sw. A method for calculating a component ratio of sludge, comprising: a step of calculating a volume content Sa of an included inorganic substance; and Sa = 1− (Sv + Sw + So).
JP07187346A 1995-07-24 1995-07-24 Sludge component ratio measuring device and component ratio measuring method Expired - Fee Related JP3134042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07187346A JP3134042B2 (en) 1995-07-24 1995-07-24 Sludge component ratio measuring device and component ratio measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07187346A JP3134042B2 (en) 1995-07-24 1995-07-24 Sludge component ratio measuring device and component ratio measuring method

Publications (2)

Publication Number Publication Date
JPH0933452A JPH0933452A (en) 1997-02-07
JP3134042B2 true JP3134042B2 (en) 2001-02-13

Family

ID=16204395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07187346A Expired - Fee Related JP3134042B2 (en) 1995-07-24 1995-07-24 Sludge component ratio measuring device and component ratio measuring method

Country Status (1)

Country Link
JP (1) JP3134042B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055446A (en) * 2003-08-07 2005-03-03 F Hoffmann La Roche Ag Method of detecting gas bubbles in liquid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925600B1 (en) * 2002-09-09 2009-11-06 주식회사 포스코 Apparatus for measuring moisture content in source and automatically correcting the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055446A (en) * 2003-08-07 2005-03-03 F Hoffmann La Roche Ag Method of detecting gas bubbles in liquid

Also Published As

Publication number Publication date
JPH0933452A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
RU2184367C2 (en) Measuring device and method for determining multiphase liquid composition
EP2726828B1 (en) Level measurement method and apparatus
US4766319A (en) Portable nuclear moisture-density gauge with low activity nuclear sources
US4499380A (en) Apparatus and method for determining the hydrogen content of a substance
US3508047A (en) Method and apparatus for the accurate analysis of hydrocarbon material using a multiple of radiation sources
Been Nondestructive soil bulk density measurements by X-ray attenuation
US9518941B1 (en) Weight-percent analysis for prompt gamma neutron activation substance analyzers
CN107991328A (en) For measuring the method, apparatus and system of information of coming to nothing
JP3134042B2 (en) Sludge component ratio measuring device and component ratio measuring method
US4575634A (en) Assaying composite structures
Ramos-Lerate et al. A new method for gamma-efficiency calibration of voluminal samples in cylindrical geometry
US4025788A (en) Radiometric analyzer
Celik et al. A new approach for determination of volumetric water content in soil samples by gamma-ray transmission
JP3134043B2 (en) Apparatus and method for measuring component ratio of fluid
Holstad Gamma-ray scatter methods applied to industrial measurement systems
US4001589A (en) Radiometric analyzer with plural radiation sources and detectors
JP6425792B2 (en) Method, apparatus and program for quantitative analysis of elements in powder or granulated material
Sun et al. Determination of the prompt k 0, H factors and partial γ-ray production cross sections for B, N, Si, P, S and Cl
JP2002508522A (en) How to monitor samples containing neutron sources
CN85201083U (en) Thermal neutron-gamma rag transmissive inspection facilities
Hsue et al. Hybrid instrument development for an analytical laboratory
Dickstein et al. Resolving power of radioactive solution level gauging
US20190226963A1 (en) Calibration of nuclear density meters
Bertolo et al. The computer code MAR for calculating the activity of radioactive samples in Marinelli beakers
JPS6311637Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees