JP4003583B2 - Method and apparatus for measuring temperature-sensitive liquid crystal heat transfer coefficient of metal substrate - Google Patents
Method and apparatus for measuring temperature-sensitive liquid crystal heat transfer coefficient of metal substrate Download PDFInfo
- Publication number
- JP4003583B2 JP4003583B2 JP2002243074A JP2002243074A JP4003583B2 JP 4003583 B2 JP4003583 B2 JP 4003583B2 JP 2002243074 A JP2002243074 A JP 2002243074A JP 2002243074 A JP2002243074 A JP 2002243074A JP 4003583 B2 JP4003583 B2 JP 4003583B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat transfer
- transfer coefficient
- liquid crystal
- sensitive liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、感温液晶による熱伝達率の計測方法および装置に係わり、更に詳しくは、その金属基材への適用方法および装置に関する。
【0002】
【従来の技術】
感温液晶による熱伝達率の計測方法に関しては、例えば非特許文献1に開示されている。
【0003】
【非特許文献1】
船崎健一他、「感熱液晶による冷却翼内部流路熱伝達分布の計測法に関する研究」、日本ガスタービン学会誌、Vol.26 No.101 1998.6
【0004】
この非定常法の原理を以下に説明する。
半無限物体表面(初期温度T1)に接する流体の温度をステップ状に温度Tgまで上昇させる。熱伝達率をhとすると、半無限物体表面の温度の時間的変化は、[数1]の式(1)(2)で与えられる。
【0005】
【数1】
【0006】
ここでtは時間、ρは物体の密度、cは物体の比熱、λは物体の熱伝導率である。非定常法による熱伝達率計測では、計測面温度の時間的変化を感温液晶等を用いて計測し、所定の温度に達するまでの時間tを式(1)(2)に代入し、ニュートン法などを用いることにより熱伝達率hを推定する。
【0007】
感温液晶は、温度により液晶分子の配向が変化するので、反射光が温度に応じて赤、緑、青等と変化する。従ってこの色彩を数値化することで壁面温度が求められる。従って、上述した非定常法により、まず温度の感応範囲ができるだけ狭い液晶を測定面に塗布し、さらに流体温度をステップ状に変化させると、時間の経過と共に測定面に等温度線を示す縞模様が観測される。半無限物体の表面温度で対流熱伝達が存在し、流体と物体の初期温度がTiである時、時刻t>0で流体の温度がステップ的にTgとなる場合、半無限物体の表面温度Tは式(1)(2)で与えられるので、これから熱伝達率を逆算することができる。
【0008】
【発明が解決しようとする課題】
非定常法では半無限固体の熱伝導を仮定しているが、実際に適用する対象物の厚みは有限長である。そのため、実際の有限厚さの物体でこの仮定が妥当なのは初期の短い時間のみであり、非定常法において温度をステップ変化させてから10秒程度の間に壁温が初期温度T1から十分に上昇して初期温度と有意差ΔTがつくことが必須である。
【0009】
そのため、従来は対象物の材質として熱伝導率の小さいプラスチック等を用いている。しかし実際の機械装置、例えばジェットエンジンのタービンブレードやディスク等はその材質がほとんどの場合金属であり、これに非定常法を同様にして適用した場合には壁温がほとんど上がらず、熱伝達率を十分な精度をもって計測することができない問題点があった。
そのため、タービンブレードやディスク等、複雑な形状を有する場合でも、その表面の熱伝達率の分布を計測するためには、同一形状の試験体を熱伝導率の小さいプラスチック等で製作する必要があった。そのため、そのような試験材の製作に多大な費用がかかるばかりでなく、実物の形状を正確には試験体に再現できず、計測された熱伝達率の信頼性が低い問題点があった。
【0010】
