JPS6311579A - Manufacture of fiber reinforced ceramics - Google Patents

Manufacture of fiber reinforced ceramics

Info

Publication number
JPS6311579A
JPS6311579A JP61152891A JP15289186A JPS6311579A JP S6311579 A JPS6311579 A JP S6311579A JP 61152891 A JP61152891 A JP 61152891A JP 15289186 A JP15289186 A JP 15289186A JP S6311579 A JPS6311579 A JP S6311579A
Authority
JP
Japan
Prior art keywords
reinforcing fibers
surfactant
mixed
water
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61152891A
Other languages
Japanese (ja)
Inventor
片野 靖
安藤 元英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61152891A priority Critical patent/JPS6311579A/en
Publication of JPS6311579A publication Critical patent/JPS6311579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は界面活性剤を用いることにより強化繊維のセ
ラミックマトリックスへの分散性を向上させた繊維強化
セラミックス複合材料の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a fiber-reinforced ceramic composite material in which the dispersibility of reinforcing fibers in a ceramic matrix is improved by using a surfactant.

(従来の技術) 従来の繊維強化セラミックスの製造方法としては、例え
ば特開昭59−54680号公報に記載されている方法
がある。この方法ではセラミックス粉末として窒化ケイ
素粉末、強化繊維として炭化ケイ素(SiC)ウィスカ
ーの如きSiC結晶を用い、それぞれを水および/また
は有機溶剤に分散させ、それぞれフィルターを通過させ
た後、それら分散液を混合し、次いで成形、焼結するこ
とにより繊維強化型窒化ケイ素焼結体を製造する。
(Prior Art) As a conventional method for manufacturing fiber-reinforced ceramics, there is, for example, a method described in Japanese Patent Application Laid-Open No. 59-54680. In this method, silicon nitride powder is used as the ceramic powder, and SiC crystals such as silicon carbide (SiC) whiskers are used as the reinforcing fibers, each is dispersed in water and/or an organic solvent, and after each is passed through a filter, the dispersion is A fiber-reinforced silicon nitride sintered body is manufactured by mixing, then molding and sintering.

(発明が解決しようとする問題点) しかしながら、このような従来の方法にあっては、Si
Cウィスカーとセラミックス粉末とを混合する際予めS
iCウィスカーおよびセラミックス粉末を夫々水および
/または有機溶剤中、超音波等により分散させ、フィル
ターを通過させろ過する。
(Problem to be solved by the invention) However, in such a conventional method, Si
When mixing C whiskers and ceramic powder, S
The iC whiskers and ceramic powder are each dispersed in water and/or an organic solvent using ultrasonic waves, etc., and then passed through a filter and filtered.

しかしろ過したSiCウィスカーとセラミックス粉末と
の混合液を乾燥する過程において、再度SiCウィスカ
ーの凝集が生じてしまうため、その混合物を原料とした
SiCウィスカー・セラミックス複合材料焼結体中には
SiCウィスカーの凝集塊が残存し、その焼結体の強度
等機械的性質に大きな影響を及ぼすばかりでなく、マト
リックス中へのSiCウィスカーの均一な分散は望めず
、ウィスカー強化の効果が十分に発揮されないという問
題点があった。
However, in the process of drying the filtered mixed solution of SiC whiskers and ceramic powder, the SiC whiskers agglomerate again. The problem is that agglomerates remain, which not only greatly affects the mechanical properties such as the strength of the sintered body, but also that uniform dispersion of SiC whiskers in the matrix cannot be expected, and the whisker strengthening effect is not fully demonstrated. There was a point.

(問題点を解決するための手段) この発明は、水または有機溶剤に界面活性剤を添加し、
得られた溶液中に強化繊維を混合して強化繊維の表面を
界面活性剤で被覆すると強化繊維相互のからみ合いを減
することができることを知見したことに基づくものであ
る。
(Means for solving the problem) This invention adds a surfactant to water or an organic solvent,
This is based on the finding that if reinforcing fibers are mixed into the obtained solution and the surfaces of the reinforcing fibers are coated with a surfactant, entanglement between the reinforcing fibers can be reduced.

