JPS63115012A - Displacement measuring instrument - Google Patents

Displacement measuring instrument

Info

Publication number
JPS63115012A
JPS63115012A JP25993886A JP25993886A JPS63115012A JP S63115012 A JPS63115012 A JP S63115012A JP 25993886 A JP25993886 A JP 25993886A JP 25993886 A JP25993886 A JP 25993886A JP S63115012 A JPS63115012 A JP S63115012A
Authority
JP
Japan
Prior art keywords
signal
light
diffraction grating
diffracted
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25993886A
Other languages
Japanese (ja)
Inventor
Tetsuji Nishimura
西村 哲治
Akira Ishizuka
公 石塚
Masaaki Tsukiji
築地 正彰
Tsutomu Sato
力 佐藤
Susumu Kozuki
上月 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25993886A priority Critical patent/JPS63115012A/en
Priority to GB8725143A priority patent/GB2201509B/en
Priority to DE19873736704 priority patent/DE3736704C2/en
Publication of JPS63115012A publication Critical patent/JPS63115012A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure displacement with high accuracy at any time by correcting an error signal contained in an interference signal by utilizing a reference signal based upon the intensity of diffracted light generated by a diffraction grating provided to a body to be measured. CONSTITUTION:Luminous flux from a laser light source 1 is diffracted twice by a diffraction grating 2 and its positive and negative diffracted light beams are made incident on a beam splitter 51 one over the other and divided into two. The transmitted light between the two light beams is photodetected by a photodetecting element 73 without interfering and a reference signal is outputted. The reflected luminous flux, on the other hand, is split by a beam splitter 52 into two beams, which are made 90 deg. difference with each other through polarizing plates 61 and 62 and photodetected by photodetecting elements 71 and 72, thereby outputting an interference signal. Then, a computing element divides the respective interference signals by a reference signal for corrections, thereby obtaining a corrected signal with a constant amplitude. Further, processing based upon a specific slice level is performed to obtain a stable rectangular wave signal. Thus, the invariably stable signal is obtained to facilitate the electric division of a succeeding stage. Consequently, the displacement is measured with high accuracy and high resolution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被測定物体の回転状態や移動状態等の変位を測
定する変位測定装置に関し、特に被測定物体に連絡した
チャート板上に設けた周期的若しくは所定模様の回折格
子に可干渉性の光束を入射させ、該回折格子から生ずる
回折光を互いに干渉させて干渉縞を形成し、この干渉縞
の明暗を計数することにより被測定物体の変位を求める
変位測定装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a displacement measuring device for measuring the displacement of an object to be measured in its rotational state, moving state, etc. A coherent light beam is incident on a periodic or predetermined pattern of diffraction gratings, the diffracted lights generated from the diffraction gratings are made to interfere with each other to form interference fringes, and by counting the brightness and darkness of these interference fringes, the object to be measured can be detected. This invention relates to a displacement measuring device for determining displacement.

(従来の技術) 従来より産業用工作機酸における移動物体の移動量検出
やロボットアームの回転、移動1位置等の検出や回転機
構の回転量1回転速度等の検出を行う為の変位測定装置
として光電的なロータリーエンコーダーやりニアエンコ
ーダーが多く利用されている。
(Prior art) Displacement measuring devices have conventionally been used in industrial machine tools to detect the amount of movement of a moving object, the rotation of a robot arm, one position of movement, etc., and the amount of rotation (one rotational speed) of a rotating mechanism. Photoelectric rotary encoders and near encoders are often used.

このうち被測定物体に回折格子を設け、該回折格子より
生ずる回折光を利用して、被測定物体の移動量や回転量
等の変位9を求める回折方式の変位測定装置が種々と提
案されている。この変位測定装置は高精度な測定が比較
的容易である為、特にNCC佳作機械半導体焼付装置等
の精密機械用に多く用いられている。
Among these, various diffraction-type displacement measuring devices have been proposed, in which a diffraction grating is provided on the object to be measured, and the diffraction light generated by the diffraction grating is used to measure the displacement 9 of the object to be measured, such as the amount of movement or rotation. There is. Since this displacement measuring device is relatively easy to measure with high precision, it is often used for precision machines such as NCC honorable mention machine semiconductor printing equipment.

この回折方式の変位測定装置においては回折格子から生
ずる回折光を互いに干渉させて干渉縞を形成し、この干
渉縞の明暗を受光手段により計数して変位に関する干渉
信号を得ている。
In this diffraction type displacement measuring device, diffracted lights generated from a diffraction grating are caused to interfere with each other to form interference fringes, and the brightness and darkness of these interference fringes are counted by a light receiving means to obtain an interference signal regarding displacement.