本発明は上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、タービンブレードやディスク等、複雑な形状を有する金属基材の場合でも、同一形状の試験体をプラスチック等で製作する必要がなく、その実物を用いて高い精度で表面の熱伝達率の分布を計測することができる金属基材の感温液晶熱伝達率計測方法および装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明によれば、金属基材に熱伝達率計測を実施するための試験用断熱コーティングを施しその上に感温液晶を塗布した試験体を準備し、その表面を流れる流体温度をステップ状に変化させ、時間の経過と共に試験体表面に現れる等温度線を示す縞模様を撮像し、撮像した縞模様から試験体表面の温度分布を計測し、計測した時間と温度分布から試験体表面の熱伝達率の分布を求める、ことを特徴とする金属基材の感温液晶熱伝達率計測方法が提供される。
また、本発明によれば、液体または気体の流れにさらされる金属基材の表面温度を感温液晶で計測することで熱伝達率を計測する熱伝達率計測装置であって、金属基材と感温液晶の間に熱伝達率計測を実施するための試験用断熱材を設けた、ことを特徴とする金属基材の感温液晶熱伝達率計測装置が提供される。
【0012】
本発明の好ましい実施形態によれば、前記試験用断熱コーティングは、セラミック多孔質材のスプレーコーティングである。
また、前記試験用断熱材は、金属基材に施されたコーティングである。さらに、前記試験用断熱材は、セラミック多孔質材である。
【0013】
上記本発明の方法及び装置によれば、試験体として金属基材に断熱コーティングを施しその上に感温液晶を塗布したものを用いるので、タービンブレードやディスク等、複雑な形状を有する金属基材の場合でも、同一形状の試験体をプラスチック等で製作する必要がない。
また、断熱コーティングの上に感温液晶を塗布するので、断熱コーティングにより金属基材への熱伝導を抑制し金属基材の放熱を低減できる。従って、この状態で非定常法を適用することにより、プラスチックなどを使った時と同様な温度上昇が得られ、金属基材の実物を用いて高い精度で表面の熱伝達率の分布を計測することができる。
【0014】
【発明の実施の形態】
以下、本発明の好ましい実施形態を、図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0015】
図1は、本発明の方法および装置を示す模式図である。この図において、1は金属基材、2は断熱コーティング(又断熱材)、3は感温液晶、4は試験体、5はファイバースコープ、6は画像記録装置、7は演算装置である。
本発明の感温液晶熱伝達率計測装置は、液体または気体の流れにさらされる金属基材1の表面温度を感温液晶3で計測することで熱伝達率を計測する熱伝達率計測装置である。また、本発明では金属基材と感温液晶の間に断熱材2を設ける。この断熱材2は、金属基材に施されたコーティングである。また、断熱材2は、セラミック多孔質材であるのがよい。
【0016】
金属基材1は、例えばジェットエンジンのタービンブレードやディスク等であり、その材質が金属である流体機械の部品または部分である。本発明では、表面の熱伝達率分布を計測する金属基材1をそのまま使用し、その金属基材1に断熱コーティング2を施し、次いでその上に感温液晶3を塗布したものを試験体4としてを準備する。
【0017】
断熱コーティング2は、例えばセラミック多孔質材のスプレーコーティングであるのがよく、これを約2mm前後の厚さにコーティングする。なお、断熱コーティング2は、セラミック多孔質材に限定されず、施工が簡単で母材を傷めず、かつ断熱性能が高いものであればよい。なお、試験温度は比較的低温(200℃以下)なので、断熱コーティング2はこの試験温度にたえる耐熱温度を有すればよい。
【0018】
感温液晶3は、温度の感応範囲ができるだけ狭い液晶を用いる。例えば、発色温度幅が2℃の感温液晶(日本カプセルプロダクト製)をスプレーで塗布するのがよい。
【0019】
次に、上述した試験体4を図示しない試験装置に取付け、その表面に沿って流体を流し、かつ、その表面を流れる流体温度を初期温度T1から温度Tgまでステップ状に上昇させる。
【0020】
この温度上昇時点からの経過時間tと試験体3の表面に現れる等温度線を示す縞模様をファイバースコープ5及び画像記録装置6で撮像し、撮像した縞模様から試験体4の表面の温度分布を計測し、計測した時間と温度分布から演算装置7でにより試験体表面の熱伝達率の分布を求める。
【0021】
なお、ファイバースコープ5は必須ではなく、画像記録装置6で直接撮像してもよい。画像記録装置6には、例えば高解像度のデジタルビデオカメラを用いる。また演算装置7にはPC(パーソナルコンピュータ)を用いることができる。
【0022】
【実施例】
図2は、従来の方法による実施例を示す図である。この図において横軸は経過時間、縦軸は無次元温度である。この無次元温度は、式(1)(2)の左辺に相当する。
この図に示すようにプラスチック類では流体の昇温後しぐに壁温も追随することから良好な計測精度が得られるが、金属(この例ではインコネル600)の場合には、これに非定常法を同様にして適用しても壁温がほとんど上がらず、熱伝達率を十分な精度をもって計測することができないことがわかる。
【0023】
図3は、本発明の方法による実施例を示す図である。この図は、金属表面にセラミック多孔質材(APS Porus Mulite)を2mmの厚みでコーティングした時の温度上昇特性の非定常解析結果を示す。
この図からコーティングを施工したことで、壁面から基材内部への熱伝導が抑制され、結果として表面温度の流体温度への追随性が大幅に改善されていることがわかる。これにより、プラスチックなどを使った時と同様に、昇温とほぼ同時に有意差のある壁温上昇が得られ、精度の良い熱伝達率計測が可能になる。
【0024】
上述したように、本発明の方法によれば、試験体4として金属基材1に断熱コーティング2を施しその上に感温液晶3を塗布したものを用いるので、タービンブレードやディスク等、複雑な形状を有する金属基材の場合でも、同一形状の試験体をプラスチック等で製作する必要がない。
また、断熱コーティング2の上に感温液晶3を塗布するので、断熱コーティング2により金属基材1への熱伝導を抑制し金属基材の放熱を低減できる。従って、この状態で非定常法を適用することにより、プラスチックなどを使った時と同様な温度上昇が得られ、金属基材1の実物を用いて高い精度で表面の熱伝達率の分布を計測することができる。
【0025】
なお本発明は上述した実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
【0026】
【発明の効果】
上述したように、本発明により、セラミック多孔質材をコーティングすることで、実際の機械で用いている金属材料にも適用可能となる。また、施工が簡単で母材を傷めない特徴も有する。
【0027】
従って本発明の金属基材の感温液晶熱伝達率計測方法および装置は、タービンブレードやディスク等、複雑な形状を有する金属基材の場合でも、同一形状の試験体をプラスチック等で製作する必要がなく、その実物を用いて高い精度で表面の熱伝達率の分布を計測することができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の方法および装置を示す模式図である。
【図2】従来の方法による実施例を示す図である。
【図3】本発明の方法による実施例を示す図である。
【符号の説明】
1 金属基材、2 断熱コーティング(断熱材)、3 感温液晶、4 試験体、5 ファイバースコープ、6 画像記録装置、7 演算装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for measuring a heat transfer coefficient using a temperature-sensitive liquid crystal, and more particularly to a method and apparatus for applying the heat transfer coefficient to a metal substrate.
[0002]
[Prior art]
For example, Non-Patent Document 1 discloses a method for measuring a heat transfer coefficient using a temperature-sensitive liquid crystal.
[0003]
[Non-Patent Document 1]
Funazaki Kenichi et al., “Study on Measurement Method of Heat Transfer Distribution in Cooling Blade Internal Flow Using Thermal Liquid Crystal”, Journal of Gas Turbine Society of Japan, Vol. 26 No. 101 19988.6
[0004]
The principle of this unsteady method will be described below.
The temperature of the fluid in contact with the semi-infinite object surface (initial temperature T1) is increased in steps to the temperature Tg. When the heat transfer coefficient is h, the temporal change in the temperature of the semi-infinite object surface is given by the equations (1) and (2) in [Equation 1].
[0005]
[Expression 1]
[0006]
Here, t is time, ρ is the density of the object, c is the specific heat of the object, and λ is the thermal conductivity of the object. In the heat transfer coefficient measurement by the unsteady method, the temporal change of the measurement surface temperature is measured using a temperature-sensitive liquid crystal, etc., and the time t until reaching a predetermined temperature is substituted into equations (1) and (2), and Newton The heat transfer coefficient h is estimated by using a method or the like.
[0007]
In the thermosensitive liquid crystal, the orientation of the liquid crystal molecules changes depending on the temperature, so that the reflected light changes to red, green, blue, etc. according to the temperature. Therefore, the wall surface temperature is obtained by digitizing this color. Therefore, by applying the liquid crystal with the narrowest possible temperature sensitivity range to the measurement surface by the unsteady method described above, and further changing the fluid temperature in steps, a striped pattern showing isothermal lines on the measurement surface over time. Is observed. When convective heat transfer exists at the surface temperature of a semi-infinite object, and the initial temperature of the fluid and the object is Ti, the surface temperature T of the semi-infinite object is Tg when the temperature of the fluid becomes Tg stepwise at time t> 0. Is given by the equations (1) and (2), the heat transfer coefficient can be calculated backward from this.
[0008]
[Problems to be solved by the invention]
In the unsteady method, the heat conduction of a semi-infinite solid is assumed, but the thickness of the object actually applied is a finite length. Therefore, this assumption is valid only for a short initial time in an actual finite thickness object, and the wall temperature rises sufficiently from the initial temperature T1 in about 10 seconds after the temperature is stepped in the unsteady method. Therefore, it is essential that there is a significant difference ΔT from the initial temperature.
[0009]
Therefore, conventionally, a plastic having a low thermal conductivity is used as the material of the object. However, actual mechanical devices such as turbine blades and disks of jet engines are mostly made of metal, and when the unsteady method is applied to this, the wall temperature hardly rises and the heat transfer coefficient is increased. There is a problem that cannot be measured with sufficient accuracy.
Therefore, even in the case of complicated shapes such as turbine blades and disks, in order to measure the distribution of the heat transfer coefficient on the surface, it is necessary to manufacture a specimen having the same shape with a plastic having a low heat conductivity. It was. Therefore, not only is it expensive to produce such a test material, but the shape of the actual object cannot be accurately reproduced on the test body, and the reliability of the measured heat transfer coefficient is low.
[0010]
The present invention has been developed to solve the above-described problems. That is, the object of the present invention is not to produce a test body of the same shape with plastic or the like even in the case of a metal substrate having a complicated shape such as a turbine blade or a disk, and the surface is used with high accuracy using the actual object. An object of the present invention is to provide a method and an apparatus for measuring a temperature-sensitive liquid crystal heat transfer coefficient of a metal substrate capable of measuring the distribution of the heat transfer coefficient.
[0011]
[Means for Solving the Problems]
According to the present invention, a test body in which a heat insulating coating for testing for measuring heat transfer coefficient is applied to a metal substrate and a temperature-sensitive liquid crystal is applied thereon is prepared, and the temperature of the fluid flowing on the surface is stepped. The stripe pattern showing the isothermal line that appears on the surface of the test specimen over time is imaged, the temperature distribution on the specimen surface is measured from the striped pattern, and the heat on the specimen surface is measured from the measured time and temperature distribution. A method of measuring a temperature-sensitive liquid crystal heat transfer coefficient of a metal substrate, characterized in that the distribution of the transfer coefficient is obtained.
Further, according to the present invention, there is provided a heat transfer coefficient measuring device for measuring a heat transfer coefficient by measuring a surface temperature of a metal substrate exposed to a liquid or gas flow with a temperature-sensitive liquid crystal. Provided is a metal-based temperature-sensitive liquid crystal heat transfer coefficient measuring device, characterized in that a test heat insulating material for performing heat transfer coefficient measurement is provided between temperature-sensitive liquid crystals.
