JPH01153946A - Radiation measuring instrument - Google Patents

Radiation measuring instrument

Info

Publication number
JPH01153946A
JPH01153946A JP31216987A JP31216987A JPH01153946A JP H01153946 A JPH01153946 A JP H01153946A JP 31216987 A JP31216987 A JP 31216987A JP 31216987 A JP31216987 A JP 31216987A JP H01153946 A JPH01153946 A JP H01153946A
Authority
JP
Japan
Prior art keywords
radiation
attenuation
radiation source
energy
measuring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31216987A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsutsui
博司 筒井
Tetsuo Ootsuchi
大土 哲郎
Yasuichi Oomori
大森 康以知
Matsuki Baba
末喜 馬場
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31216987A priority Critical patent/JPH01153946A/en
Publication of JPH01153946A publication Critical patent/JPH01153946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To calculate the composition of a composite material by comparing and calculating the attenuation rate of attenuation intensity from a radiation source by a body to be inspected by using previously inputted attenuation coefficients of various elements and compounds to the energy of radiation as parameters. CONSTITUTION:The radiation from the radiation source 1 is passed through a slit 2 and transmitted through the body 3 to be inspected and a slit 2' removes scattered components; and a radiation detector 4 performs detection to change nuclear species and measured values corresponding to the respective nuclear species are inputted to a data processing part 5. The attenuation coefficients of respective elements and compounds to the radiation are inputted to the processing part 5 previously. Then the processing part 5 compares the attenuation rate found from the attenuation intensity from the radiation with the attenuation coefficients which are inputted previously. Consequently, the composition of the inspected body 3 is calculated without destruction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、材料分析における元素、化合物分析、および
医療における骨量診断に用いる放射線測定器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a radiation measuring instrument used for element and compound analysis in material analysis and bone mass diagnosis in medicine.

(従来の技術) 従来、第1エネルギーの放射線の減衰は、前もって明ら
かな元素、化合物に対しては、厚さまたは重量をパラメ
ータとして測定されてきた。
(Prior Art) Conventionally, the attenuation of radiation of the first energy has been measured using thickness or weight as a parameter for elements and compounds that have been known in advance.

(発明が解決しようとする問題点) 元素が2種類以上存在する場合、または化合物が未定の
場合、単一のエネルギーによる分析は不可能であり1例
えば2種類のエネルギーを用いても、元素により吸収端
が存在するような場合には不可能となる欠点があった。
(Problem to be solved by the invention) When there are two or more types of elements, or when the compound is undetermined, analysis using a single energy is impossible. This method has the disadvantage that it is not possible in cases where an absorption edge exists.

本発明の目的は、従来の欠点を解消し、複数の放射線源
を用いて各々の放射線源から放出されるγ線エネルギー
と各種元素、化合物に対する減衰係数を予めデータとし
て人力し、検査体を通した各放射線源のエネルギーに対
する減衰割合と、予め人力された各元素または化合物の
組合せによる各エネルギーに対する減衰割合との比較計
算を行う放射線測定器を提供することである。
The purpose of the present invention is to eliminate the conventional drawbacks, use multiple radiation sources, manually prepare the gamma ray energy emitted from each radiation source and the attenuation coefficient for various elements and compounds as data in advance, and transmit the data through the specimen. It is an object of the present invention to provide a radiation measuring instrument that performs a comparative calculation between the attenuation rate for the energy of each radiation source and the attenuation rate for each energy manually calculated in advance by a combination of each element or compound.

(問題点を解決するための手段) 本発明の放射線測定器は、複数のγ線を放出する放射線
源とスリットと放射線検出器とデータ処理部からなり、
放射線源と放射線検出器との間に配置された検査体によ
る放射線源からの減衰強度を測定して各放射線源のエネ
ルギーに対する減衰割合を求め、予め入力された各種元
素、化合物の各放射線源のエネルギーに対する減衰係数
をパラメータとして減衰割合を比較計算することにより
、検査体に含まれる元素、化合物の固定および割合の算
出を行うものである。また、放射線検出器がNaI、 
BGOのいずれかのシンチレーション検出器。
(Means for Solving the Problems) The radiation measuring instrument of the present invention includes a radiation source that emits a plurality of γ-rays, a slit, a radiation detector, and a data processing section,
The attenuation intensity from the radiation source is measured by the inspection object placed between the radiation source and the radiation detector, and the attenuation ratio to the energy of each radiation source is determined. By comparing and calculating the attenuation rate using the attenuation coefficient with respect to energy as a parameter, the elements and compounds contained in the specimen are fixed and the proportions are calculated. In addition, the radiation detector is NaI,
Any scintillation detector from BGO.

またはGe、 Si、 GaAs、 CdTe、 Il
gIのいずれかの半導体放射線検出器からなるものであ
り、さらに、放射線源がiZJ、 241Am、 11
19cd、 153Gd、 S?co。
Or Ge, Si, GaAs, CdTe, Il
gI semiconductor radiation detector, and the radiation source is iZJ, 241Am, 11
19cd, 153Gd, S? co.

20ffugのいずれかの核種から選択されてなるもの
である。
It is selected from any of the 20ffug nuclides.

(作 用) 本発明は、上記のような手段を用いて1両者の減衰割合
が一致するように元素または化合物の割合を算出するこ
とにより、検査体に含有される元素または化合物の種類
およびその含有量が算出できる。
(Function) The present invention uses the above-mentioned means to calculate the ratio of elements or compounds so that the attenuation ratios of the two coincide, thereby determining the type of element or compound contained in the specimen and its The content can be calculated.

(実施例) 本発明の一実施例を第1図ないし第5図に基づいて説明
する。
(Example) An example of the present invention will be described based on FIGS. 1 to 5.

第1図は、本発明の放射線測定器の原理を説明するブロ
ック図である。同図において、放射線源1から放出され
る放射線は、スリット2によりコリメートされたのち、
検査体3を透過し、スリット2′により散乱成分を除去
されて一次成分だけとなり放射線検出器4により検出さ
れる。放射線源1の核種を変えて同様に測定を行い、各
核種に対する測定値をデータ処理部5により処理を行い
、元素、化合物の決定および含有量の算出を行う。
FIG. 1 is a block diagram illustrating the principle of the radiation measuring device of the present invention. In the figure, radiation emitted from a radiation source 1 is collimated by a slit 2, and then
The radiation passes through the inspection object 3, and the scattered components are removed by the slit 2', leaving only the primary component, which is detected by the radiation detector 4. Measurements are performed in the same manner by changing the nuclide of the radiation source 1, and the measured values for each nuclide are processed by the data processing unit 5 to determine the elements and compounds and calculate the content.

第2図に測定原理を示す。同図において、検査体11.
11’、 11″の減衰係数をそれぞれμm(E)。
Figure 2 shows the measurement principle. In the figure, the test object 11.
The attenuation coefficients of 11' and 11'' are μm (E), respectively.

μ、 (E) 、μ、(E)、厚さをそれぞれdl、d
、、d。
μ, (E), μ, (E), thickness dl, d, respectively
,,d.

とすると、検査体に入射する放射線検出器。([E)と
透過する放射線強度I (E)は次式で表すことができ
る。
Then, it is a radiation detector that enters the object to be inspected. ([E) and the transmitted radiation intensity I (E) can be expressed by the following equation.

I (E): l1l(E) exp (−μx(lミ
)dx−μ1(c)d2−μ、(E)d3)     
         ・・・・・・(1)μ(E)二線減
衰係数 d :厚さ (1)式で示すように、透過強度I (E)はμ(E)
とdの積の和となり、dは厚さのパラメータとなる。
I (E): l1l(E) exp (-μx(lmi)dx-μ1(c)d2-μ, (E)d3)
......(1) μ(E) Two-line attenuation coefficient d: Thickness As shown in equation (1), the transmitted intensity I (E) is μ(E)
and d, where d is a thickness parameter.

このdに物質の密度をかけた値は物質の重量比となり、
それぞれの物質の含有量が得られる。
The value obtained by multiplying this d by the density of the substance is the weight ratio of the substance,
The content of each substance is obtained.