従フて光源の出力が温度変化等の環境変化によって変動
したり、回折格子の透過率(反射回折格子の場合は反射
率)が−様でなかったり、振幅型の回折格子を用いた場
合に透過部若しくは反射部の線幅の太さが均一でなかっ
たりすると受光手段からの干渉縞に関する出力値Eが例
えば第5図(A)に示すように不安定な波形となって出
力されてくる。
If the output of the secondary light source fluctuates due to environmental changes such as temperature changes, the transmittance of the diffraction grating (reflectance in the case of a reflective diffraction grating) is uneven, or if an amplitude type diffraction grating is used. If the line width of the transmitting part or the reflecting part is not uniform, the output value E related to interference fringes from the light receiving means will be outputted as an unstable waveform as shown in FIG. 5(A), for example. .

特に回折格子は製作時のエツチングむらが生じやすく、
測定領域全域での線幅(位相型回折格子のときは段差等
の形状)の不均一を改善することが大変難しく、この傾
向が特に顕著に現われてくる。
In particular, diffraction gratings are prone to uneven etching during manufacturing.
It is very difficult to improve the non-uniformity of the line width (in the case of a phase-type diffraction grating, the shape of steps etc.) over the entire measurement area, and this tendency becomes particularly noticeable.

以上のような原因により受光手段からの出力値が第5図
(八)に示す如く変動し、後段の計数回路における比較
器のスライスレベル以下となりたときは出力波形を精度
良く計数することができなくなってくる。又たとえスラ
イスレベル以上の出力値があっても振幅の中心レベルが
不安定な為、同図(B)に示す如く比較器の出力の“H
”レベルと“L″レベル幅が不安定になってくる。
Due to the above reasons, the output value from the light receiving means fluctuates as shown in Figure 5 (8), and when it falls below the slice level of the comparator in the subsequent counting circuit, the output waveform cannot be counted accurately. It's going to disappear. In addition, even if the output value is higher than the slice level, the center level of the amplitude is unstable, so the “H” output of the comparator as shown in the same figure (B)
” level and “L” level width become unstable.

この為後段の電気回路における電気分割が困難となり、
高精度で、かつ高い分解能で変位測定をするのが大変難
しくなってくる。
This makes it difficult to divide electricity in subsequent electrical circuits.
It becomes very difficult to measure displacement with high precision and high resolution.

(発明が解決しようとする問題点) 本発明は光源の出力変動や回折格子の製作上の誤差によ
り回折効率が変動しても回折光を互いに干渉させて形成
した干渉縞の明暗を受光手段で計数する際、受光手段か
らの出力値が一定となるようにし、常に高精度な変位測
定が可能な回折方式の変位測定装置の提供を目的とする
(Problems to be Solved by the Invention) The present invention uses a light receiving means to detect the brightness and darkness of interference fringes formed by making diffracted lights interfere with each other, even if the diffraction efficiency fluctuates due to fluctuations in the output of the light source or manufacturing errors in the diffraction grating. An object of the present invention is to provide a diffraction-type displacement measuring device that can always measure displacement with high precision by keeping the output value from a light receiving means constant during counting.

(問題点を解決する為の手段) 被測定物体に連結した回折格子から生ずる回折光を互い
に干渉させて、干渉縞を形成し、該干渉縞の明暗に対応
した干渉信号を前記被測定物体の変位に関する信号とし
て抽出する変位4!す定装置に右いて、前記回折格子か
ら生ずる回折光の強度に基づく参照信号を利用して前記
干渉信号に含まれる誤差信号を補正する補正手段を設け
たことである。
(Means for solving the problem) Diffraction lights generated from a diffraction grating connected to an object to be measured are caused to interfere with each other to form interference fringes, and an interference signal corresponding to the brightness and darkness of the interference fringes is transmitted to the object to be measured. Displacement 4 extracted as a signal related to displacement! The present invention is further characterized in that a correction means is provided in the measurement device for correcting an error signal included in the interference signal using a reference signal based on the intensity of the diffracted light generated from the diffraction grating.

(実施例) 第1図は本発明をリニアエンコーダーに適用したときの
一実施例の光学系の概略図である。同図において1は半
導体レーザー等の可干渉性の光束を放射する単色の光源
、2は矢印21方向に移動している不図示の被測定物体
に連絡している回折格子、31.32はコーナーキュー
ブ、41゜42は昼波長板、51.52は非偏光のビー
ムスプリッタ−161,62は偏光板、71,72゜7
3は受光素子である。
(Embodiment) FIG. 1 is a schematic diagram of an optical system of an embodiment when the present invention is applied to a linear encoder. In the figure, 1 is a monochromatic light source emitting a coherent light beam such as a semiconductor laser, 2 is a diffraction grating connected to an object to be measured (not shown) moving in the direction of arrow 21, and 31 and 32 are corners. Cube, 41° 42 is a daylight wavelength plate, 51.52 is a non-polarizing beam splitter, 161, 62 is a polarizing plate, 71, 72° 7
3 is a light receiving element.

光R1からの光束は回折格子2によって回折される。こ
のとき正と負の次数の回折光は各々コーナーキューブ3
1.32で反射され、%波長板41.42を介して再度
、回折格子2に入射する。ここで再び回折された正と負
の回折光は重ね合わされ、ビームスプリッタ−51に入
射し、反射光束と透過光束の2つの光束に分割される。
The light beam from the light R1 is diffracted by the diffraction grating 2. At this time, the positive and negative order diffracted lights are each
1.32, and enters the diffraction grating 2 again via the % wavelength plate 41.42. Here, the positive and negative diffracted lights diffracted again are superimposed, enter the beam splitter 51, and are split into two light fluxes: a reflected light flux and a transmitted light flux.

このうち透過光束は互いに干渉せず単に強度として受光
素子73で受光され、受光素子73は参照信号を出力す
る。一方反射光束はビームスプリッタ−52で再度反射
光束と透過光束の2つの光束に分割され、各々偏光板6
1.62を介して干渉可能な光束となって受光素子71
.72に入射する。このとき受光素子71.72で受光
される光束は互いに干渉した干渉縞の明暗の強度に相当
するものとなり、受光素子71.72は干渉信号を出力
する。
Of these, the transmitted light beams do not interfere with each other and are simply received as intensities by the light receiving element 73, and the light receiving element 73 outputs a reference signal. On the other hand, the reflected light beam is split again into two light beams, a reflected light beam and a transmitted light beam, by a beam splitter 52, and each is split by a polarizing plate 6.
1.62, it becomes an interferable light beam and reaches the light receiving element 71.
.. 72. At this time, the light beams received by the light receiving elements 71 and 72 correspond to the intensity of the brightness and darkness of interference fringes that interfered with each other, and the light receiving elements 71 and 72 output an interference signal.

即ち回折格子2のピッチをP、正と負の回折光の次数を
mとすれば受光素子71.72は回折格子2の移動MP
 / 4 m毎に1個の正弦波形の信号を出力する。
That is, if the pitch of the diffraction grating 2 is P, and the orders of positive and negative diffracted lights are m, then the light receiving elements 71 and 72 will move MP of the diffraction grating 2.
/ Outputs one sinusoidal waveform signal every 4 m.

本実施例では光源1の直線偏光、%波長板41.42、
偏光板61.62の偏光状態の組み合わせを調整するこ
とにより、受光素子71゜72の出力信号間に90度の
位相差を設は回折格子2の移動方向の判別を行うように
している。
In this embodiment, the linearly polarized light of the light source 1, the % wavelength plate 41.42,
By adjusting the combination of polarization states of the polarizing plates 61 and 62, a phase difference of 90 degrees is established between the output signals of the light receiving elements 71 and 72, so that the moving direction of the diffraction grating 2 can be determined.

尚第1図に示す実施例において受光素子73側と受光素
子71.72側とを入れ替えて構成しても良い。
In the embodiment shown in FIG. 1, the light receiving element 73 side and the light receiving elements 71 and 72 side may be replaced.

次に本実施例における各受光素子71,72゜73から
の出力信号の処理方法について説明する。
Next, a method of processing output signals from each of the light receiving elements 71, 72 and 73 in this embodiment will be explained.

今、光源lの直線偏光を(a  sinw t 、 0
 )(a:振幅、W:周波数)と表わすと、回折格子2
によって回折され、%波長板41.42を通過して、再
度回折格子2によって回折された正と負の回折光me 
l meは各々次式で表わされる。
Now, the linearly polarized light of the light source l is expressed as (a sinw t , 0
) (a: amplitude, W: frequency), the diffraction grating 2
The positive and negative diffracted lights me are diffracted by the % wavelength plate 41, 42, and then diffracted again by the diffraction grating 2.
l me is each expressed by the following formula.

m@−ag/(’i  (sin(wL+45’)  
、  cos(wt+450)   )m6−ag/、
/T (s in (wt+45°+ δ )、cos
 (wt+45°◆ δ) )ここでδは回折格子2の
移動によってもたらされる正負の回折光間の位相差、g
は回折格子2の十m次回折効率である。従って正と一負
の回折光を重ね合わせた光束は、 tntB+  me−、/Tag  sin(wt+4
5’+ δ /2)x  (cosδ/2  、  s
inδ/2)と表わされる。非偏光のビームスプリッタ
−51を通って、受光素子73に入る光束の強度■3は
I 3−IH+ m012=2a2g2sin2(wt
+45°+δ/2)x  (cos2δ/2 + 5i
n2δ/2)・2a2g2 sin’(wt+45°+
δ/2)受光素子73の参照信号の出力E3は E3 =2a2g2・−== (1) となる。
m@-ag/('i (sin(wL+45')
, cos(wt+450) ) m6-ag/,
/T (s in (wt+45°+δ), cos
(wt+45°◆ δ)) Here, δ is the phase difference between the positive and negative diffracted lights brought about by the movement of the diffraction grating 2, g
is the 10mth order diffraction efficiency of the diffraction grating 2. Therefore, the luminous flux obtained by superimposing the positive and negative diffracted lights is tntB+ me-, /Tag sin(wt+4
5'+ δ/2)x (cos δ/2, s
inδ/2). The intensity of the luminous flux passing through the non-polarized beam splitter 51 and entering the light receiving element 73 (3) is I 3 - IH + m012 = 2a2g2sin2 (wt
+45°+δ/2)x (cos2δ/2 + 5i
n2δ/2)・2a2g2 sin'(wt+45°+
δ/2) The output E3 of the reference signal of the light receiving element 73 is E3 =2a2g2·-== (1).

偏光板61の偏光方位角なφ1とすれば、受光素子71
への入射光束は J”iag  sin(wt+45’+δ/2)(co
sφ 、−δ/2)x (cosφ、 、 sinφ1
) その強度工1は I I= 2a2g” cos2(φ1−δ/2) s
in2(wt、+45°+δ/2)と表わされる。受光
素子71の干渉信号の出力E1は E I= 2a”g2cos2(φ1−δ/2)−a2
g2(1+ cos(2φ、−δ) ) ・−−−−(
2)となる。
If the polarization azimuth angle of the polarizing plate 61 is φ1, then the light receiving element 71
The incident light flux is J”iag sin(wt+45′+δ/2)(co
sφ, -δ/2)x (cosφ, , sinφ1
) The strength work 1 is I = 2a2g” cos2(φ1-δ/2) s
It is expressed as in2(wt, +45°+δ/2). The output E1 of the interference signal of the light receiving element 71 is E I = 2a''g2cos2(φ1-δ/2)-a2
g2(1+cos(2φ,-δ)) ・----(
2).

同様にして、受光素子72の干渉信号の出力E2は E2=a2g2(1+  cos(2φ2− δ)  
)  −−−−−(3)となる。
Similarly, the output E2 of the interference signal of the light receiving element 72 is E2=a2g2(1+cos(2φ2−δ)
) -----(3).

偏光板61と62の方位角を互いに450になるように
しておけばφビナ2・45°だから、式(2)と式(3
)から受光素子71と72の出力間には900の位相差
が得られることになる。
If the azimuth angles of the polarizing plates 61 and 62 are set to 450 degrees to each other, φbina is 2.45 degrees, so equations (2) and (3)
), a phase difference of 900 is obtained between the outputs of the light receiving elements 71 and 72.

文武(1)から受光素子73の出力E3は、出力El 
、E2の振幅の項と等しい干渉しない信号であり、光源
1の出力変化a21回折格子2の効率変動g2等に依存
した値となる。
The output E3 of the light receiving element 73 from Bunmu (1) is the output El
, E2, and has a value that depends on the output change a2 of the light source 1, the efficiency change g2 of the diffraction grating 2, etc.

今、光源1の出力値が変動したり、回折格子の製作誤差
等により回折格子の効率が変化し、受光素子71からの
出力信号E1の振幅が誤差信号により第2図(A)の如
く変動したとする。このとき受光素子73からの出力信
号は同図(B)の如くになる。本実施例では出力信号E
1を演算器によりそのときに得られる出力信号E3で割
りで補正し、この値El−El /E3を受光素子71
からの出力信号として求めている。これにより同図(C
)に示すように振幅が一定の出力信号に1を得ている。
Now, the output value of the light source 1 fluctuates, the efficiency of the diffraction grating changes due to manufacturing errors of the diffraction grating, etc., and the amplitude of the output signal E1 from the light receiving element 71 fluctuates as shown in FIG. 2(A) due to the error signal. Suppose we did. At this time, the output signal from the light receiving element 73 becomes as shown in FIG. In this embodiment, the output signal E
1 is divided by the output signal E3 obtained at that time by the arithmetic unit, and this value El - El /E3 is corrected by dividing it by the output signal E3 obtained at that time by the arithmetic unit.
I am looking for the output signal from. As a result, the same figure (C
), 1 is obtained for the output signal with constant amplitude.

そして所定のスライスレベルにより出力信号Elを処理
し、同図(D)に示すような“H”レベルと“L”レベ
ルの安定した矩形波信号を得ている。
Then, the output signal El is processed at a predetermined slice level to obtain a stable rectangular wave signal of "H" level and "L" level as shown in FIG. 4(D).

このように本実施例では受光素子73からの出力信号E
3’を利用することにより、光源1の出力変動や回折格
子の製作誤差等から生ずる誤差信号が受光素子71から
の出力信号E1に含まれても第2図(C) 、 (D)
に示すように常に安定した出力信号を得ている。
In this way, in this embodiment, the output signal E from the light receiving element 73 is
3', even if the output signal E1 from the light-receiving element 71 includes an error signal caused by fluctuations in the output of the light source 1, manufacturing errors in the diffraction grating, etc., as shown in FIGS. 2(C) and 2(D).
As shown in the figure, a stable output signal is always obtained.