[0012]
According to a preferred embodiment of the present invention, the test thermal barrier coating is a ceramic porous material spray coating.
The test heat insulating material is a coating applied to a metal substrate. Further, the test heat insulating material is a ceramic porous material.
[0013]
According to the method and apparatus of the present invention, a metal base material having a complicated shape, such as a turbine blade or a disk, is used as a test body because a metal base material is coated with a heat insulating coating and coated with a temperature-sensitive liquid crystal. Even in this case, it is not necessary to manufacture a specimen having the same shape from plastic or the like.
Further, since the temperature-sensitive liquid crystal is applied on the heat insulating coating, the heat conduction to the metal substrate can be suppressed by the heat insulating coating, and the heat radiation of the metal substrate can be reduced. Therefore, by applying the unsteady method in this state, the same temperature rise as when plastic is used is obtained, and the surface heat transfer coefficient distribution is measured with high accuracy using the actual metal substrate. be able to.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0015]
FIG. 1 is a schematic diagram illustrating the method and apparatus of the present invention. In this figure, 1 is a metal substrate, 2 is a heat insulating coating (or heat insulating material), 3 is a temperature-sensitive liquid crystal, 4 is a test body, 5 is a fiberscope, 6 is an image recording device, and 7 is an arithmetic device.
The temperature-sensitive liquid crystal heat transfer coefficient measuring device of the present invention is a heat transfer coefficient measuring device that measures the heat transfer rate by measuring the surface temperature of the metal substrate 1 exposed to a liquid or gas flow with the temperature-
[0016]
The metal substrate 1 is, for example, a turbine blade or a disk of a jet engine, and is a component or part of a fluid machine whose material is metal. In the present invention, the metal substrate 1 for measuring the heat transfer coefficient distribution on the surface is used as it is, the
[0017]
The
[0018]
As the temperature sensitive
[0019]
Next, the above-described test body 4 is attached to a test apparatus (not shown), a fluid is caused to flow along the surface, and the temperature of the fluid flowing on the surface is increased stepwise from the initial temperature T1 to the temperature Tg.
[0020]
The striped pattern showing the elapsed time t from the time of the temperature rise and the isothermal line appearing on the surface of the
[0021]
Note that the
[0022]
【Example】
FIG. 2 is a diagram showing an embodiment according to a conventional method. In this figure, the horizontal axis represents elapsed time, and the vertical axis represents dimensionless temperature. This dimensionless temperature corresponds to the left side of equations (1) and (2).
As shown in this figure, with plastics, the wall temperature also follows immediately after the temperature rise of the fluid, so that good measurement accuracy can be obtained. However, in the case of metal (Inconel 600 in this example), this is a non-stationary method. It can be seen that the wall temperature does not rise substantially even when applied in the same manner, and the heat transfer coefficient cannot be measured with sufficient accuracy.
[0023]
FIG. 3 is a diagram showing an embodiment according to the method of the present invention. This figure shows the unsteady analysis result of the temperature rise characteristic when a ceramic porous material (APS Porus Multi) is coated on the metal surface with a thickness of 2 mm.
From this figure, it can be seen that by applying the coating, heat conduction from the wall surface to the inside of the base material is suppressed, and as a result, the followability of the surface temperature to the fluid temperature is greatly improved. As a result, as in the case of using plastic or the like, a wall temperature rise having a significant difference is obtained almost simultaneously with the temperature rise, and accurate heat transfer coefficient measurement can be performed.
[0024]
As described above, according to the method of the present invention, since the specimen 4 is coated with the
Moreover, since the
[0025]
The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the invention.
[0026]
【The invention's effect】
As described above, the present invention can be applied to a metal material used in an actual machine by coating a ceramic porous material. In addition, the construction is simple and does not damage the base material.