放射線源を変えることによりエネルギーEの値が変わり
、例えばn種類のエネルギーを用いると、(1)式は次
のような式となる。
The value of energy E changes by changing the radiation source. For example, if n types of energy are used, equation (1) becomes the following equation.

I (El)= IoEt eXP (/’t(Et)
dt−μz(E□)dz−μ1(pt)ct3) I(Ez)”IoEzeXP(−μx(E2)da  
/’z(Ex)d2−μ3(El)d、) I(Ell)= l0EOexp (−μm (E、)
 d、−μ2(E、、) d 2−μ3(E、)dJ)
           ・・・・・・ (2)上記I(
E、)〜I(E、、)の値をグラフ上にプロットすると
、検査体に含まれる成分比による特定の曲線が得られる
I (El) = IoEt eXP (/'t(Et)
dt-μz(E□)dz-μ1(pt)ct3) I(Ez)"IoEzeXP(-μx(E2)da
/'z(Ex)d2-μ3(El)d,) I(Ell)=l0EOexp(-μm(E,)
d, -μ2(E,,) d2-μ3(E,)dJ)
...... (2) Above I (
When the values of E, ) to I(E, , ) are plotted on a graph, a specific curve depending on the component ratio contained in the specimen is obtained.

第3図、第4図に水(H2O)とアルミニウム(All
)に対する減衰係数を示す。減衰係数は光電効果とコン
プトン散乱による減衰の和となる。
Figures 3 and 4 show water (H2O) and aluminum (All
) shows the attenuation coefficient for The attenuation coefficient is the sum of the attenuation due to the photoelectric effect and Compton scattering.

第5図は1代表的な元素、化合物の減衰係数の比較を行
った図である。図に示す減衰係数の値は質量減衰係数で
示しであるので、(2)式に当てはめる場合は、係数に
密度ρをかけた値を用いればよい。第5図に示すように
、各元素、化合物により、減衰係数の曲線の傾き9曲率
が異なることが理解できる。また、元素の種類により1
例えばタングステン(W)の場合、約60Ke Vに吸
収端が存在し、曲線が不連続になっている。
FIG. 5 is a diagram comparing the attenuation coefficients of one typical element and compound. Since the value of the damping coefficient shown in the figure is expressed as a mass damping coefficient, when applying to equation (2), the value obtained by multiplying the coefficient by the density ρ may be used. As shown in FIG. 5, it can be seen that the slope and curvature of the attenuation coefficient curve differ depending on each element and compound. Also, depending on the type of element, 1
For example, in the case of tungsten (W), an absorption edge exists at about 60 Ke V, and the curve is discontinuous.

このように、各元素により減衰係数のエネルギーに対す
る曲線が異なると、また、複合材料の減衰係数または減
衰割合は、各成分元素の減衰係数をパラメータとして計
算できることから、得られた各エネルギーに対する減衰
割合の曲線と、各元素の減衰係数を組合せて計算した減
衰割合の曲線が一致するようにすれば、複合材料の元素
組成を算出することが可能となる。
In this way, since the curve of the attenuation coefficient versus energy differs depending on each element, and because the attenuation coefficient or attenuation ratio of a composite material can be calculated using the attenuation coefficient of each component element as a parameter, the obtained attenuation ratio for each energy By matching the curve of attenuation ratio calculated by combining the attenuation coefficients of each element, it is possible to calculate the elemental composition of the composite material.

表に減衰割合曲線を求めるために用いることのできる放
射線源(核種)を示す。表に示す6種の核種は、はぼ単
一エネルギーα線のピークをもち、入手および使用し易
い核種である。これらの核種を用いることにより、約4
0〜280Ke Vの範囲における減衰割合曲線を求め
ることができる。
The table shows the radiation sources (nuclides) that can be used to determine the decay rate curve. The six types of nuclides shown in the table have almost monoenergetic α-ray peaks and are easy to obtain and use. By using these nuclides, approximately 4
A decay rate curve in the range of 0 to 280 Ke V can be determined.

また、放射線検出器の使用方法として、出力信号のパル
ス計測を行う方法が最も感度よく減衰割合を求めること
ができる。
Further, as a method of using a radiation detector, the attenuation rate can be determined with the highest sensitivity by measuring pulses of the output signal.

(発明の効果) 本発明によれば、複合材料からなる検査体を複数のエネ
ルギーにより減衰割合を測定して曲線を求め、前もって
入力しである各元素、化合物の減衰曲線を用いて、各元
素、化合物を組合せにより求めた減衰割合曲線が測定さ
れた曲線と一致するように計算を行うことにより、複合
材料の組成を算出することができる。この方法により、
全くの非破壊で特別の処理を用いず検査体を取扱うこと
ができる。
(Effects of the Invention) According to the present invention, a curve is obtained by measuring the attenuation rate of a specimen made of a composite material using a plurality of energies. The composition of the composite material can be calculated by performing calculations such that the attenuation ratio curve obtained by combining the compounds matches the measured curve. With this method,
The specimen can be handled completely non-destructively and without special treatment.

さらに本発明は、医学にも応用でき5人体の骨の中に含
まれるミネラル、例えばカルシウム(Ca) 。
Furthermore, the present invention can also be applied to medicine to treat minerals contained in the bones of the human body, such as calcium (Ca).

燐(P)等の成分含有量の分析にも役立つものであり、
その実用上の効果は極めて大である。
It is also useful for analyzing the content of components such as phosphorus (P),
Its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の放射線測定器の原理説明用ブロック図
、第2図は検査体を透過する放射線の透過に関するパラ
メータを示す図、第3図、第4図。 第5図は各種元素に対する減衰係数を示す図である。 1・・・放射線源、 2,2′・・・スリット、3・・
・検査体、 4・・・放射線検出器、 5・・・データ
処理部。 特許出願人 松下電器産業株式会社 第1図 第2図 Io(E) 1(El =Io(E)exp (−pl(E)d+−
Pz(E)d2−p3clElc13)第3図 +0        100       1(XX)
エキ1し’=−(ke V ) 第4図 +0      100       +000エネ)
し\”−(keV) 第5図 エキ)し\’−(keVl
FIG. 1 is a block diagram for explaining the principle of the radiation measuring device of the present invention, FIG. 2 is a diagram showing parameters related to the transmission of radiation through an object to be inspected, and FIGS. 3 and 4. FIG. 5 is a diagram showing attenuation coefficients for various elements. 1...Radiation source, 2,2'...Slit, 3...
・Inspection object, 4... Radiation detector, 5... Data processing section. Patent applicant Matsushita Electric Industrial Co., Ltd. Figure 1 Figure 2 Io(E) 1(El = Io(E)exp (-pl(E)d+-
Pz(E)d2-p3clElc13) Figure 3 +0 100 1(XX)
Energy 1'=-(ke V) Figure 4 +0 100 +000 energy)
shi\”-(keV) Figure 5 Ex)shi\'-(keVl

Claims (3)

【特許請求の範囲】[Claims] (1)複数のγ線を放出する放射線源とスリットと放射
線検出器とデータ処理部からなり、前記放射線源と放射
線検出器との間に配置された検査体による放射線源から
の減衰強度を測定して各放射線源のエネルギーに対する
減衰割合を求め、予め入力された各種元素、化合物の各
放射線源のエネルギーに対する減衰係数をパラメータと
して、前記減衰割合と比較計算することにより、前記検
査体に含まれる元素、化合物の固定および割合の算出を
行うことを特徴とする放射線測定器。
(1) Consists of a radiation source that emits multiple gamma rays, a slit, a radiation detector, and a data processing unit, and measures the attenuation intensity from the radiation source by the inspection object placed between the radiation source and the radiation detector. The attenuation ratio for the energy of each radiation source is determined by calculating the attenuation ratio for the energy of each radiation source, and the attenuation coefficient for the energy of each radiation source of various elements and compounds inputted in advance is used as a parameter to compare and calculate the attenuation ratio. A radiation measuring instrument characterized by fixing elements and compounds and calculating their proportions.
(2)放射線検出器がNaI、BGOのいずれかのシン
チレーション検出器、またはGe、Si、GaAs、C
dTe、HgIのいずれかの半導体放射線検出器からな
ることを特徴とする特許請求の範囲第(1)項記載の放
射線測定器。
(2) The radiation detector is either NaI or BGO scintillation detector, or Ge, Si, GaAs, or C
The radiation measuring instrument according to claim (1), characterized in that it comprises a semiconductor radiation detector of either dTe or HgI.
(3)放射線源が^1^2^9I、^2^4^1m、^
1^0^9Cd、^1^5^3Gd、^5^7Co、^
2^0^3Hgのいずれかの核種から選択されてなるこ
とを特徴とする特許請求の範囲第(1)項記載の放射線
測定器。
(3) The radiation source is ^1^2^9I,^2^4^1m,^
1^0^9Cd, ^1^5^3Gd, ^5^7Co, ^
The radiation measuring instrument according to claim 1, characterized in that the radiation measuring instrument is selected from any nuclide of 2^0^3Hg.
JP31216987A 1987-12-11 1987-12-11 Radiation measuring instrument Pending JPH01153946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31216987A JPH01153946A (en) 1987-12-11 1987-12-11 Radiation measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31216987A JPH01153946A (en) 1987-12-11 1987-12-11 Radiation measuring instrument

Publications (1)

Publication Number Publication Date
JPH01153946A true JPH01153946A (en) 1989-06-16

Family

ID=18026061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31216987A Pending JPH01153946A (en) 1987-12-11 1987-12-11 Radiation measuring instrument

Country Status (1)

Country Link
JP (1) JPH01153946A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764065A1 (en) * 1997-05-30 1998-12-04 Schlumberger Services Petrol PROCESS AND DEVICE FOR THE CHARACTERIZATION OF OIL WELL EFFLUENTS
JP2007331179A (en) * 2006-06-13 2007-12-27 Fujitsu Component Ltd Recorder and method for protecting the same
JP2009014624A (en) * 2007-07-06 2009-01-22 Hamamatsu Photonics Kk Radiation detection apparatus and radiation detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764065A1 (en) * 1997-05-30 1998-12-04 Schlumberger Services Petrol PROCESS AND DEVICE FOR THE CHARACTERIZATION OF OIL WELL EFFLUENTS
JP2007331179A (en) * 2006-06-13 2007-12-27 Fujitsu Component Ltd Recorder and method for protecting the same
JP2009014624A (en) * 2007-07-06 2009-01-22 Hamamatsu Photonics Kk Radiation detection apparatus and radiation detection method

Similar Documents

Publication Publication Date Title
US4168431A (en) Multiple-level X-ray analysis for determining fat percentage
GB1466617A (en) Method and apparatus for the determination of electron density in a part volume of a body
US7006919B2 (en) Real time continuous elemental measurement of bulk material
US3809904A (en) Method for non-destructive densitometric measurement of small volumes inside irregularly shaped non-uniform objects
CA1079415A (en) On-line system for monitoring sheet material additives
US3529151A (en) Method of and apparatus for determining the mean size of given particles in a fluid
JPS6233544B2 (en)
Davis et al. Moisture content in drying wood using direct scanning gamma-ray densitometry
CA1160364A (en) Device for determining the proportions by volume of a multiple-component mixture by irradiation with several gamma lines
JPH01153946A (en) Radiation measuring instrument
Karellas et al. Characterization of tissue via coherent‐to‐Compton scattering ratio: Sensitivity considerations
US10175382B2 (en) Identification of materials
Aubert et al. Application of X-ray fluorescence to the study of iodine distribution and content in the thyroid
JPH01172739A (en) Radiation measuring instrument
US4180735A (en) Method and device for measuring the particle size in a slurry or a flow of material
US4817122A (en) Apparatus for radiation analysis
Mayer et al. A scintillation counter technique for the X-ray determination of bone mineral content
JPS6171341A (en) Component analyzing method
Afshari et al. Quantitative measurement of lead in paint by XRF analysis without manual substrate correction
Malan et al. Direct gamma ray densitometry of wood
JPS5977346A (en) Analyzing apparatus for element composition of substance
Daddi et al. On the identification of β-emitters by absorption measurements
SE8200121L (en) RONTGENFLUORESCENSANALYSATOR
AU1263788A (en) Method for measuring X-rays or gamma radiation and device for this
JPH03181840A (en) Method and apparatus for measuring density