JPH0285717A - Encoder - Google Patents
EncoderInfo
- Publication number
- JPH0285717A JPH0285717A JP23796988A JP23796988A JPH0285717A JP H0285717 A JPH0285717 A JP H0285717A JP 23796988 A JP23796988 A JP 23796988A JP 23796988 A JP23796988 A JP 23796988A JP H0285717 A JPH0285717 A JP H0285717A
- Authority
- JP
- Japan
- Prior art keywords
- light
- diffracted
- diffraction grating
- made incident
- beam splitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002834 transmittance Methods 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 230000001427 coherent effect Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 abstract description 10
- 230000004907 flux Effects 0.000 abstract 4
- 230000005855 radiation Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Landscapes
- Optical Transform (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はエンコーダに関し、特に透過部若しくは反射部
のスリットを複数個設けた回折格子を被検物体に取付け
、該回折格子に可干渉性の光束を入射させ、該回折格子
・から生ずる回折光を利用して該被検物体に関するアブ
ソリュート信号とインクリメンタル信号を同時に得るよ
うにしたエンコータに関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention relates to an encoder, and in particular to an encoder, in which a diffraction grating having a plurality of slits in a transmitting section or a reflecting section is attached to an object to be measured, and a coherent The present invention relates to an encoder that allows a beam of light to enter and simultaneously obtains an absolute signal and an incremental signal regarding the object to be inspected using diffracted light generated from the diffraction grating.
〈従来の技術)
従来より工作機械やロボット等の分野においては被検物
体の速度や変位量を高精度に測定する装置としてエンコ
ーダが広く利用されている。<Prior Art> Encoders have been widely used in the fields of machine tools, robots, etc. as devices for measuring the speed and displacement of objects under test with high precision.
特に最近は変位量の絶対位置を検出することのできるア
ブソリュート型と分解能の高いインクリメンタル型とを
組み合わせた高精度のエンコーダの要望が高まっている
。In particular, recently there has been an increasing demand for high-precision encoders that combine an absolute type that can detect the absolute position of displacement and an incremental type that has high resolution.
従来は例えばインクリメンタル型のエンコーダとポテン
ショメータとを組み合わせて構成した装置を用いていた
。しかしながらこの装置は構成が複雑となり又大型化し
てくるという欠点があった。Conventionally, a device configured by combining, for example, an incremental encoder and a potentiometer has been used. However, this device has the drawbacks of a complicated structure and an increase in size.
又アブソリュート型のエンコーダにより高分解能の変位
検出を行うとするとエンコーダ自体の形状が大型化し、
更にエンコーダ内部の構成が複雑化してくるという問題
点があった。Also, if high-resolution displacement detection is to be performed using an absolute encoder, the shape of the encoder itself will become larger.
Furthermore, there is a problem in that the internal configuration of the encoder becomes complicated.
(発明が解決しようとする問題点)
本発明は被検物体に設ける回折格子のスリット形状を適
切に設定し、高分解能のインクリメンタル型の検出機構
にアブソリュート型の検出機構を効果的に盛り込むこと
によって2つの機能を同一の検出機構から容易に得られ
るようにした小型でしかも簡単な構成のエンコーダの提
供を目的とする。(Problems to be Solved by the Invention) The present invention is achieved by appropriately setting the slit shape of a diffraction grating provided on a test object and effectively incorporating an absolute detection mechanism into a high-resolution incremental detection mechanism. The purpose of the present invention is to provide an encoder that is small and has a simple configuration, in which two functions can be easily obtained from the same detection mechanism.
(問題点を解決するための手段)
可干渉性の光束を被検物体に連結した複数のスリットを
周上に設けた回折格子に入射させ、該回折格子からの特
定字数の回折光を重ね合わせて干渉縞を形成し、該干渉
縞の強度変化を検出することによって該被検回転物体の
変位状態を求める際、前記回折格子の複数のスリットの
透過率若しくは反射率を正弦波状に変化させて構成した
ことである。(Means for solving the problem) A coherent light beam is made incident on a diffraction grating provided on the circumference with multiple slits connected to the object to be tested, and a specific number of characters of diffracted light from the diffraction grating are superimposed. When determining the displacement state of the rotating object to be detected by forming interference fringes and detecting changes in the intensity of the interference fringes, the transmittance or reflectance of the plurality of slits of the diffraction grating is changed in a sinusoidal manner. This is what we have configured.
(実施例) 第1図は本発明の一実施例の光学系の概略図である。(Example) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention.
本実施例ではレーザー1より放射された光束をコリメー
ターレンズ2によって平行光束とし、ビームスプリッタ
31に入射させ、略等光量の反コC
射光束と透過光束の2つの光束に分割している。In this embodiment, the light beam emitted from the laser 1 is made into a parallel light beam by the collimator lens 2, and is made incident on the beam splitter 31, where it is split into two light beams, an anti-column incident light beam and a transmitted light beam, each having approximately the same amount of light.
このうち反射した光束は不図示の被検回転物体と連結し
た円板上の放射状の透過部と反射部の組木数N木のスリ
ットか同一の角度ピッチで(格子ピッチ)で設けられて
いる放射状の回折格子5上の位置M、に入射させている
。Among these, the reflected light beam is transmitted through slits with the same angular pitch (lattice pitch) in the radial transmitting part and the reflecting part on a disc connected to the rotating object to be tested (not shown). The light is incident on a position M on the radial diffraction grating 5.
このとき透過部の透過率が放射格子5の円周上で第2図
に示すように正弦波状に変化するように設定している。At this time, the transmittance of the transmitting portion is set so as to vary sinusoidally on the circumference of the radiation grating 5 as shown in FIG.
放射格子5上の位置M1に入射し、回折した透過回折光
のうち特定次数の回折光、例えば1次回折光7Iを反射
鏡42で反射させ、1/4波長板101を介してビーム
スプリッタ−3□に導光している。Of the transmitted diffracted light that enters the position M1 on the radiation grating 5 and is diffracted, the diffracted light of a specific order, for example, the first-order diffracted light 7I, is reflected by the reflecting mirror 42 and sent to the beam splitter 3 via the 1/4 wavelength plate 101. Light is guided to □.
又ビームスプリッタ−31で分割された2つの光束のう
ち透過した光束は反射鏡4重で反射させた後、放射格子
5上の位置M、と回転軸6に対して略点対称の位置M2
に入射させている。そして放射格子5の位置M2に入射
し回折した透過回折光のうち特定次数の回折光、例えば
1次回折光72を1/4波長板102を介してビームス
プリッタ−32に導光している。In addition, the transmitted light beam out of the two light beams split by the beam splitter 31 is reflected by four reflecting mirrors, and then transferred to a position M on the radiation grating 5 and a position M2 that is approximately symmetrical with respect to the rotation axis 6.
It is input to. Of the transmitted diffracted light incident on the position M2 of the radiation grating 5 and diffracted, diffracted light of a specific order, for example, the first-order diffracted light 72, is guided to the beam splitter 32 via the 1/4 wavelength plate 102.
2つ(7)1/4波長板10..10.はレーザー1の
直線偏光に対して互いに±45°の方位に設定されてい
る。Two (7) quarter wave plates10. .. 10. are set at azimuths of ±45° relative to the linearly polarized light of the laser 1.
そしてビームスプリッタ−32で2つの回折光71.7
□を重ね合わした後、2つの光束に分割し、各々の光束
を互いの偏光方位を45度傾けて配置した偏光板111
,112を介し双方の光束に90度の位相差を付けた直
線偏光として各々の受光手段12..122に入射させ
ている。Then, the beam splitter 32 splits the two diffracted lights 71.7
A polarizing plate 111 that divides the light beams into two light beams and arranges the polarization direction of each light beam at an angle of 45 degrees.
, 112 to each light receiving means 12., as linearly polarized light with a phase difference of 90 degrees. .. 122.
そして受光手段12..122により2光束の干渉縞の
強度を検出している。and light receiving means 12. .. 122 detects the intensity of the interference fringes of the two beams.
これにより被検回転物体の回転角度を測定している。そ
して1/4波長板101,102そして偏光板1.1.
.112を用いることにより被検回転物体の回転方向も
同時に検出できるようにしている。This measures the rotation angle of the rotating object to be tested. and quarter wavelength plates 101, 102 and polarizing plates 1.1.
.. 112, the rotational direction of the rotating object to be tested can be detected at the same time.
本実施例においては、放射格子5の回転中心に対して点
対、称な位置M、、M2からの回折光を干渉させるよう
にし、これにより放射格子5を回転軸6に取り付ける際
の取付は偏心による角度検出誤差を除去している。In this embodiment, the diffracted lights from the positions M, , M2 that are symmetrical to the center of rotation of the radiation grating 5 are caused to interfere with each other. Angle detection errors due to eccentricity are removed.
次に本−実施例における被検回転物体の回転角度の検出
方法について説明する。Next, a method for detecting the rotation angle of the rotating object to be tested in this embodiment will be explained.
1次回折光束7..72の位相は、放射格子5が、1ピ
ッチ分回転すると、2πだけ増減する。1st order diffracted light flux7. .. The phase of 72 increases or decreases by 2π when the radiation grating 5 rotates by one pitch.
従って、受光素子121,122からの出力I(θ)は
、次式のようになる。Therefore, the output I(θ) from the light receiving elements 121 and 122 is expressed by the following equation.
T(θ)・1印(6?)・−i(<6 o−Ne )。T(θ)・1 mark (6?)・-i (<6 o-Ne ).
1て「1コ。−1(φ・−90)1・/2・[T(θ)
÷ T(θ+ π)
÷2FT百−■]四7肩cos2Nθ]/2−A+f工
で1可−” e cos2Nθ・・・・・・・−(1
)
(1)式のI(θンは第3図に示すように360”/2
Nを一周期とする正弦波形であるか、その振幅が A’
−B’cos’ eで変化する。しかし、放射格子5
の点対称な2点M、、M2からの回折光を干渉させてい
るため、受光素子12I。1 ``1 piece.-1(φ・-90)1・/2・[T(θ)
÷ T (θ + π) ÷ 2 FT 100 - ■] 47 shoulders cos 2 N θ] / 2 - A + f engineering allows 1 - " e cos 2 N θ ...... - (1
) In equation (1), I(θn is 360”/2 as shown in Figure 3.
Is it a sine waveform with one period of N, or its amplitude is A'
-B'cos' changes with e. However, the radiation grating 5
The light receiving element 12I interferes with the diffracted light from the two symmetrical points M, , M2.
12□の出力■(θ)の直流成分Aは、角度依存性かな
く、変化しない。これは、後段の信号処理回路において
2値化するときや、更に電気分割してエンコータの角度
分解能を向上させるときに、処理か容易になり、安定し
た出力が得られることになる。The DC component A of the output ■(θ) of 12□ has no angle dependence and does not change. This facilitates processing when binarizing in a subsequent signal processing circuit or when improving the angular resolution of the encoder by electrically dividing the signal, resulting in a stable output.
本実施例では、このように受光素子121゜122から
の出力信号■(θ(パ)即ちインクリメンタル信号を用
いて被検回転物体の回転状態を検出している。In this embodiment, the rotational state of the rotating object to be tested is detected using the output signals (θ), that is, the incremental signals from the light receiving elements 121 and 122.
一方位置M1からの回折光のうち0次回折光8を受光素
子9に入射させている。受光素子9からは放射格子5の
回転に伴って第2図に示すような出力信号T(θ)を得
ている。On the other hand, the 0th order diffracted light 8 of the diffracted light from the position M1 is made incident on the light receiving element 9. An output signal T(θ) as shown in FIG. 2 is obtained from the light receiving element 9 as the radiation grating 5 rotates.
本実施例ではこのときの出力信号T(θ)即ちアブソリ
ュート信号を用いて放射格子5の回転角の絶対位置θを
求めている。In this embodiment, the absolute position θ of the rotation angle of the radiation grating 5 is determined using the output signal T(θ), that is, the absolute signal at this time.
本実施例では放射格子5の透過部の透過率を正弦波状に
変化させて、アブソリュート信号を得る方法について示
したがアブソリュート信号を、例えば第4図に示すよう
に透過部及び不透過部のスリットの長さを可変にした放
射格子より得ても良く、又第5図に示すように透過部あ
るいは不透過部のスリット幅を可変にした放射格子から
得ても良い。In this embodiment, a method of obtaining an absolute signal by changing the transmittance of the transmitting part of the radiation grating 5 in a sinusoidal manner was shown. It may be obtained from a radiation grating having a variable length, or it may be obtained from a radiation grating having a variable slit width in a transparent or non-transparent portion as shown in FIG.
又、インクリメンタル信号I(θ)とアブソリュート信
号T(θ)を後段の処理回路で処理し、アブソリュート
信号T(θ)の補間をインクリメンタル13号■(θ)
で行なうことにより高分解能のアブソリュート信号を形
成することができる。In addition, the incremental signal I (θ) and the absolute signal T (θ) are processed by the subsequent processing circuit, and the interpolation of the absolute signal T (θ) is performed using the incremental signal No. 13 (θ).
By doing so, a high-resolution absolute signal can be generated.
第1図に示す実施例では、放射格子5の透過光を用いて
いる。か、反射光を用いても全く同じ効果が得られるこ
とは言うまでもない。In the embodiment shown in FIG. 1, the light transmitted through the radiation grating 5 is used. It goes without saying that the same effect can be obtained even if reflected light is used.
絶対位置検出として第1図では0次回先光束8を用いて
いるか、これは、インクリメンタル用の1次回折光束7
1,7□以外の光束ならどの次数の回折光を用いても良
い。た°とえば、第1図の1次回折光7□と対称の1次
回折光束8′を用いても良い。In FIG. 1, the 0th-order destination beam 8 is used for absolute position detection, or is this the 1st-order diffracted beam 7 for incremental use?
Diffracted light of any order may be used as long as it is a light beam other than 1,7□. For example, a first-order diffracted light beam 8' that is symmetrical to the first-order diffracted light beam 7□ in FIG. 1 may be used.
第6図は本発明のさらに別の実施例で、リニアエンコー
ダに適用した例である。第6図において13は不図示の
被検移動物体に連結した回折格子である。回折格子13
は、第1図の放射格子5と同じく、その透過率が移動量
Xに対して正弦波状に変化するように設定されている。FIG. 6 shows yet another embodiment of the present invention, which is an example applied to a linear encoder. In FIG. 6, 13 is a diffraction grating connected to a moving object to be detected (not shown). Diffraction grating 13
is set so that its transmittance varies sinusoidally with respect to the amount of movement X, similar to the radiation grating 5 in FIG.
レーザー1から出射した光束はビームスプリッタ−3に
よフて透過光束と反射光束に分割され、反射鏡4.。The light beam emitted from the laser 1 is split into a transmitted light beam and a reflected light beam by a beam splitter 3, and then sent to a reflecting mirror 4. .