[0027]
Therefore, the method and apparatus for measuring the temperature sensitive liquid crystal heat transfer coefficient of the metal substrate according to the present invention requires that a specimen having the same shape is made of plastic or the like even in the case of a metal substrate having a complicated shape such as a turbine blade or a disk. In addition, it has an excellent effect that the surface heat transfer coefficient distribution can be measured with high accuracy using the actual product.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating the method and apparatus of the present invention.
FIG. 2 is a diagram showing an embodiment according to a conventional method.
FIG. 3 shows an embodiment according to the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal base material, 2 Thermal insulation coating (thermal insulation material), 3 Thermosensitive liquid crystal, 4 Test body, 5 Fiberscope, 6 Image recording device, 7 Arithmetic unit
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002243074A JP4003583B2 (en) | 2002-08-23 | 2002-08-23 | Method and apparatus for measuring temperature-sensitive liquid crystal heat transfer coefficient of metal substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002243074A JP4003583B2 (en) | 2002-08-23 | 2002-08-23 | Method and apparatus for measuring temperature-sensitive liquid crystal heat transfer coefficient of metal substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004085228A JP2004085228A (en) | 2004-03-18 |
JP4003583B2 true JP4003583B2 (en) | 2007-11-07 |
Family
ID=32051931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002243074A Expired - Fee Related JP4003583B2 (en) | 2002-08-23 | 2002-08-23 | Method and apparatus for measuring temperature-sensitive liquid crystal heat transfer coefficient of metal substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4003583B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101881444B1 (en) * | 2017-05-02 | 2018-08-24 | 부산대학교 산학협력단 | Heat transfer measurement system and under high pressure environment |
-
2002
- 2002-08-23 JP JP2002243074A patent/JP4003583B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004085228A (en) | 2004-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Smith et al. | Temperature sensing with thermochromic liquid crystals | |
US8718989B2 (en) | Method to determine the internal structure of a heat conducting body | |
US6585408B2 (en) | Method and apparatus for measuring local heat transfer distribution on a surface | |
Rogers et al. | Effects of double wall cooling configuration and conditions on performance of full coverage effusion cooling | |
US8104953B2 (en) | Systems and methods for determining heat transfer characteristics | |
CN112362689B (en) | Condensation heat transfer transient measurement device and method based on thermochromatic liquid crystal | |
CN106468671A (en) | A kind of transient state liquid crystal is used for measuring the measurement of instability method of convection transfer rate | |
US6637931B2 (en) | Probe for use in an infrared thermometer | |
Lin et al. | A transient liquid crystal method using a 3-D inverse transient conduction scheme | |
JP4003583B2 (en) | Method and apparatus for measuring temperature-sensitive liquid crystal heat transfer coefficient of metal substrate | |
CN106679818B (en) | Device and method for measuring temperature distribution of smooth surface | |
Oh et al. | Bulk-micromachined circular foil type micro heat-flux sensor | |
CN108051093A (en) | For the infrared thermal imaging temp measuring method in IGBT module temperature field in probe power circulation experiment | |
JPH09329503A (en) | Temperature measuring apparatus with function for correction of heat transfer | |
JPWO2011040634A1 (en) | Heat flux measuring device and heat flux measuring method | |
Chen et al. | An improved data reduction method for transient liquid crystal thermography on film cooling measurements | |
CN206339310U (en) | The measurement apparatus of smooth surface Temperature Distribution | |
TWI332082B (en) | A device for measuring thermal conductivity | |
Mokdad et al. | A Self-Validation Method for High-Temperature Thermocouples Under Oxidizing Atmospheres | |
RU2796333C1 (en) | Method for determining heat transfer coefficient of a part | |
CN217878986U (en) | Engine thermal barrier coating high-temperature heat conductivity coefficient steady-state measuring device | |
Camci | Liquid crystal thermography on the rotating surfaces of turbomachinery systems | |
JPS6385364A (en) | Flow velocity detector | |
JPS5828195Y2 (en) | Temperature measuring couple for micro surfaces | |
SU1509635A1 (en) | Heat flow sensitive element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070813 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |