JPS63115042A - Method for measuring thermal diffusivity - Google Patents

Method for measuring thermal diffusivity

Info

Publication number
JPS63115042A
JPS63115042A JP26147386A JP26147386A JPS63115042A JP S63115042 A JPS63115042 A JP S63115042A JP 26147386 A JP26147386 A JP 26147386A JP 26147386 A JP26147386 A JP 26147386A JP S63115042 A JPS63115042 A JP S63115042A
Authority
JP
Japan
Prior art keywords
thermal diffusivity
aluminum nitride
wire
measured
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26147386A
Other languages
Japanese (ja)
Inventor
Taketoshi Hibiya
孟俊 日比谷
Arata Nakamura
新 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHU KANKYO RIYOU KENKYUSHO
NEC Corp
Original Assignee
UCHU KANKYO RIYOU KENKYUSHO
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHU KANKYO RIYOU KENKYUSHO, NEC Corp filed Critical UCHU KANKYO RIYOU KENKYUSHO
Priority to JP26147386A priority Critical patent/JPS63115042A/en
Publication of JPS63115042A publication Critical patent/JPS63115042A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit such measurement which minimizes thermal influence of a coating material by using a platinum wire the surface of which is coated with aluminum nitride as a probe. CONSTITUTION:The aluminum nitride has high heat conductivity and can transmit calorific value quickly to a semiconductor melt to be measured by energizing a fine platinum wire even if the fine platinum wire is coated with the aluminum nitride. For example, the surface of the fine platinum wire having 1,400mum diameter is coated with the aluminum nitride to 30mum thickness and the thermal diffusivity of molten indium antimonide is measured by a nonstationary fine wire method using such fine wire as the probe in common use as a heating element. The thermal diffusivity can then be measured at 1% error as compared to the theoretical value of the case in which there is no coating material. The measurement error by the presence of the coating material is, therefore, restricted within a permissible range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は融体の熱物性測定技術に係わる。さらに詳細に
は、非定常細線法による融体の熱物性測定法に係わる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a technique for measuring thermophysical properties of a melt. More specifically, the present invention relates to a method for measuring thermophysical properties of a melt using an unsteady thin wire method.

(従来の技術) 完全な半導体単結晶を育成する上で、結晶成長過程にお
ける融体の流れや熱の流れをシミュレーションする事が
重要である。このためには、半導体の融液の熱物性定数
を正確に測定する事が必要となる。いくつかの熱物性定
数の中で、熱拡散率の値は、シミュレーションに先立ち
を正確に測定されるべき物性定数である。
(Prior Art) In growing a perfect semiconductor single crystal, it is important to simulate the flow of melt and heat during the crystal growth process. For this purpose, it is necessary to accurately measure the thermophysical constants of the semiconductor melt. Among several thermophysical constants, the value of thermal diffusivity is a physical constant that should be accurately measured prior to simulation.

これまで、半導体融液の熱拡散率はグラシフ(Glaz
ov)、チゼフスカヤ(Chizhevskaya)お
よびグラゴレバ(Glagoleva)らによって「半
導体融液」(”Liquid Sem1conduct
ors”)(プレナムプレス(PlenumPress
)、 New York、1969)のp、30−33
に報告されている様に、同心円筒を用いた定常法による
測定が行われている。一方、比較的低温の液体における
熱拡散率の測定においては、長板および長高によってジ
ャーナルオブフィジクス(Journal of Ph
ysics)B14. p、1435.1981年に報
告されているように、非定常細線法による測定が優れた
測定精度を保証するものとして推奨されている。
Until now, the thermal diffusivity of semiconductor melt has been determined by Glaz
ov), “Liquid Sem1conduct” by Chizhevskaya and Glagoleva et al.
ors”) (PlenumPress
), New York, 1969), p. 30-33.
As reported in , measurements have been performed using a steady-state method using concentric cylinders. On the other hand, in the measurement of thermal diffusivity in relatively low-temperature liquids, long plates and long heights are used to measure the thermal diffusivity of relatively low-temperature liquids.
ysics) B14. p., 1435.1981, measurement by the unsteady thin wire method is recommended as it guarantees excellent measurement accuracy.

細線の表面を被覆材で覆った場合の非定常細線法による
熱拡散率の測定において、細線によって検出される温度
上昇ΔTと測定時間tとの間には次式のような関係があ
る。
In measuring the thermal diffusivity by the unsteady thin wire method when the surface of the thin wire is covered with a coating material, there is a relationship as shown in the following equation between the temperature rise ΔT detected by the thin wire and the measurement time t.

ΔT = q/4n人(Int+A+1/1(B1nt
+C))       (1)ここで、qは細線からの
発熱量、λは熱伝導率、tは細線への通電時間、Aは融
液の熱拡散率および細線の径に係わる定数である。Bお
よびCは試料融体、細線および被覆材の熱伝導度および
熱拡散率ならびに細線および被覆材の径および厚さに係
わる定数である。この式において、被覆材の熱的影響を
無視できるような場合には、()内の第3項は無視でき
る。この場合には、ΔTを横軸に、Intを横軸にプロ
ットしたグラフの勾配q/4nλから熱拡散率kを求め
られる。ただし、拡散率に=A/p−C,であり、pは
密度、C9は比熱である。
ΔT = q/4n people (Int+A+1/1(B1nt
+C)) (1) Here, q is the amount of heat generated from the thin wire, λ is the thermal conductivity, t is the time during which electricity is applied to the thin wire, and A is a constant related to the thermal diffusivity of the melt and the diameter of the thin wire. B and C are constants related to the thermal conductivity and thermal diffusivity of the sample melt, the thin wire and the coating material, as well as the diameter and thickness of the thin wire and the coating material. In this equation, if the thermal influence of the covering material can be ignored, the third term in parentheses can be ignored. In this case, the thermal diffusivity k can be determined from the slope q/4nλ of a graph in which ΔT is plotted on the horizontal axis and Int is plotted on the horizontal axis. However, the diffusivity is =A/p-C, where p is the density and C9 is the specific heat.

(発明が解決しようとする問題点) 非定常細線法による熱拡散率の測定を半導体融体に適用
しようとする場合、以下の2つの事が問題となる。すな
わち、半導体融体が電気伝導性を有する事と、かつ腐食
性を有する事である。このた゛め、測定の際に電流が半
導体融体を介して短絡すること、また、本方法における
プローブとして優れた特性を有する白金線が半導体融体
と反応して腐食される事である。
(Problems to be Solved by the Invention) When applying the measurement of thermal diffusivity by the unsteady thin wire method to a semiconductor melt, the following two problems arise. That is, the semiconductor melt has electrical conductivity and corrosivity. For this reason, the current may be short-circuited through the semiconductor melt during measurement, and the platinum wire, which has excellent properties as a probe in this method, may react with the semiconductor melt and be corroded.

このため、プローブである白金細線の表面を、絶縁性を
有し、かつ半導体融体と反応しない物質で被覆する必要
がある。しかしながら、白金細線の表面を絶縁性でかつ
非反応性の物質で被覆する場合、これらの物質がそれぞ
れ熱的な挙動を示すため、(1)式に示す()内の第3
項が無視できなくなり、熱拡散率の測定値は理論値から
ずれ、その正確な測定が困難となる。
For this reason, it is necessary to coat the surface of the thin platinum wire serving as the probe with a substance that has insulating properties and does not react with the semiconductor melt. However, when the surface of the platinum thin wire is coated with an insulating and non-reactive substance, each of these substances exhibits thermal behavior, so the third value in parentheses in equation (1)
term cannot be ignored, the measured value of thermal diffusivity deviates from the theoretical value, and its accurate measurement becomes difficult.

本発明の目的は、白金細線をプローブとして用いる非定
常細線法による半導体融体の熱拡散率測定において、被
覆材の熱的影響が最小となるような測定法を提供するこ
とにある。
An object of the present invention is to provide a measurement method that minimizes the thermal influence of a coating material in measuring the thermal diffusivity of a semiconductor melt by an unsteady thin wire method using a thin platinum wire as a probe.

(問題点を解決するための手段) この発明の要旨は、非定常細線法による半導体融体の熱
拡散率測定において、窒化アルミニウムでその表面を被
覆した白金線をプローブとして用いることである。
(Means for Solving the Problems) The gist of the present invention is to use a platinum wire whose surface is coated with aluminum nitride as a probe in measuring the thermal diffusivity of a semiconductor melt by the unsteady thin wire method.

(作用) 窒化アルミニウムは熱伝導性が高く、白金細線を窒化ア
ルミニウムで被覆しても白金細線に通電する事による発
熱量を、すみやかに測定すべき半導体融液に伝える事が
可能である。このため、被覆材が存在する事による測定
誤差を、許容できる範囲内に押さえる事が可能となる。
(Function) Aluminum nitride has high thermal conductivity, and even if the thin platinum wire is coated with aluminum nitride, the amount of heat generated by energizing the thin platinum wire can be immediately transmitted to the semiconductor melt to be measured. Therefore, it is possible to suppress measurement errors due to the presence of the covering material within an allowable range.

第2図は、本発明者らによって行われた非定常細線法に
よる熱拡散率の測定例であり、被覆材が存在する事によ
る測定誤差を示している。ここでは、径が1400pm
の白金細線の表面を厚さが1100pの窒化アルミニウ
ムで被覆して、溶融シリコンの熱拡散率を測定した。プ
ローブである白金細線に通電し、その発熱量によって融
液シリコンの温度が上昇し、その温度上昇に伴い白金細
線の温度が上昇する事を、白金細線の電気抵抗として検
出した。白金細線の電気抵抗の変化から読み取った温度
上昇と、対数で表示した時間との関係を示しである。直
線は被覆材が存在しない場合4の温度上昇を理論的に求
めたものであるが、実験によれば被覆材が存在する事に
より、温度上昇は理想状態からずれている(図中の3で
示した〕。本測定法の原理によれば、このグラフの勾配
が熱拡散率に相当するが、直線からずれる事により、測
定に誤差を生ずる。
FIG. 2 is an example of measurement of thermal diffusivity by the unsteady thin wire method carried out by the present inventors, and shows measurement errors due to the presence of the covering material. Here, the diameter is 1400pm
The surface of the thin platinum wire was coated with aluminum nitride having a thickness of 1100p, and the thermal diffusivity of molten silicon was measured. Electricity was applied to the thin platinum wire that served as the probe, and the temperature of the molten silicon rose due to the amount of heat generated, and the rise in temperature of the thin platinum wire was detected as the electrical resistance of the thin platinum wire. This figure shows the relationship between the temperature rise read from the change in electrical resistance of the thin platinum wire and time expressed in logarithm. The straight line shows the theoretical rise in temperature in case 4 without the covering material, but according to experiments, the temperature rise deviates from the ideal state due to the presence of the covering material (in 3 in the figure). According to the principle of this measurement method, the slope of this graph corresponds to the thermal diffusivity, but deviation from the straight line causes errors in measurement.

第1図に示すように、誤差の大きさと被覆材である窒化
アルミニウムの厚さとの関係をプロットすると、シミュ
レーションに用いる値として許容できる範囲の誤差を2
.5%とすればこれを満足する窒化アルミニウムの厚さ
は、厚くても、1100pである。
As shown in Figure 1, if we plot the relationship between the size of the error and the thickness of aluminum nitride, which is the coating material, we can see that the error within the allowable range for the value used in the simulation is 2.
.. If the thickness is 5%, the thickness of aluminum nitride that satisfies this requirement is 1100p at most.

(実施例) 以下に、実施例を用いて本発明をさらに詳細に説明する
(Example) The present invention will be described in more detail below using Examples.

[実施例IJ 直径が1400pmの白金細線の表面を、CVD法を用
いて厚さが30pmの窒化アルミニウムで被覆した。
[Example IJ The surface of a thin platinum wire having a diameter of 1400 pm was coated with aluminum nitride having a thickness of 30 pm using the CVD method.

この細線を発熱体兼プローブとして、非定常細線法によ
って溶融インジウムアンチモナイド(InSb)の熱拡
散率を測定したところ、12.3W/m−にと求まり、
第1図に示すように被覆材がない場合の理論値に比べ、
1%の誤差で熱拡散率を測定できた。
Using this thin wire as a heating element and probe, the thermal diffusivity of molten indium antimonide (InSb) was measured by the unsteady thin wire method and was found to be 12.3 W/m-.
As shown in Figure 1, compared to the theoretical value without coating material,
Thermal diffusivity could be measured with an error of 1%.

「実施例2」 直径が1400pmの白金細線の表面を、厚さが110
0pの窒化アルミニウムで被覆した。この細線を発熱体
兼プローブとして、非定常細線法によって溶融インジウ
ムアンチモナイド(InSb)の熱拡散率を測定したと
ころ、第1図に示すように被覆材がない場合の理論値に
比べ、2.5%の誤差で熱拡散率を測定できた。
"Example 2" The surface of a thin platinum wire with a diameter of 1400 pm was coated with a thickness of 110 pm.
Coated with 0p aluminum nitride. When the thermal diffusivity of molten indium antimonide (InSb) was measured by the unsteady thin wire method using this thin wire as a heating element and probe, as shown in Figure 1, the thermal diffusivity of molten indium antimonide (InSb) was 2. Thermal diffusivity could be measured with an error of .5%.

「実施例3] 直径が1400pmの白金細線の表面を、厚さが30p
mの窒化アルミニウムで被覆した。この細線を発熱体兼
プローブとして、非定常細線法によって溶融シリコン(
Si)の熱拡散率を測定したところ、第1図に示すよう
に被覆材がない場合の理論値に比べ、0.5%の誤差で
熱拡散率を測定できた。
"Example 3" The surface of a thin platinum wire with a diameter of 1400 pm was coated with a thickness of 30 pm.
coated with m aluminum nitride. Using this thin wire as a heating element and probe, molten silicon (
When the thermal diffusivity of Si) was measured, as shown in FIG. 1, the thermal diffusivity could be measured with an error of 0.5% compared to the theoretical value without the coating material.

「実施例4」 直径が1400pmの白金細線の表面を、厚さが110
0pの窒化アルミニウムで被覆した。この細線を発熱体
兼プローブとして、非定常細線法によって溶融シリコン
(Si)の熱拡散率を測定したところ、第1図に示すよ
うに被覆材がない場合の理論値に比べ、°1.5%の誤
差で熱拡散率を測定できた。
"Example 4" The surface of a thin platinum wire with a diameter of 1400 pm was coated with a thickness of 110 pm.
Coated with 0p aluminum nitride. When the thermal diffusivity of molten silicon (Si) was measured by the unsteady thin wire method using this thin wire as a heating element and a probe, it was found that the thermal diffusivity of molten silicon (Si) was 1.5 ° The thermal diffusivity could be measured with an error of %.

(発明の効果) 以上、本発明を用いることにより、腐食性と電気伝導性
を有する半導体融液の熱拡散率の測定が可能となる。
(Effects of the Invention) As described above, by using the present invention, it is possible to measure the thermal diffusivity of a semiconductor melt having corrosivity and electrical conductivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、白金細線の表面を被覆する被覆材窒化アルミ
ニウムの厚さと、熱拡散率の測定値の理論値からの誤差
を示す図。1はインジウムアンチモナイトを、2はシリ
コンを測定した場合。第2図は、細線の表面を被覆材で
覆った場合の温度上昇と細線の通電時間との関係を示す
図。3は被覆材がある場合、4は被覆材がない場合。
FIG. 1 is a diagram showing the thickness of the covering material aluminum nitride covering the surface of the thin platinum wire and the error of the measured value of thermal diffusivity from the theoretical value. 1 is when indium antimonite is measured, and 2 is when silicon is measured. FIG. 2 is a diagram showing the relationship between the temperature rise and the energization time of the thin wire when the surface of the thin wire is covered with a coating material. 3 is when there is a covering material, 4 is when there is no covering material.

Claims (1)

【特許請求の範囲】[Claims] 非定常細線法による半導体融体の熱拡散率測定において
、窒化アルミニウムでその表面を被覆した白金線をプロ
ーブとして用いることを特徴とする熱拡散率測定法。
A thermal diffusivity measuring method characterized by using a platinum wire whose surface is coated with aluminum nitride as a probe in measuring the thermal diffusivity of a semiconductor melt by an unsteady thin wire method.
JP26147386A 1986-10-31 1986-10-31 Method for measuring thermal diffusivity Pending JPS63115042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26147386A JPS63115042A (en) 1986-10-31 1986-10-31 Method for measuring thermal diffusivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26147386A JPS63115042A (en) 1986-10-31 1986-10-31 Method for measuring thermal diffusivity

Publications (1)

Publication Number Publication Date
JPS63115042A true JPS63115042A (en) 1988-05-19

Family

ID=17362390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26147386A Pending JPS63115042A (en) 1986-10-31 1986-10-31 Method for measuring thermal diffusivity

Country Status (1)

Country Link
JP (1) JPS63115042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566650B1 (en) * 2000-09-18 2003-05-20 Chartered Semiconductor Manufacturing Ltd. Incorporation of dielectric layer onto SThM tips for direct thermal analysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152943A (en) * 1984-01-20 1985-08-12 Snow Brand Milk Prod Co Ltd Measurement of change in physical properties of liquid and semi-solid substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152943A (en) * 1984-01-20 1985-08-12 Snow Brand Milk Prod Co Ltd Measurement of change in physical properties of liquid and semi-solid substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566650B1 (en) * 2000-09-18 2003-05-20 Chartered Semiconductor Manufacturing Ltd. Incorporation of dielectric layer onto SThM tips for direct thermal analysis

Similar Documents

Publication Publication Date Title
JPH0467902B2 (en)
JPH0850109A (en) Gas analyzing method
CN110044955A (en) Sample holder and measurement method for steady state method measurement creamy material heating conduction
CA2505305A1 (en) Fluid temperature measurement
Parvis et al. Sputtered thermocouple for lyophilization monitoring
Burton A method for studying the factors in milk which influence the deposition of milk solids on a heated surface
JPS63115042A (en) Method for measuring thermal diffusivity
Balko et al. Measurement and computation of thermojunction response times in the submillisecond range
Yamasue et al. Nonstationary hot wire method with silica-coated probe for measuring thermal conductivities of molten metals
EP0617271B1 (en) Method for simultaneous determination of thermal conductivity and kinematic viscosity
JPS5984145A (en) Method and device for measuring reynolds number of fluid
US3286174A (en) Apparatus and method for measuring high temperature corrosion and fluid flow rates
JP3114137B2 (en) Thermal conductivity gas concentration analyzer
JPS63115043A (en) Method for measuring thermal diffusivity by non-stationary fine wire method
JPS5923369B2 (en) Zero-level heat flow meter
Andreas The calibration of cylindrical hot-film velocity sensors
JP2537744B2 (en) Measuring method of thermal conductivity
JPH0438425A (en) Thermal flow sensor
JPH01239433A (en) Sensor for measuring change in viscosity of blood or the like
JP2024027952A (en) Thermal resistance evaluation device, thermal resistance evaluation method, and thermal resistance evaluation program
JP4003583B2 (en) Method and apparatus for measuring temperature-sensitive liquid crystal heat transfer coefficient of metal substrate
SU947727A1 (en) Solid body thermal physical property determination method
SU69192A1 (en) Method and apparatus for evaluating the physicochemical properties of liquids
SU1659815A1 (en) Method of determining thermal conductivity of a material
US3382429A (en) Method of and apparatus utilizing bridge for measuring conductivity