そしてこのような安定した信号を得ることにより、後段
における電気分割を容易とし、高精度でしかも高分解能
の測定を可能としている。
Obtaining such a stable signal facilitates electrical division in the subsequent stage and enables highly accurate and high resolution measurements.

受光素子72からの出力E2に対しても出力E1と全く
同様にして安定した出力信号を得ている。
A stable output signal is obtained for the output E2 from the light receiving element 72 in exactly the same manner as for the output E1.

第3図は第2図に示す出力信号を得る為の電気回路のブ
ロック図である。同図において受光素子71.72から
の出力信号El、E2を割算器74.75により受光素
子73からの出力信号E3て割り、出力信号El−El
 /E:] 、]出力百2−E2/E3を求めている。
FIG. 3 is a block diagram of an electric circuit for obtaining the output signal shown in FIG. 2. In the figure, the output signals El and E2 from the light receiving elements 71.72 are divided by the output signal E3 from the light receiving element 73 by the divider 74.75, and the output signal El-El is divided by the output signal E3 from the light receiving element 73.
/E: ] , ] We are looking for the output 102-E2/E3.

そしてこれら出力信号El、E2を後段の計数回路76
に人力して第2図(D)に示すような信号を得ている。
These output signals El and E2 are then sent to the counting circuit 76 at the subsequent stage.
The signal shown in Figure 2 (D) is obtained manually.

第4図は本発明をロータリーエンコーダーに適用したと
きの一実施例の説明図である。第4図において第1図と
同一の機能を果たす部材は同一の番号を付しである。同
図において10はコリメーターレンズ、11は平行ガラ
ス板で、光軸に対して45°傾いて配置されている。1
2は偏光プリズム、13は放射格子、14は受光素子、
15は被検回転物体と連結すべき回転釉、16は非偏光
プリズム、17はシリンドリカルレンズ、81゜82は
反射手段、91.92は反射プリズム、41.42.4
3は%波長板である。第4図においてレーザー等の光源
lから放射された光束はコリメーターレンズ10により
て略平行な光束となる。この光束は平行ガラス板11を
介して偏光プリズム12に入射する。偏光プリズム12
に入射した光束は内部で反射され、貼り合わせ面の偏光
ビームスプリッタ−に導かれて反射光束と透過光束とに
分割される。
FIG. 4 is an explanatory diagram of an embodiment in which the present invention is applied to a rotary encoder. In FIG. 4, members that perform the same functions as in FIG. 1 are given the same numbers. In the figure, 10 is a collimator lens, and 11 is a parallel glass plate, which are arranged at an angle of 45 degrees with respect to the optical axis. 1
2 is a polarizing prism, 13 is a radiation grating, 14 is a light receiving element,
15 is a rotating glaze to be connected to the rotating object to be tested, 16 is a non-polarizing prism, 17 is a cylindrical lens, 81° 82 is a reflecting means, 91.92 is a reflecting prism, 41.42.4
3 is a % wave plate. In FIG. 4, a light beam emitted from a light source l such as a laser is turned into a substantially parallel light beam by a collimator lens 10. In FIG. This light beam enters the polarizing prism 12 via the parallel glass plate 11. Polarizing prism 12
The light beam incident on the light beam is reflected inside, guided to a polarizing beam splitter on the bonding surface, and split into a reflected light beam and a transmitted light beam.

偏光ビームスプリッタ−で2分割された光束のうち反射
光束は、偏光プリズム12で内面反射を繰り返し入射時
と平行な方向へ偏光プリズム12から出射する。そして
、この反射光束は反射プリズム92で反射され放射格子
13上の位置M、へ所定の角度で入射する。ここで、放
射格子13に入射し回折した透過回折光のうち特定次数
の回折光を%波長板42を介して反射手段82により反
射させ、同一光路を逆行させ再度属波長板42を介して
放射格子13上の略同−位置M、に再入射させている。
Of the light beams split into two by the polarizing beam splitter, the reflected light beam undergoes internal reflection repeatedly at the polarizing prism 12 and exits from the polarizing prism 12 in a direction parallel to the direction of incidence. Then, this reflected light beam is reflected by the reflection prism 92 and enters a position M on the radiation grating 13 at a predetermined angle. Here, the diffracted light of a specific order among the transmitted diffracted light that is incident on the radiation grating 13 and diffracted is reflected by the reflecting means 82 via the % wavelength plate 42, travels the same optical path backwards, and is emitted again via the % wavelength plate 42. The light is re-injected at approximately the same position M on the grating 13.

従って、放射格子13により再回折された特定次数の回
折光を%波長板42を往復させることにより入射したと
きと90°偏光方位の異なる直線偏光とし反射プリズム
92に指向する。
Therefore, the diffracted light of a specific order re-diffracted by the radiation grating 13 is made into linearly polarized light having a polarization direction 90° different from that when it was incident by reciprocating through the % wavelength plate 42 and is directed toward the reflecting prism 92.

反射プリズム92で反射された回折光は元の光路を逆行
して再度偏光プリズム12へ入射し、偏光ビームスプリ
ッタ−へ達する。
The diffracted light reflected by the reflecting prism 92 travels back along its original optical path, enters the polarizing prism 12 again, and reaches the polarizing beam splitter.

本実施例では偏光プリズム12の偏光ビームスプリッタ
−から反射手段82に至る特定次数の回折光の往復光路
を同一としている。
In this embodiment, the round trip optical path of the diffracted light of a specific order from the polarizing beam splitter of the polarizing prism 12 to the reflecting means 82 is the same.

又反射手段82.81としては、一般の平面鏡、コーナ
ーキューブ等の錆密光学素子を用いたり、反射鏡を集光
レンズの略焦点面上に配置し、集光レンズに平行に入射
してきた特定次数の回折光のみをマスクの開口部を通過
させ反射鏡で反射させた後、元の光路を逆戻りする構成
にし、そして、その他の次数の回折光をマスクにより遮
光する構成でも良い。反射手段としては、この他例えば
キャッツアイ光学系等どのような構成のものでも良い。
As the reflecting means 82.81, a rust-tight optical element such as a general plane mirror or a corner cube may be used, or a reflecting mirror may be placed approximately on the focal plane of the condensing lens, so that the specific light incident parallel to the condensing lens may be used. A configuration may be adopted in which only the diffracted light of the order passes through the opening of the mask, is reflected by the reflecting mirror, and then returns to the original optical path, and the diffracted light of the other orders is blocked by the mask. The reflecting means may have any other configuration, such as a cat's eye optical system.

このような光学系を用いれば例えばレーザーの発振波長
が変化し1回折角が4.多少変化しても略同し光路で戻
すことができる特徴がある。
If such an optical system is used, for example, the oscillation wavelength of the laser will change, and the angle of diffraction will change to 4. It has the characteristic that even if there is a slight change, it can be returned to approximately the same optical path.

第4図に戻り偏光ビームスプリッタ−で分割された2つ
の光束のうち透過した光束は偏光プリズム12で内面反
射を繰り返した後、偏光プリズム12から出射して反射
プリズム91を介して、放射格子13上の位置M1と回
転#115に対して略点対称の位置M2に入射させてい
る。そして放射格子13に入射し回折した透過回折光の
うち特定次数の回折光な01述の反射手段82と同様の
反射手段81により同一光路を逆行させて、電波長板4
1を介して放射格子13の略同−位置M2に再回折させ
ている。従って、放射格子13より再回折された特定次
数の回折光が入射したときとは900偏光方位の異なる
直線偏光になる様反射プリズム91に再入射させている
Returning to FIG. 4, among the two beams split by the polarizing beam splitter, the transmitted beam repeatedly undergoes internal reflection at the polarizing prism 12, then exits from the polarizing prism 12, passes through the reflecting prism 91, and passes through the radiation grating 13. The light is made incident at a position M2 that is approximately symmetrical with respect to the upper position M1 and rotation #115. Then, out of the transmitted diffracted light that is incident on the radiation grating 13 and diffracted, the diffracted light of a specific order is reversed along the same optical path by a reflecting means 81 similar to the reflecting means 82 described in 01.
1 to substantially the same position M2 on the radiation grating 13. Therefore, the diffracted light of the specific order re-diffracted by the radiation grating 13 is made to re-enter the reflecting prism 91 so as to become linearly polarized light with a polarization direction different by 900 from when it was incident.

反射プリズム91で反射した回折光は元の光路を逆行し
て再度偏光プリズム12へ入射し、偏光ビームスプリッ
タ−へ達する。
The diffracted light reflected by the reflecting prism 91 travels back along its original optical path, enters the polarizing prism 12 again, and reaches the polarizing beam splitter.

このとき透過光束も断連の反射光束と同様に偏光ビーム
スプリッタ−から反射手段81に至る特定次数の回折光
の往復光路を同一としている。そして反射手段82を介
し入射してきた回折光と重なり合わせた後、偏光プリズ
ム】2から出射させ、電波長板43を介し円偏光とし、
非偏光プリズム16へ入射させる。
At this time, the transmitted light beam also has the same round-trip optical path of the diffracted light of a specific order from the polarizing beam splitter to the reflecting means 81 as in the case of the discontinuously reflected light beam. Then, after being superimposed with the diffracted light that has entered through the reflection means 82, it is emitted from the polarizing prism 2, and is converted into circularly polarized light through the electric wave plate 43.
The light is made incident on the non-polarizing prism 16.

非偏光プリズム16に入射した光束のうち一部は透過し
て受光素子73に入り、干渉しない参照信号を得る。非
偏光プリズム16には非偏光ビームスプリッタ−が2面
設けられており、ここで反射された光束は、互いに偏光
方位を45°ずらした偏光板61.62を介して、受光
素子71.72に入射して干渉信号を得る。前述した第
1図の実施例と同様に受光素子?1,72.73の後段
に第3図の如き電気回路を設けることにより、振幅の安
定した信号を得ることが出来る。
A portion of the light beam incident on the non-polarizing prism 16 is transmitted and enters the light receiving element 73 to obtain a reference signal that does not interfere. The non-polarizing prism 16 is provided with two non-polarizing beam splitters, and the light beam reflected here is sent to the light receiving element 71, 72 via polarizing plates 61, 62 whose polarization directions are shifted by 45 degrees from each other. incident and obtain an interference signal. The light receiving element is similar to the embodiment shown in FIG. By providing an electric circuit as shown in FIG. 3 after 1, 72, and 73, a signal with stable amplitude can be obtained.

(発明の効果) 本発明によれば前述のように干渉しない光束による参照
信号を利用することにより光源の出力変動や回折格子の
回折効率の変動等があっても、干渉縞の明暗を計数する
際の干渉信号が不安定にならず一定とすることができる
為、常に高精度な測定が可能の変位測定装置を達成する
ことができる。
(Effects of the Invention) According to the present invention, as described above, by using a reference signal based on a non-interfering light beam, the brightness and darkness of interference fringes can be counted even when there are fluctuations in the output of the light source, fluctuations in the diffraction efficiency of the diffraction grating, etc. Since the interference signal at the time of displacement does not become unstable and can be kept constant, it is possible to achieve a displacement measuring device that can always perform highly accurate measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系の概略図、第2図は
第1図の各受光素子からの出力信号の処理方法の説明図
、第3図は第1図の各受光素子からの出力信号の処理を
示す電気回路のブロック図、第4図は本発明をロータリ
ーエンコーダーに適用したときの一実施例の説明図、第
5図は従来の変位測定装置から得られる出力信号の説明
図である。図中1は光源、2は回折格子、31.32は
コーナーキューブ、41.42は%波長板、51.52
はビームスプリッタ−161,62は偏光板、71,7
2.73は受光素子である。 特許出願人  キャノン株式会社 気  1   回 第  2  面 第  3  回
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of a method of processing output signals from each light-receiving element in FIG. 1, and FIG. 3 is a diagram showing each light-receiving element in FIG. 1. 4 is an explanatory diagram of an embodiment of the present invention applied to a rotary encoder, and FIG. 5 is a block diagram of an electric circuit showing processing of output signals obtained from a conventional displacement measuring device. It is an explanatory diagram. In the figure, 1 is a light source, 2 is a diffraction grating, 31.32 is a corner cube, 41.42 is a % wave plate, 51.52
is a beam splitter, 161, 62 is a polarizing plate, 71, 7
2.73 is a light receiving element. Patent applicant Canon Co., Ltd. 1st page 2nd page 3rd session

Claims (2)

【特許請求の範囲】[Claims] (1)被測定物体に連結した回折格子から生ずる回折光
を互いに干渉させて、干渉縞を形成し、該干渉縞の明暗
に対応した干渉信号を前記被測定物体の変位に関する信
号として抽出する変位測定装置において、前記回折格子
から生ずる回折光の強度に基づく参照信号を利用して前
記干渉信号に含まれる誤差信号を補正する補正手段を設
けたことを特徴とする変位測定装置。
(1) Displacement in which diffracted lights generated from a diffraction grating connected to an object to be measured interfere with each other to form interference fringes, and an interference signal corresponding to the brightness and darkness of the interference fringes is extracted as a signal related to the displacement of the object to be measured. A displacement measuring device characterized in that the measuring device further comprises a correction means for correcting an error signal included in the interference signal using a reference signal based on the intensity of diffracted light generated from the diffraction grating.
(2)前記参照信号と前記干渉信号を前記回折格子の同
一位置から生ずる回折光を利用して得たことを特徴とす
る特許請求の範囲第1項記載の変位測定装置。
(2) The displacement measuring device according to claim 1, wherein the reference signal and the interference signal are obtained using diffracted light generated from the same position of the diffraction grating.
JP25993886A 1986-10-31 1986-10-31 Displacement measuring instrument Pending JPS63115012A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25993886A JPS63115012A (en) 1986-10-31 1986-10-31 Displacement measuring instrument
GB8725143A GB2201509B (en) 1986-10-31 1987-10-27 Displacement measuring apparatus capable of forming an output signal of substantially constant amplitude
DE19873736704 DE3736704C2 (en) 1986-10-31 1987-10-29 Adjustment measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25993886A JPS63115012A (en) 1986-10-31 1986-10-31 Displacement measuring instrument

Publications (1)

Publication Number Publication Date
JPS63115012A true JPS63115012A (en) 1988-05-19

Family

ID=17341009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25993886A Pending JPS63115012A (en) 1986-10-31 1986-10-31 Displacement measuring instrument

Country Status (3)

Country Link
JP (1) JPS63115012A (en)
DE (1) DE3736704C2 (en)
GB (1) GB2201509B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119284A (en) * 1990-10-18 1993-05-18 Dr Johannes Heidenhain Gmbh Polarization device
JP2011122946A (en) * 2009-12-10 2011-06-23 Canon Inc Displacement measuring device, exposure device, and precision machining apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035507A (en) * 1988-12-21 1991-07-30 Mitutoyo Corporation Grating-interference type displacement meter apparatus
DE3911880A1 (en) * 1989-04-11 1990-10-18 Radex Heraklith METHOD FOR PRODUCING PERICLAS CRYSTALS
US5104225A (en) * 1991-01-25 1992-04-14 Mitutoyo Corporation Position detector and method of measuring position
GB2256476B (en) * 1991-05-30 1995-09-27 Rank Taylor Hobson Ltd Positional measurement
DE4318386C2 (en) * 1993-06-01 2002-09-19 Rohm Co Ltd Optical encoder device for detecting the movement of a movable element
DE10056605A1 (en) 2000-11-15 2002-05-23 Kostal Leopold Gmbh & Co Kg Method for signal evaluation of an opto-electronic path or angle measurement device, especially for determination of a vehicle steering column position, in which adjustments can be made for impaired sensors or damaged code wheel
DE10056604A1 (en) 2000-11-15 2002-05-23 Kostal Leopold Gmbh & Co Kg Method for signal evaluation of an opto-electronic path or angle measurement device, especially for determination of a motor vehicle steering angle, in which the effects of impaired sensors or a damaged code wheel are compensated
DE10107582C1 (en) * 2001-02-17 2002-10-10 Kostal Leopold Gmbh & Co Kg Optoelectronic angle sensor for vehicle steering, has light barrier transmitter radiation intensity in asymptotic region of intensity-switching point curve giving switch change for off-center beam interruption
DE102010063253A1 (en) * 2010-12-16 2012-06-21 Dr. Johannes Heidenhain Gmbh Optical position measuring device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH444964A (en) * 1965-10-02 1967-10-15 Oerlikon Buehrle Holding Ag Arrangement to compensate for variable interfering influences on a radiation-electrical measuring or control path
DE2003492A1 (en) * 1970-01-27 1971-08-12 Leitz Ernst Gmbh Measuring method for step encoders for measuring lengths or angles as well as arrangements for carrying out this measuring method
JPS57139607A (en) * 1981-02-23 1982-08-28 Hitachi Ltd Position measuring equipment
DE3316144A1 (en) * 1982-05-04 1983-11-10 Canon K.K., Tokyo Method and device for measuring the extent of a movement
US4629886A (en) * 1983-03-23 1986-12-16 Yokogawa Hokushin Electric Corporation High resolution digital diffraction grating scale encoder
JPS59173709A (en) * 1983-03-23 1984-10-01 Yokogawa Hokushin Electric Corp Physical quantity measuring system
JPH0624405A (en) * 1991-12-06 1994-02-01 Kurobaa Shokuhin:Kk Method and device for inserting food in packing bag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119284A (en) * 1990-10-18 1993-05-18 Dr Johannes Heidenhain Gmbh Polarization device
JP2011122946A (en) * 2009-12-10 2011-06-23 Canon Inc Displacement measuring device, exposure device, and precision machining apparatus
US8749761B2 (en) 2009-12-10 2014-06-10 Canon Kabushiki Kaisha Displacement measurement device, exposure apparatus, and working device

Also Published As

Publication number Publication date
GB2201509B (en) 1990-11-14
GB8725143D0 (en) 1987-12-02
GB2201509A (en) 1988-09-01
DE3736704C2 (en) 1995-11-23
DE3736704A1 (en) 1988-05-11

Similar Documents

Publication Publication Date Title
US8749761B2 (en) Displacement measurement device, exposure apparatus, and working device
US4979826A (en) Displacement measuring apparatus
JP6076589B2 (en) Displacement detector
KR101876816B1 (en) Displacement detecting device
JPH04270920A (en) Position detector and position detecting method
JPH073344B2 (en) Encoder
JP2629948B2 (en) encoder
JPH0285715A (en) Encoder
US6956654B2 (en) Displacement measuring device with interference grating
JPS63115012A (en) Displacement measuring instrument
JP4365927B2 (en) Interference measuring device and grating interference encoder
JPH01284715A (en) Encoder
JPS58191907A (en) Method for measuring extent of movement
EP2955490B1 (en) Displacement detecting device
JP2014098619A (en) Linear encoder and method for processing workpiece
JPS63115011A (en) Displacement measuring instrument
JPH02298804A (en) Interferometer
JPH0462003B2 (en)
JPH0462004B2 (en)
JPH07117426B2 (en) Optical encoder
JPH05126603A (en) Grating interference measuring device
JPH05107042A (en) Method and apparatus for detecting position using diffraction grating
JPS63115010A (en) Displacement measuring instrument
JPS6097215A (en) Length measuring device
JPH0285717A (en) Encoder