JPS6311636Y2 - - Google Patents
Info
- Publication number
- JPS6311636Y2 JPS6311636Y2 JP18769280U JP18769280U JPS6311636Y2 JP S6311636 Y2 JPS6311636 Y2 JP S6311636Y2 JP 18769280 U JP18769280 U JP 18769280U JP 18769280 U JP18769280 U JP 18769280U JP S6311636 Y2 JPS6311636 Y2 JP S6311636Y2
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- measured
- signal
- target
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005855 radiation Effects 0.000 claims description 35
- 238000005259 measurement Methods 0.000 claims description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 23
- 229910052717 sulfur Inorganic materials 0.000 description 23
- 239000011593 sulfur Substances 0.000 description 23
- 239000007788 liquid Substances 0.000 description 18
- 239000003208 petroleum Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 150000002431 hydrogen Chemical class 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003209 petroleum derivative Substances 0.000 description 4
- 238000005070 sampling Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
【考案の詳細な説明】
本考案は特性の異なる2種の放射線を被測定体
に照射し、その被測定体と相互作用をもつた放射
線を検出し、夫々の検出信号を用いて所定の演算
をし、被測定体の成分に対応する信号を得る放射
線応用測定装置に関する。[Detailed description of the invention] This invention irradiates a measured object with two types of radiation with different characteristics, detects the radiation that interacts with the measured object, and performs a predetermined calculation using each detection signal. The present invention relates to a radiation applied measurement device that obtains signals corresponding to components of a measured object.
この種の装置の一つとして、石油製品の高発熱
量を連続的に測定する石油カロリー計がある。石
油カロリー計の原理は、石油製品が炭素C、水素
H及び硫黄Sから成り立つているとして、
60KeVのγ線を使い、炭素C、水素H及び硫黄
Sの吸収度を測定し、20KeVの吸収度から求め
た硫黄濃度と総合演算して、炭素C、水素H及び
硫黄Sの量を個々に求め、これらに高発熱量係数
をかけることによつて高発熱量を求めるようにな
つている。 One such device is a petroleum calorimeter that continuously measures the high calorific value of petroleum products. The principle of a petroleum calorie meter is that petroleum products are composed of carbon C, hydrogen H, and sulfur S.
Using 60KeV gamma rays, measure the absorption of carbon C, hydrogen H, and sulfur S, and calculate the amounts of carbon C, hydrogen H, and sulfur S individually by calculating the total amount with the sulfur concentration determined from the 20KeV absorption. The high calorific value is calculated by multiplying these by the high calorific value coefficient.
第1図は、公知の石油カロリ計の構成説明図で
ある。 FIG. 1 is an explanatory diagram of the configuration of a known petroleum calorie meter.
石油カロリ計は、サンプルをサンプリング装置
1によつて一定の条件に整えた後、管路2で接続
した振動式密度検出器3、硫黄検出器4、組成検
出器5を順次流すようになつている。各検出器は
以下の信号を出力する機能を有する。即ち、密度
検出器3は、(1)式に基づく周波数信号Fx及びサ
ンプル温度信号TDを出力する。 In the petroleum calorie meter, after a sample is prepared under certain conditions using a sampling device 1, the sample is sequentially passed through a vibrating density detector 3, a sulfur detector 4, and a composition detector 5, which are connected through a pipe 2. There is. Each detector has the function of outputting the following signals. That is, the density detector 3 outputs a frequency signal Fx and a sample temperature signal T D based on equation (1).
ρ={A(TD)}2−Fx/Fx2・B(TD) (1)
但し、
ρ…サンプル密度
Fx…振動子の発振周波数
A(TD),B(TD)…サンプル温度の関数
また、硫黄検出器4は、線源41が放射するγ
線を特殊金属で構成した半球形ターゲツト42に
当てて得る約20KeVの特性X線を、液槽44に
照射し、その透過したX線を電離箱43で検出し
て、(2)式に基づく電離電流信号Is及びサンプル温
度信号Tsを出力する。 ρ={A(T D )} 2 −Fx/Fx 2・B(T D ) (1) However, ρ...sample density Fx...oscillator frequency A(T D ), B(T D )...sample Also, the sulfur detector 4 detects γ emitted by the radiation source 41.
The liquid tank 44 is irradiated with characteristic X-rays of about 20 KeV obtained by applying the rays to a hemispherical target 42 made of a special metal, and the transmitted X-rays are detected by the ionization chamber 43. Outputs an ionization current signal Is and a sample temperature signal Ts.
Is=Iso e-〓t(〓hCh+〓cCc+〓sCs) (2)
但し、
Iso…液槽44が空の時の硫黄検出器4の電離
電流
ρ…サンプル密度
t…液槽44の実効長
μh′μc′μs…20KeVX線の水素、炭素、硫黄の質
量吸収係数(μh=μc)
Ch,Cc,Cs…石油製品中の水素、炭素、硫黄
の重量組成比(Ch+Cc+Cs=1が成り立
つ)
さらに、組成検出器5は、線源51が放射する
約60KeVのγ線を、液槽54に照射し、その透
過γ線を電離箱53で検出して、(3)式に基づく電
離電流信号Ic及びサンプル温度信号Tcを出力す
る。 Is=Iso e - 〓 t( 〓 hCh+ 〓 cCc+ 〓 sCs) (2) However, Iso... Ionization current of the sulfur detector 4 when the liquid tank 44 is empty ρ... Sample density t... Effective length of the liquid tank 44 μ h ′μ c ′μ s ... Mass absorption coefficient of hydrogen, carbon, and sulfur in 20KeV X-ray (μ h = μ c ) C h , C c , C s ... Weight composition ratio of hydrogen, carbon, and sulfur in petroleum products ( Furthermore, the composition detector 5 irradiates the liquid tank 54 with gamma rays of approximately 60 KeV emitted by the radiation source 51 , and detects the transmitted gamma rays with the ionization chamber 53 . Then, an ionization current signal Ic and a sample temperature signal Tc based on equation (3) are output.
Ic=Ico e-〓t′(〓h′Ch+〓c′Cc+〓s′Cs) (3)
但し、
Ico…液槽54が空の時の組成検出器5の電離
電流
ρ…サンプル密度
t′…液槽54の実効長
μh′,μc′,μs′…60KeVγ線の水素、炭素、硫黄
の質量吸収係数
Ch,Cc,Cs…石油製品中の水素,炭素,硫黄
の重量組成比(Ch+Cc+Cs=1が成り立
つ。)
硫黄変換器6は、密度検出器3の出力信号Fx
及びTD並びに硫黄検出器4の出力信号Is及びTs
を入力とし、所定の演算をして硫黄濃度信号Cs
と基準温度に換算された密度信号ρを、カロリ変
換器7に出力すると共に、規格化された電流信号
is,idを外部に出力する機能を有する。カロリ変
換器7は、組成検出器5の出力信号Ic及びTc並
びに硫黄変換器6の出力信号Cs及びρを入力と
し、所定の演算をして高発熱量に対応する規格化
された電流信号ix及び理論空気量(又はC/H
比)に対応する電流信号iyを出力する機能を有す
る。 Ic=Ico e - 〓 t ′ ( 〓 h ′ Ch+ 〓 c ′ Cc+ 〓 s ′ Cs) (3) However, Ico...Ionization current of the composition detector 5 when the liquid tank 54 is empty ρ...Sample density t' ...Effective length of the liquid tank 54 μ h ′, μ c ′, μ s ′…Mass absorption coefficient of hydrogen, carbon, and sulfur of 60KeVγ rays C h , C c , C s …Hydrogen, carbon, and sulfur in petroleum products Weight composition ratio (C h + C c + C s = 1 holds.) The sulfur converter 6 receives the output signal Fx of the density detector 3.
and T D and the output signals Is and Ts of the sulfur detector 4
As input, perform the prescribed calculation to obtain the sulfur concentration signal Cs
The density signal ρ converted to the reference temperature is output to the calorie converter 7, and the normalized current signal ρ is output to the calorie converter 7.
