JPS6311526A - Production of iron oxide for raw material of ferrite - Google Patents

Production of iron oxide for raw material of ferrite

Info

Publication number
JPS6311526A
JPS6311526A JP61151610A JP15161086A JPS6311526A JP S6311526 A JPS6311526 A JP S6311526A JP 61151610 A JP61151610 A JP 61151610A JP 15161086 A JP15161086 A JP 15161086A JP S6311526 A JPS6311526 A JP S6311526A
Authority
JP
Japan
Prior art keywords
raw material
ore
impurities
ferrite
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61151610A
Other languages
Japanese (ja)
Inventor
Tadasuke Kakugami
撹上 忠佑
Yukito Nitta
新田 幸人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd filed Critical Kawatetsu Mining Co Ltd
Priority to JP61151610A priority Critical patent/JPS6311526A/en
Publication of JPS6311526A publication Critical patent/JPS6311526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To efficiently produce iron oxide for the raw material of ferrite which is little in impurities and is graded in fine particles by making hematite-base ore to aq. slurry and removing gangue mineral content with a cyclone and magnetic separation and thereafter crushing and classifying it. CONSTITUTION:Foreign materials incorporated in hematite ore of a raw material are removed by a screen 3, and water is simultaneously fed and the mixture is regulated to the prescribed slurry concn. in a tank 4. Then it is introduced under pressure into a cyclone 5 to concentrate the impurities and is sent to a concentration tank 7 to remove about 40% of impurities. After feeding an underflow 8 to a wet crusher 10 and crushing it into 9-16mum average particle diameter, it is fed to a wet magnetic separator 11 to separate gangue mineral. Then it is dehydrated by a dehydrator 12 and dried by a dryer 13. Successively it is fed to a dry secondary crusher 16 via a dry primary crusher 14 and a distribution tank 15 for dry powder and furthermore passed through a pneumatic classifier 17. Thereby the following iron oxide for the raw material of ferrite is obtained which is graded so that the average particle diameter is not more than 4mum and the proportion not more than 20mum is not less than 99.9% and is little in impurities content.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はへマタイト系鉄鉱石を原料として、不純分が極
めて低い高純度の、すぐれたフェライト原料用酸化鉄を
製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing high purity iron oxide with extremely low impurities and excellent ferrite raw material using hematite iron ore as a raw material. .

〔従来の技術〕[Conventional technology]

良質の鉄鉱石は従来も低級磁材用とか一般磁材用増量材
としては微粉砕の後使用されていたが、不純分が多いた
めに、一般フエライト用原料としては用途が限られてお
り、ま几増量材としても多量に使用することはできなか
った。
High-quality iron ore has traditionally been used after pulverization as an extender for low-grade magnetic materials or general magnetic materials, but due to its high impurity content, its use as a raw material for general ferrite is limited. It could not be used in large quantities as a bulking material.

したがってフェライト原料としての酸化鉄は主として製
鉄所の圧延工程から発生する副産物に依存しているのが
現状である。
Therefore, at present, iron oxide as a raw material for ferrite is mainly dependent on by-products generated from rolling processes in steel mills.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように鉄鉱石によるものは不純分が多く用途も制
約され、また製鉄所の副産物によるものは製鉄所の稼動
状況により左右されるため、必ずしも需給のタイミング
が会わないなどの問題点があった。
As mentioned above, products made from iron ore have many impurities and their uses are restricted, and products made from iron ore byproducts are affected by the operating status of the steelworks, so there are problems such as the timing of supply and demand not necessarily matching. Ta.

本発明者らはこのような現状に鑑み豊富な鉄鉱石を原料
として用い、不純分の極めて少く、粒度の整った一般フ
エライト原料として充分使用可能な微粒酸化鉄の製造方
法について鋭意研究の結果本発明を完成したものである
In view of the current situation, the present inventors have conducted extensive research into a method for producing fine iron oxide, which uses abundant iron ore as a raw material, has extremely low impurities, and has a uniform particle size and can be used as a raw material for general ferrite. It is a completed invention.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明の要旨は、ヘマタイト系鉱石を、先ず鉱
石重量比で10壬以下の水スラリーにして湿式サイクロ
ンに供給し、該鉱石中で単体分離している脈石成分を除
去し、次いで上記脈石分が除去されtアンダーフロー分
を平均粒径9〜16μmに粉砕し、湿式磁選全行って更
に残る脈石分を充分除去し、かくして得られた鉱石を粉
砕と分級を反復して平均粒径4μm以下で、20珈以下
の割合k 99.9 ’Z以上に整粒することを特徴と
するフェライト原料用酸化鉄の製造方法である。
That is, the gist of the present invention is that hematite ore is first made into a water slurry with an ore weight ratio of 10 tsun or less and fed to a wet cyclone, the gangue components isolated in the ore are removed, and then the gangue components are After the stone content has been removed, the underflow content is pulverized to an average particle size of 9 to 16 μm, wet magnetic separation is carried out, the remaining gangue content is thoroughly removed, and the resulting ore is repeatedly crushed and classified to obtain an average particle size. This is a method for producing iron oxide for use as a ferrite raw material, characterized in that the iron oxide is sized to have a diameter of 4 μm or less, a ratio k 99.9'Z of 20 or less, or more.