従ってこの発明の繊維強化セラミックスの製造方法は、
水または有機溶剤の界面活性剤溶液中に強化繊維を混合
し、強化繊維表面を界面活性剤で被覆した後セラミック
ス粉末と混合し焼結することを特徴とする。
Therefore, the method for manufacturing fiber-reinforced ceramics of this invention is as follows:
The method is characterized in that reinforcing fibers are mixed in a surfactant solution of water or an organic solvent, the surfaces of the reinforcing fibers are coated with the surfactant, and then mixed with ceramic powder and sintered.

この発明においては、先ず水または有機溶剤の界面活性
剤溶液中に強化繊維を混合する。強化繊維としてはSi
Cウィスカー、窒化ケイ素(SiJ4)ウィスカー等の
セラミックウィスカーが好ましく用いられる。
In this invention, first, reinforcing fibers are mixed into a surfactant solution of water or an organic solvent. Si as reinforcing fiber
Ceramic whiskers such as C whiskers and silicon nitride (SiJ4) whiskers are preferably used.

次に界面活性剤としては非イオン界面活性剤が好ましく
、なかでも次式 界面活性剤の分子量   5 で表わされる親水性親油性バランス(HLB)値が6.
0〜16.0を示す非イオン界面活性剤が好ましく用い
られる。界面活性剤は、水または有機溶剤(好ましくは
水に近い極性を有する有機溶剤)に0.1容量%以上混
合した溶液とし、その溶液中に強化繊維を混合する。こ
の際、界面活性剤、溶媒、強化繊維の間の体積比を考慮
する必要があるが、強化繊維の体積に対し、50倍以上
、好ましくは100倍以上の界面活性剤溶液が適当であ
る。上記した以下の、あまりにも少ない量の界面活性剤
では、この発明の強化繊維を界面活性剤により被覆する
効果が得られない。また、HLB値が16.0を越える
界面活性剤では、水または有機溶媒中に溶解し、強化繊
維の表面を被覆する能力は無く、IILB値が6.0未
満の界面活性剤は、水または有機溶媒、強化繊維、界面
活性剤の間で分離が生じ、同様に強化繊維表面を被覆す
ることはできない。強化繊維と、界面活性剤の水または
有機溶剤の混合液は、攪拌機や超音波照射等により十分
混合、分散した後、吸引ろ適法や乾燥器等により溶媒や
余剰の界面活性剤を除去する。こうして得られた界面活
性剤によりその表面を被覆した強化繊維は、相互のから
み合いが極めて少なく、また、乾燥過程において凝集を
形成したとしても容易に破壊することができる。また、
表面を界面活性剤で被覆した強化繊維は、次工程の、マ
トリックスとなるセラミックス粉末例えば窒化ケイ素、
炭化ケイ素、ジルコニア、ムライト、アルミナの粉体と
の混合過程においても容易に分散し、強化繊維だけの凝
集を形成することは非常に少ない。なお、マトリックス
との混合には、強化繊維を機械的に…傷させないことが
重要であり、■ブレンダーによる乾式混合、水または有
機溶剤中、成形用有機バインダー等を混合する湿式混合
、セラミックス射出成形に用いられるワックス、プラス
チック等の溶融物に機械的に混合する方法等が可能であ
る。
Next, as the surfactant, nonionic surfactants are preferred, and among them, the hydrophilic-lipophilic balance (HLB) value expressed by the molecular weight of the surfactant of the following formula 5 is 6.
A nonionic surfactant having a molecular weight of 0 to 16.0 is preferably used. The surfactant is mixed into a solution of 0.1% by volume or more in water or an organic solvent (preferably an organic solvent having a polarity close to that of water), and the reinforcing fibers are mixed into the solution. At this time, it is necessary to consider the volume ratio between the surfactant, the solvent, and the reinforcing fibers, but it is appropriate to use a surfactant solution whose volume is at least 50 times, preferably at least 100 times, the volume of the reinforcing fibers. If the amount of the surfactant described below is too small, the effect of coating the reinforcing fibers of the present invention with the surfactant cannot be obtained. Additionally, surfactants with an HLB value of over 16.0 have no ability to dissolve in water or organic solvents and coat the surface of reinforcing fibers, and surfactants with an IILB value of less than 6.0 cannot be dissolved in water or organic solvents. Separation occurs between the organic solvent, the reinforcing fibers, and the surfactant, and the surface of the reinforcing fibers cannot be coated in the same way. A mixture of reinforcing fibers and a surfactant in water or an organic solvent is sufficiently mixed and dispersed using a stirrer or ultrasonic irradiation, and then the solvent and excess surfactant are removed using a suction filtration method, a dryer, or the like. The reinforcing fibers whose surfaces are coated with the surfactant thus obtained have very little mutual entanglement, and even if aggregates are formed during the drying process, they can be easily broken. Also,
The reinforcing fibers whose surfaces are coated with a surfactant are used in the next step to form a matrix of ceramic powder such as silicon nitride,
It is easily dispersed during the mixing process with silicon carbide, zirconia, mullite, and alumina powders, and there is very little chance of aggregation of reinforcing fibers alone. When mixing with the matrix, it is important not to mechanically damage the reinforcing fibers. ■Dry mixing using a blender, wet mixing in water or organic solvent, mixing an organic binder for molding, etc., and ceramic injection molding. Possible methods include mechanically mixing it into a melted material such as wax or plastic used for.

これらの方法により、セラミックス粉末と混合された原
料は、泥漿鋳込(スリップ・キャスト)、プレス成形、
射出成形等により所望の形状に成形した後、成形法によ
っては脱バインダーを行なった後、常法により焼結する
By these methods, the raw materials mixed with ceramic powder are processed by slip casting, press molding,
After molding into a desired shape by injection molding or the like, the binder is removed depending on the molding method, and then sintering is performed by a conventional method.

(実施例) 次にこの発明を実施例および比較例により説明する。(Example) Next, the present invention will be explained with reference to Examples and Comparative Examples.

一施 1〜4.rl 表1に示すマトリックスとなる各セラミック粉末に、3
0容量%の炭化ケイ素(SiC)ウィスカーを加え、1
00gとした。各混合粉末に、表示するIILBを有す
る非イオン界面活性剤の20容泄%水溶液を加え、全体
を11とし、超音波を照射しつつ攪拌した。尚各原科の
特性を表2に示す。約1時量子分に混合した後、吸引ろ
適法により乾燥した。その後乾燥器内で十分乾燥した原
料をほぐし、この原料粉末を、黒鉛型を用いて真空中(
10−2)ル(Torr)以下) 、300kg/cが
の条件で4QmmX5QllX約6flの形状にホット
プレス法により焼結した。
Issei 1-4. rl For each ceramic powder serving as the matrix shown in Table 1, 3
Add 0% by volume of silicon carbide (SiC) whiskers,
00g. A 20% aqueous solution of a nonionic surfactant having the indicated IILB was added to each mixed powder to give a total volume of 11, and the mixture was stirred while being irradiated with ultrasound. The characteristics of each family are shown in Table 2. After mixing for about 1 hour, the mixture was dried by suction filtration. After that, the sufficiently dried raw material is loosened in a dryer, and this raw material powder is mixed in a vacuum using a graphite mold (
10-2) Torr or less) and 300 kg/c were sintered into a shape of 4Q mm x 5 Qll x about 6 fl by hot pressing.

ポットプレスの温度と保持時間は次の通りである。The temperature and holding time of the pot press are as follows.

得られた焼結体を厚さ約31■に研削し、最終的に11
400のダイヤモンド砥石で仕上げた後、311×4m
mX40+nに切り出し、実施例1〜4の抗折試験片と
した。
The obtained sintered body was ground to a thickness of about 31 cm, and finally
After finishing with 400 diamond whetstone, 311 x 4m
It was cut out to m x 40+n and used as bending test pieces of Examples 1 to 4.

また比較のため界面活性剤を用いなかったこと以外は実
施例1と同様にして比較例1の焼結体を得、この焼結体
から同様にして抗折試験片を得た。
For comparison, a sintered body of Comparative Example 1 was obtained in the same manner as in Example 1 except that no surfactant was used, and a bending test piece was obtained from this sintered body in the same manner.

上記各試験片につき研摩面および破面の観察を電子顕微
鏡(SEM)を用いて行い、更にJIS R1601「
ファインセラミックスの曲げ強さ試験法」に従って3点
曲げ強さを測定し、試料5本の測定結果の平均値を、表
1に示す。
The polished surface and fracture surface of each of the above specimens were observed using an electron microscope (SEM), and further JIS R1601 "
The three-point bending strength was measured according to the "Bending Strength Test Method for Fine Ceramics", and the average value of the measurement results of five samples is shown in Table 1.

表  1 表  2 (発明の効果) 以上説明してきたように、この発明によれば、界面活性
剤でその表面を被覆した強化繊維を用いることにより、
マトリックスのセラミックス粉末との混合においても強
化繊維の凝集が形成されないため、強化繊維がマトリッ
クス中に均一に分散した繊維強化セラミックス複合材料
の焼結体が製造できるという効果かえられる。
Table 1 Table 2 (Effects of the invention) As explained above, according to the present invention, by using reinforcing fibers whose surfaces are coated with a surfactant,
Since no agglomeration of the reinforcing fibers is formed when the reinforcing fibers are mixed with the ceramic powder of the matrix, it is possible to produce a sintered body of a fiber-reinforced ceramic composite material in which the reinforcing fibers are uniformly dispersed in the matrix.

Claims (1)

【特許請求の範囲】[Claims] 1、水または有機溶剤の界面活性剤溶液中に強化繊維を
混合し、強化繊維表面を界面活性剤で被覆した後セラミ
ックス粉末と混合し、焼結することを特徴とする繊維強
化セラミックスの製造方法。
1. A method for producing fiber-reinforced ceramics, which comprises mixing reinforcing fibers in a surfactant solution of water or an organic solvent, coating the surface of the reinforcing fibers with the surfactant, and then mixing with ceramic powder and sintering. .
JP61152891A 1986-06-30 1986-06-30 Manufacture of fiber reinforced ceramics Pending JPS6311579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61152891A JPS6311579A (en) 1986-06-30 1986-06-30 Manufacture of fiber reinforced ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61152891A JPS6311579A (en) 1986-06-30 1986-06-30 Manufacture of fiber reinforced ceramics

Publications (1)

Publication Number Publication Date
JPS6311579A true JPS6311579A (en) 1988-01-19

Family

ID=15550384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61152891A Pending JPS6311579A (en) 1986-06-30 1986-06-30 Manufacture of fiber reinforced ceramics

Country Status (1)

Country Link
JP (1) JPS6311579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278479A (en) * 1988-04-28 1989-11-08 Hitachi Metals Ltd Whisker compound ceramic and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278479A (en) * 1988-04-28 1989-11-08 Hitachi Metals Ltd Whisker compound ceramic and production thereof
JP2565981B2 (en) * 1988-04-28 1996-12-18 日立金属株式会社 Whisker composite ceramics and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS6364968A (en) Silicon carbide base composite ceramics
US4855259A (en) Process of making ceramic moldings containing cordierite
JPS6055469B2 (en) Method for producing fiber-reinforced silicon nitride sintered body
JPS6311579A (en) Manufacture of fiber reinforced ceramics
JP3129870B2 (en) Manufacturing method of ceramic sintered body
JPS61197474A (en) Manufacture of short fiber reinforced ceramic formed body
JPH029777A (en) Fiber reinforced ceramic molded body and production thereof
JPS60106931A (en) Production of fiber reinforced metallic material
US4596781A (en) Tough Si3 N4 composite ceramics
JPH0143823B2 (en)
RU2038339C1 (en) Compound material production method
JP3439241B2 (en) Manufacturing method of composite reinforcement for manufacturing functionally graded metal matrix composites
JPS62230680A (en) Manufacture of ceramic composite body
JPS60186491A (en) Silicon nitride sintered body
JPS63151607A (en) Production of fine aluminum nitride powder
JPH11171671A (en) Production of plate silicon carbide-silicon composite ceramic
JPH01230484A (en) Sintered ceramics reinforced with short fiber and production thereof
JP2952069B2 (en) Method for producing Si3N4 coated aluminum borate whisker and preform
JPS6243956B2 (en)
JPH0641391B2 (en) Method for manufacturing fiber-containing refractory
JP3009684B2 (en) Composite mullite sintered body
JPH02311363A (en) Production of ceramic sintered compact
JPS5954676A (en) Manufacture of fiber reinforced silicon carbide sintered body
JPS6360165A (en) Manufacture of fiber reinforced ceramics
JPH0442869A (en) Production of whisker-reinforced composite material