It has a function to output i s and i d to the outside. The calorie converter 7 inputs the output signals Ic and Tc of the composition detector 5 and the output signals Cs and ρ of the sulfur converter 6, performs predetermined calculations, and generates a standardized current signal i corresponding to a high calorific value. x and theoretical air volume (or C/H
It has the function of outputting a current signal i y corresponding to the ratio).
このように、従来の石油カロリ計は、硫黄検出
器及び組成検出器を個々に、即ち、2個の線源及
び2個の電離箱(センサ部)を具備する構成にな
つているので、コスト高になつていた。また、検
出器の数が多いと、それらを連結する管路も多く
なるが、通常、これらの管路にスチームトレース
を施す必要があるので、それだけ流路構成を複雑
にする欠点があつた。 In this way, the conventional petroleum calorie meter is configured to have a sulfur detector and a composition detector individually, that is, two radiation sources and two ionization chambers (sensor parts), which reduces the cost. I was getting high. Furthermore, as the number of detectors increases, the number of pipes connecting them also increases, and these pipes usually require steam tracing, which has the disadvantage of complicating the flow path configuration.
本考案は、かかる点に鑑みてなされたものであ
り、本考案は、コストを下げ、構成を簡単にする
ために、被測定体に対向して設置するターゲツト
と、1個の照射窓を有する箱体であつて、被測定
体とターゲツトとの間に設置する線源収納部と、
線源収納部を回動し、照射窓を被測定体又はター
ゲツトに向け、線源の一次放射線又はターゲツト
の特性X線を被測定体に照射せしめる駆動源と、
被測定体と相互作用をもつた一次放射線及び特性
X線を検出するセンサ部とを有するようになつて
いる。 The present invention was developed in view of these points, and in order to reduce costs and simplify the configuration, the present invention has a target installed opposite to the object to be measured and one irradiation window. A radiation source storage part that is a box and is installed between the object to be measured and the target;
a drive source that rotates the radiation source storage unit, directs the irradiation window toward the object to be measured or the target, and irradiates the object to be measured with the primary radiation of the source or the characteristic X-rays of the target;
It has a sensor section that detects primary radiation and characteristic X-rays that interact with the object to be measured.
以下、図面を参照し、本考案について詳しく説
明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.
第2A図及び第2B図は、本考案の一実施例に
よる装置の構成説明図である。 FIGS. 2A and 2B are explanatory diagrams of the configuration of an apparatus according to an embodiment of the present invention.
第2A図及び第2B図において、石油カロリ計
のサンプル流路は、第1図と同じように、サンプ
ルをサンプリング装置、振動式密度検出器(いず
れも図示せず)に流した後、硫黄・組成検出器8
に流す構成となつている。そして、密度検出器か
ら(1)式に基づく周波数信号Fx及びサンプル温度
信号TDを、また硫黄・組成検出器8から(2)式又
は(3)式に基づく電離電流信号Is又はIc及びサンプ
ル温度信号Toを信号演算・制御部9に入力し、
所定の演算をして高発熱量、理論空気量、硫黄濃
度及び密度に夫々対応する規格化された電流信号
ix,iy,is及びidを出力するようになつている。 In Figures 2A and 2B, the sample flow path of the petroleum calorie meter is the same as in Figure 1, after passing the sample through a sampling device and a vibrating density detector (none of which are shown). Composition detector 8
The structure is such that it flows to Then, the frequency signal Fx and sample temperature signal T D based on equation (1) are sent from the density detector, and the ionization current signal Is or Ic and sample temperature signal based on equation (2) or (3) are sent from the sulfur/composition detector 8. Input the temperature signal To to the signal calculation/control section 9,
A standardized current signal corresponding to high calorific value, theoretical air amount, sulfur concentration, and density is obtained by performing predetermined calculations.