本発明において用いられるヘマタイト系鉱石としては、
例えば5t02 、  k120x、 、 MnO、S
 、 CL 。
The hematite ore used in the present invention includes:
For example, 5t02, k120x, , MnO, S
, C.L.

MgO、CaO等不純分の合計が5幅以下の脈石成分の
少い鉱石が好ましい。第1の余備処理過程においては重
量比で10冬以下の薄い濃度の水スラリーとして液体サ
イクロンに出入することが肝要であり−この処理によっ
て鉱石中で単体分離している5i02分やA#2C15
分等の粘土外が除去される。
It is preferable to use an ore with a small gangue component in which the sum of impurities such as MgO and CaO is 5 or less. In the first reserve treatment process, it is important to enter and exit the liquid cyclone as a water slurry with a thin concentration of less than 10% by weight.
The outside of the clay is removed.

このような処理を行った鉱石を次の工程の湿式磁選に適
する粒径まで湿式粉砕を行う。この粉砕により、上とし
て鉱石中に包含されている脈石分5i02 、 Aj%
205 、 MnO、CaO等が分離される。この最適
粒径に粉砕されt鉱石を、例えば高磁力型湿式磁選機、
又は高勾配型湿式磁選機で常広性体であるFe2O3と
非磁性体である5i02 、  A#203 、等を含
む脈石分とに分離する。
The ore treated in this manner is wet-pulverized to a particle size suitable for wet magnetic separation in the next step. Through this crushing, the gangue content included in the ore as above 5i02, Aj%
205, MnO, CaO, etc. are separated. The t-ore crushed to the optimum particle size is processed using a high magnetic force type wet magnetic separator, for example.
Alternatively, it is separated into gangue containing Fe2O3, which is a pervasive substance, and non-magnetic substances, such as 5i02, A#203, etc., using a high-gradient wet magnetic separator.

このようにして精製され、不純物を除去した鉱石全脱水
、乾燥の後粉砕機と分級機全組合せて効率的に平均粒径
4μm以下、20μm以下の割合が999壬以上に整粒
する。
After the ore purified in this manner and with impurities removed is completely dehydrated and dried, it is efficiently sized using a combination of a crusher and a classifier to a ratio of average particle diameters of 4 μm or less and 20 μm or less to 999 μm or more.

以下具体的実施態様を例示して説明する。Specific embodiments will be described below by way of example.

〔実施例〕〔Example〕

第1図は本発明の実施例を示すフロー図である。 FIG. 1 is a flow diagram showing an embodiment of the present invention.

原料へマタイト系鉱石は原料受槽1に投入された後、ポ
ンプξ−2で定量切出しを行い、異物除去スクリーン3
で異物を除き同時に水全供給し、タンク4内で所定(1
0壬以下)のスラ’J −濃Wに調整される。原料鉱石
の性状は表−1に示すとおりである。
After the raw material hematite ore is put into the raw material receiving tank 1, it is cut out quantitatively by the pump ξ-2, and then passed through the foreign matter removal screen 3.
Remove foreign objects and simultaneously supply all the water, and keep the tank 4 at a specified level (1
0 壬 or less) is adjusted to sura'J - dark W. The properties of the raw material ore are shown in Table-1.

表−1原料鉄鉱石の性状 所定濃度に調整されたスラリーはポンプにより複数基の
サイクロン5に圧入される。オーツぐ−フロ一部6には
粘土外等の不純物が濃縮されたスラリーが送られ、次い
でポンプで濃縮槽7へ送られる。ここで鉱石中の不純物
の約40係が除去される。一方サイクロン5の不純物が
少くなったアンダーフロー8はポンプ9で次の湿式粉砕
工程の湿式粉砕機10へ送られる。この時のオーツマー
フロー乃びアンダーフローの注状は表−2及び表−3燻
に示すとおりである。
Table 1: Properties of raw material iron ore The slurry, which has been adjusted to a predetermined concentration, is forced into a plurality of cyclones 5 by a pump. A slurry in which impurities such as clay are concentrated is sent to the oats flow part 6, and then sent to the concentration tank 7 by a pump. Approximately 40% of impurities in the ore are removed here. On the other hand, the underflow 8 from the cyclone 5 with reduced impurities is sent by a pump 9 to a wet pulverizer 10 for the next wet pulverization process. Notes on oat mer flow and underflow at this time are as shown in Table 2 and Table 3.

湿式粉砕機10で鉱石は引lルにより平均粒径9〜16
μmに湿式粉砕されて次の湿式磁選工程の湿式磁選機1
1に送られる。第2図に平均粒径と磁選結果を示す。こ
れにより明らかなとおり。
The ore is pulled in a wet crusher 10 to have an average particle size of 9 to 16
Wet magnetic separator 1 for the next wet magnetic separation process after wet pulverization into micrometers
Sent to 1. Figure 2 shows the average grain size and magnetic separation results. As is clear from this.

平均粒径が9μmより細かくなると5i02又はAA2
05の含有世が増加する。これは微粒化に伴いヘテロ凝
集を起し、脈石分と鉱石の分離性が悪化するためである
。また16μmより大きい粒径になると鉱石と脈石部と
の単体分離が不充分となり、5in2. A#203等
が鉱石の中に残留し分離できない。
When the average particle size is finer than 9 μm, it is 5i02 or AA2.
05's content increases. This is because heteroaggregation occurs with atomization, and the separation of gangue and ore deteriorates. Moreover, if the particle size is larger than 16 μm, the separation of the ore and the gangue becomes insufficient, and the particle size of 5 in2. A#203 etc. remain in the ore and cannot be separated.

従って上記の範囲の粒度域に砕物粒径を整えることが迅
速効率を最上にするために肝要である。
Therefore, it is important to adjust the particle size of the crushed material within the above particle size range in order to maximize rapid efficiency.

湿式粉砕後の粒度分布、磁選着出物の性状、磁選非着磁
物の注状はそれぞれ表−41表−51表−6に示すとお
シである。
The particle size distribution after wet pulverization, the properties of the magnetically separated precipitate, and the notes of the magnetically separated non-magnetized material are shown in Tables 41, 51, and 6, respectively.

1−コー−−−1 湿式磁選を終って乾燥工程に移すに先立って脱水機12
で脱水し、次いで乾燥機13により水分含有率0.5係
以下に乾燥する。乾燥品は乾式−戻粉砕機14で粉砕の
後、乾粉分配槽15を経て乾式二次粉砕装置16に送り
、更に風力分級機17により所定の粒度分布になるよう
に調整されて製品槽18に入る。
1-Co---1 After finishing the wet magnetic separation and before moving on to the drying process, the dehydrator 12
and then dried in a dryer 13 to a moisture content of 0.5 or less. The dried product is crushed in a dry back crusher 14, then sent to a dry secondary crusher 16 via a dry powder distribution tank 15, further adjusted to a predetermined particle size distribution by an air classifier 17, and then sent to a product tank 18. enter.

得られた製品は計量後袋詰等にして出荷される。The obtained product is weighed, packed in bags, etc., and shipped.

なお、乾式−次粉砕後の粒度分布、乾式二次粉砕後の粒
度分布、分級粗分の粒度分布、製品C分級微粉)の粒度
分布は、それぞれ表−79表−8゜表−91表−10に
示すとおりである。表−11は得られた製品の性状を示
すものである。
In addition, the particle size distribution after dry secondary grinding, the particle size distribution after dry secondary grinding, the particle size distribution of the coarsely classified powder, and the particle size distribution of product C (classified fine powder) are shown in Table 79, Table 8, Table 91, respectively. It is as shown in 10. Table 11 shows the properties of the obtained product.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、豊富なヘマタイト系鉄鉱石を原
料とし、フェライト原料として多方面に使用できる不純
物の極めて少い、かつ微粒に粒度調整されたフェライト
原料用酸化鉄が直接鉄鉱石から効率よく得ることが出来
る。また本発明によれば、従来フェライト原料としてほ
とんど製鉄所の圧延工程で発生する副産物に依存してい
定ため、その生産は製鉄所の稼動状況に左右され必ずし
も需給のタイミングが合わない不都合もあつ之がこのよ
うな問題も解消され、本発明の工業的意義は極めて大き
いものである。
According to the method of the present invention, abundant hematite iron ore is used as a raw material, and iron oxide for ferrite raw material, which has very few impurities and whose particle size has been adjusted to fine particles, can be used in many ways as a ferrite raw material. You can get a good deal. In addition, according to the present invention, conventional ferrite raw materials have been determined to be mostly dependent on by-products generated in the rolling process of steel mills, so the production is affected by the operating status of steel mills, and there is also the disadvantage that the timing of supply and demand does not always match. However, such problems are solved, and the industrial significance of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すフロー図で、第2図は平
均粒径と磁選結果の関係を示すグラフである。 1・・・原料鉱石、4・・・スラIJ−15・・・湿式
サイクロン、6・・・湿式@遇機、14・・・−戻粉砕
機、16・・・二次粉砕機、17・・・風力分級機。
FIG. 1 is a flowchart showing an example of the present invention, and FIG. 2 is a graph showing the relationship between average particle size and magnetic separation results. DESCRIPTION OF SYMBOLS 1... Raw material ore, 4... Slurry IJ-15... Wet cyclone, 6... Wet type @ machine, 14...-Return crusher, 16... Secondary crusher, 17... ...Wind classifier.

Claims (1)

【特許請求の範囲】[Claims]  ヘマタイト系鉱石を、先ず鉱石重量比で10%以下の
水スラリーにして湿式サイクロンに供給し、該鉱石中で
単体分離している脈石分を除去し、次いで上記脈石分が
除去されたアンダーフロー分を平均粒径9〜16μmに
粉砕し、湿式磁選を行つて更に残りの脈石分を充分除去
し、かくして得られた鉱石を粉砕と分級を反復して平均
粒径4μm以下で、20μm以下の割合を99.9%以
上に整粒することを特徴とするフェライト原料用酸化鉄
の製造方法。
Hematite ore is first made into a water slurry with an ore weight ratio of 10% or less and fed to a wet cyclone to remove the gangue that has been separated into the ore, and then to remove the gangue from which the gangue has been removed. The flow fraction is crushed to an average particle size of 9 to 16 μm, wet magnetic separation is performed to sufficiently remove the remaining gangue, and the thus obtained ore is repeatedly crushed and classified to have an average particle size of 4 μm or less and 20 μm. A method for producing iron oxide for ferrite raw material, characterized by sizing the following ratios to 99.9% or more.
JP61151610A 1986-06-30 1986-06-30 Production of iron oxide for raw material of ferrite Pending JPS6311526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61151610A JPS6311526A (en) 1986-06-30 1986-06-30 Production of iron oxide for raw material of ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61151610A JPS6311526A (en) 1986-06-30 1986-06-30 Production of iron oxide for raw material of ferrite

Publications (1)

Publication Number Publication Date
JPS6311526A true JPS6311526A (en) 1988-01-19

Family

ID=15522296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61151610A Pending JPS6311526A (en) 1986-06-30 1986-06-30 Production of iron oxide for raw material of ferrite

Country Status (1)

Country Link
JP (1) JPS6311526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188343A (en) * 2011-02-23 2012-10-04 Dowa Electronics Materials Co Ltd Ferrite particle, and carrier for electrophotographic development and electrophotographic developer made using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188343A (en) * 2011-02-23 2012-10-04 Dowa Electronics Materials Co Ltd Ferrite particle, and carrier for electrophotographic development and electrophotographic developer made using the same

Similar Documents

Publication Publication Date Title
US5375776A (en) Method and apparatus for the comminution of material for grinding
CN100383260C (en) Process for producing steel slag iron fine powder
RU2383398C1 (en) Method for dry enrichment of wollastonite ore
CN106755650A (en) The technique that slag produces high activity steel-making slag powder and inert mineral product
CN111285405A (en) Method for separating calcium ferrite and magnesium ferrite from steel slag magnetic separation tailings
US5316746A (en) High purity iron oxide and method for production hereof
US2962231A (en) Beneficiation of ores
EP0267170B1 (en) Treatment of middlings
US4860957A (en) Treatment of middlings
CN112090579A (en) Efficient iron concentrate powder sorting process
RU2142348C1 (en) Method of dry concentration of wollastonite ore
KR100334295B1 (en) Dry Purification Method for Removing Iron and Titanium Oxide from Kaoline
US3291398A (en) Beneficiation of magnetic iron ores
JPS6311526A (en) Production of iron oxide for raw material of ferrite
KR100402630B1 (en) Producing Process for Industrial Fillers from Sericitic Pottery-stone
CN102933305A (en) Process for milling a mineral material containing at least calcium and metallic impurities, and installation suitable for milling a mineral material containing calcium and metallic impurities as such
RU1771816C (en) Method of low-magnetic ores magnetic separation
CN217940461U (en) Step grinding and selecting system for fragile easily-argillized ores
JPH04254417A (en) Production of high purity iron oxide particulates
JPS61215220A (en) Production of iron oxide for ferrite raw material from iron ore
CN106179706B (en) A method of separating the iron oxide mixed from iron powder
JPS6197135A (en) Production of iron oxide
RU1799627C (en) Method for ore magnetic concentration
RU2011416C1 (en) Method for enrichment of compounded iron ores
JPS62138332A (en) Preparation of iron oxide for raw material of ferrite from iron ore