It is designed to output i x , i y , i s and i d .
硫黄・組成検出器8は、特殊金属で構成した半
球形ターゲツト82と、管路2に結合し連続して
サンプルを流す液槽84と、電離箱83と、側壁
に照射窓86を有し、241Amの線源81を収納
する線源収納部85と、信号演算・制御部9から
の信号で制御され、線源収納部85を回転駆動す
る駆動部87とを有する。そして、駆動部87で
線源収納部85を回転させ、照射窓86を液槽8
4とターゲツト82と交互に向けるようになつて
いる。即ち、第2A図に示すように、照射窓86
を液槽84に対向させ、線源81の一次放射線で
あるエネルギーレベル60KeVのγ線を液槽に照
射し、また、第2B図に示すように、線源収納部
85を180゜回転し、照射窓86をターゲツト82
に対向させ、ターゲツトの特性X線であるエネル
ギーレベル20KeVのX線を液槽84に照射する
ようになつている。なお、図示されていないが、
硫黄・組成検出器8は液槽84にサンプルの温度
を検出するセンサを有する。 The sulfur/composition detector 8 has a hemispherical target 82 made of a special metal, a liquid tank 84 connected to the pipe line 2 and through which the sample flows continuously, an ionization chamber 83, and an irradiation window 86 on the side wall. It has a radiation source storage section 85 that stores a 241Am radiation source 81, and a drive section 87 that is controlled by a signal from the signal calculation/control section 9 and rotates the radiation source storage section 85. Then, the radiation source storage section 85 is rotated by the driving section 87, and the irradiation window 86 is moved into the liquid tank 8.
4 and target 82 alternately. That is, as shown in FIG. 2A, the irradiation window 86
facing the liquid tank 84, irradiates the liquid tank with gamma rays with an energy level of 60 KeV, which is the primary radiation of the radiation source 81, and rotates the radiation source storage part 85 by 180 degrees as shown in FIG. 2B. Target 82 at irradiation window 86
The liquid tank 84 is irradiated with X-rays having an energy level of 20 KeV, which are the characteristic X-rays of the target. Although not shown,
The sulfur/composition detector 8 has a sensor in the liquid tank 84 that detects the temperature of the sample.
信号演算・制御部9は、マイクロコンピユータ
を中心にした回路構成となつており、マルチプレ
クサ91と、このマルチプレクサ91を介して与
えられる各信号を初段回路でホールドし、所定の
演算をして、信号ix,iy,is及びidの出力する演算
部92と、マルチプレクサ91、演算部92、駆
動部87等を制御する制御部93とを有する。 The signal calculation/control unit 9 has a circuit configuration centered around a microcomputer, and a multiplexer 91 and each signal given through the multiplexer 91 is held in the first stage circuit, performs a predetermined calculation, and outputs the signal. It has a calculation unit 92 that outputs i x , i y , i s and i d , and a control unit 93 that controls the multiplexer 91, calculation unit 92, drive unit 87, etc.
次に、上記石油カロリ計の動作について説明す
る。 Next, the operation of the petroleum calorie meter will be explained.
いま、液槽84に、密度検出器を通過したサン
プルを連続して流している状態にて、制御部93
からの信号で駆動部87をオンにし、線源収納部
85を定速回転させる。この定速回転によつて、
照射窓86からのγ線は、液槽84とターゲツト
82とを交互に照射する。このため、電離箱83
の検出信号は、20KeVの特性X線による(2)式に
基づく電離電流信号Is及び60KeVのγ線による(3)
式に基づく電離電流信号Icから成る時系列信号と
なる。したがつて、硫黄・組成検出器8は、電離
電流信号Is及びIcから成る時系列信号とサンプル
温度信号Toを並列的に出力することになる。 Now, while the sample that has passed through the density detector is continuously flowing into the liquid tank 84, the controller 93
The drive section 87 is turned on by a signal from the source, and the radiation source storage section 85 is rotated at a constant speed. Due to this constant speed rotation,
The gamma rays from the irradiation window 86 irradiate the liquid tank 84 and the target 82 alternately. For this reason, the ionization chamber 83
The detection signal is the ionization current signal Is based on equation (2) due to 20KeV characteristic X-rays and (3) due to 60KeV γ-rays.
This is a time-series signal consisting of an ionizing current signal Ic based on the formula. Therefore, the sulfur/composition detector 8 outputs the time series signal consisting of the ionization current signals Is and Ic and the sample temperature signal To in parallel.
一方、信号演算・制御部9の制御部93は、線
源収納部85の回転に同期する信号、即ち、
(i) 20KeVの特性X線が液槽84を照射してい
る時(Ts時と言う)、
(ii) 60KeVのγ線が液槽84を照射している時
(Tc時という)、
(iii) 放射線のいずれも液槽84を照射していない
時(To時という)
に同期する信号をマルチプレクサ91に与え、
Ts時に信号Is、Tc時に信号Ic、To時に信号To、
Fx及びTDを夫々演算部92に入力して、初段回
路にホールドする。これらの信号をもとに、演算
部92は所定の演算をし、信号ix,iy,is及びidを
出力する。 On the other hand, the control unit 93 of the signal calculation/control unit 9 generates a signal synchronized with the rotation of the radiation source storage unit 85, that is, (i) when the liquid tank 84 is irradiated with characteristic X-rays of 20 KeV (at Ts and (ii) When 60 KeV gamma rays are irradiating the liquid tank 84 (referred to as Tc time), (iii) When no radiation is irradiating the liquid tank 84 (referred to as To time) giving the signal to multiplexer 91;
Signal Is when Ts, signal Ic when Tc, signal To when To,
Fx and T D are each input to the calculation unit 92 and held in the first stage circuit. Based on these signals, the calculation unit 92 performs predetermined calculations and outputs signals i x , i y , i s and i d .
なお、上記実施例は、石油カロリ計について説
明したが、本考案はこれに限定するものではな
く、他の放射線応用測定装置であつてもよい。 In addition, although the said Example demonstrated the petroleum calorie meter, this invention is not limited to this, and may be another radiation application measurement apparatus.
また、センサ部が電離箱であるが、他のセン
サ、例えば半導体素子であつてもよい。 Further, although the sensor section is an ionization chamber, it may be another sensor, for example, a semiconductor element.
以上説明したように、本考案の放射線応用測定
装置によれば、1個の線源から特性の異なる2種
の放射線を得て、被測定体に照射し、被測定体と
相互作用をもつた放射線を同一のセンサ部で検出
するようになつているので、装置のコストを低減
するこができ、また、検出器周辺、例えばサンプ
ル流路の構成を簡単にすることができる。 As explained above, according to the radiation applied measurement device of the present invention, two types of radiation with different characteristics are obtained from a single radiation source, and are irradiated onto an object to be measured to interact with the object. Since radiation is detected by the same sensor section, the cost of the apparatus can be reduced, and the structure around the detector, for example, the sample flow path, can be simplified.
第1図は、従来の石油カロリ計の構成説明図、
第2A図及び第2B図は、本考案の一実施例によ
る石油カロリ計の構成説明図である。
1……サンプリング装置、3……密度検出器、
4……硫黄検出器、5……組成検出器、8……硫
黄・組成検出器、81……線源、82……ターゲ
ツト、83……電離箱、84……液槽、85……
線源収納部、86……照射窓、87……駆動部、
9……信号演算・制御部。
Figure 1 is an explanatory diagram of the configuration of a conventional petroleum calorie meter.
FIG. 2A and FIG. 2B are explanatory diagrams of the configuration of a petroleum calorie meter according to an embodiment of the present invention. 1... Sampling device, 3... Density detector,
4...Sulfur detector, 5...Composition detector, 8...Sulfur/composition detector, 81...Radiation source, 82...Target, 83...Ionization chamber, 84...Liquid tank, 85...
Radiation source storage unit, 86...irradiation window, 87...drive unit,
9...Signal calculation/control unit.
Claims (1)
し、該被測定体と相互作用をもつた放射線を検出
し、該検出信号をもとに所定の演算をして被測定
体の成分を測定する放射線応用測定装置におい
て、 前記被測定体に対向して設置するターゲツト
と、1個の照射窓を有する箱体であつて、前記被
測定体とターゲツトとの間に設置する線源収納部
と、該線源収納部を回動し、前記照射窓を前記被
測定体又はターゲツトに向け、線源の一次放射線
又はターゲツトの特性X線を該被測定体に照射せ
しめる駆動源と、該被測定体と相互作用をもつた
一次放射線及び特性X線を検出するセンサ部とを
具備することを特徴とする放射線応用測定装置。[Claims for Utility Model Registration] Two types of radiation with different characteristics are irradiated onto a measured object, the radiation that interacts with the measured object is detected, and a predetermined calculation is performed based on the detected signal. A radiation applied measurement device that measures the components of an object to be measured, the box having a target installed opposite to the object to be measured, and one irradiation window, and a box between the object to be measured and the target. A radiation source storage section is installed in the radiation source storage section, and the radiation source storage section is rotated to direct the irradiation window toward the object to be measured or the target, and the object to be measured is irradiated with the primary radiation of the source or the characteristic X-rays of the target. What is claimed is: 1. A radiation-applied measurement device comprising: a drive source that causes the object to be measured; and a sensor section that detects primary radiation and characteristic X-rays that interact with the object to be measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18769280U JPS6311636Y2 (en) | 1980-12-29 | 1980-12-29 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18769280U JPS6311636Y2 (en) | 1980-12-29 | 1980-12-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57112239U JPS57112239U (en) | 1982-07-12 |
JPS6311636Y2 true JPS6311636Y2 (en) | 1988-04-05 |
Family
ID=29990710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18769280U Expired JPS6311636Y2 (en) | 1980-12-29 | 1980-12-29 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6311636Y2 (en) |
-
1980
- 1980-12-29 JP JP18769280U patent/JPS6311636Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57112239U (en) | 1982-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3944830A (en) | Method of and an apparatus for examining a sample or a material by measuring the absorption of γ- or x-ray radiation | |
US4499380A (en) | Apparatus and method for determining the hydrogen content of a substance | |
US3766383A (en) | Techniques and apparatus for calibrating the kilovoltage indicator on diagnostic x-ray generators | |
JPS58135437A (en) | Nmitsudonarabinitaisekihaibunnokenshutsuhoho | |
US4458358A (en) | Reference detector device for a multidetector tomodensitometer and tomodensitometer comprising such a device | |
JPS6311636Y2 (en) | ||
US3180984A (en) | Stabilized comparison analyzer and method of analyzing | |
GB1127342A (en) | Method of and apparatus for determining the mean size of given particles in a fluid | |
JPS6233544B2 (en) | ||
JPS6311637Y2 (en) | ||
JPS6311638Y2 (en) | ||
US6332351B1 (en) | Detection of salt content of water through measurement of radiation attenuation | |
CN114965523A (en) | Coal ash content detection device based on gamma ray | |
USRE30884E (en) | On-line system for monitoring sheet material additives | |
AU772405B2 (en) | Method and apparatus for on line analysis | |
Mayer et al. | A scintillation counter technique for the X-ray determination of bone mineral content | |
US4001589A (en) | Radiometric analyzer with plural radiation sources and detectors | |
JPS6362694B2 (en) | ||
JPH03181840A (en) | Method and apparatus for measuring density | |
JPH01153946A (en) | Radiation measuring instrument | |
JPS6338659B2 (en) | ||
SU951108A1 (en) | Radioisotope column moisture/density meter | |
SE8200121L (en) | RONTGENFLUORESCENSANALYSATOR | |
JPH0933452A (en) | Apparatus and method for measuring component ratio of sludge | |
JPH07260664A (en) | Moisture meter |