42を介して回折格子13を照射する。このとき入射角
θいとして、θffi〜s i n−’ (mλ/p)
(m:整数、λ:レーザー1の波長、p:回折格子13
のピッチ)となるように反射鏡43,4゜を設定すれば
、±m次の回折光がほぼ垂直に射出される。そして、射
出された±mm次回先光反射鏡43によって回折格子1
3に再照射すれば、再び±m次回折光束が発生し、これ
ら±mm次回回折光束、元の光路を戻り、反射tJ14
+ 、 42、ビームスプリッタ−3を介して、干渉
し合って受光素子12に入射する。これにより、インク
リメンタル信号が得られる。第6図の実施例においては
、±m次の回折を2回受けた光を干渉させているので、
回折格子13が、1格子ピツチpだけ移動すると、受光
素子12からは4m周期の正弦波信号、つまりインクリ
メンタル信号が得られる。The diffraction grating 13 is irradiated via 42. At this time, assuming the incident angle θ, θffi~s i n-' (mλ/p)
(m: integer, λ: wavelength of laser 1, p: diffraction grating 13
If the reflecting mirrors 43 and 4 degrees are set so as to have a pitch of .±.m, the diffracted light of order ±m is emitted almost perpendicularly. Then, the diffraction grating 1 is
3, a ±m-order diffracted beam is generated again, and these ±mm-order diffracted beams return to the original optical path and are reflected at tJ14.
+, 42, interfere with each other and enter the light receiving element 12 via the beam splitter 3. This results in an incremental signal. In the embodiment shown in FIG. 6, since the light that has undergone ±m-order diffraction twice is caused to interfere,
When the diffraction grating 13 moves by one grating pitch p, a 4 m period sine wave signal, that is, an incremental signal, is obtained from the light receiving element 12.
一方、第6図において回折格子13を透過した0次回折
光は受光素子9に入射し、第1図の実施例と同じく受光
素子9の出力信号によってアブソリュート信号が得られ
る。On the other hand, in FIG. 6, the 0th order diffracted light transmitted through the diffraction grating 13 enters the light receiving element 9, and an absolute signal is obtained from the output signal of the light receiving element 9, as in the embodiment shown in FIG.
(発明の効果)
本発明によれば前述の如く回折格子上のスリット形状を
特定することにより高分解能のインクリメンタル型の検
出機構にアブソリュート型の検出機構をインクリメンタ
ル信号の精度を低下させずに効果的に盛り込むことがで
き、インクリメンタル信号とアブソリュート信号の2つ
の信号が同時に同一装置より容易に得ることのできる簡
易な構成のエンコーダを達成することができる。(Effects of the Invention) According to the present invention, by specifying the slit shape on the diffraction grating as described above, it is possible to effectively add an absolute type detection mechanism to a high-resolution incremental type detection mechanism without reducing the accuracy of the incremental signal. It is possible to achieve an encoder with a simple configuration in which two signals, an incremental signal and an absolute signal, can be easily obtained from the same device at the same time.
第1図は本発明の一実施例の光学系の概略図、第2図は
第1図の放射格子の透過率とアブソリュート用の受光素
子から得られる出力信号の説明図、第3図は第1図のイ
ンクリメンタル用の受光素子から得られる出力信号の説
明図、第4、第5図は本発明に係わる放射格子の他の一
実施例の説明図である。第6図はリニアエンコーダに本
発明を適用した実施例である。
図中1はレーザー、2はコリメーターレンズ、31.3
□はビームスプリッタ−141,4□は反射鏡、5は放
射格子、6は回転軸、7..7゜は1次回折光、8は0
次回折光、9,12.。
12□は受光素子、10..102は1/4波長板、1
1.1.112は偏光板である。
特許出願人 キャノン株式会社
兎 1 回
第 2 聞
第 3 図
痣 4 図
第 5 回Fig. 1 is a schematic diagram of an optical system according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the transmittance of the radiation grating shown in Fig. 1 and the output signal obtained from the absolute light receiving element, and Fig. FIG. 1 is an explanatory diagram of an output signal obtained from an incremental light receiving element, and FIGS. 4 and 5 are explanatory diagrams of another embodiment of the radiation grating according to the present invention. FIG. 6 shows an embodiment in which the present invention is applied to a linear encoder. In the figure, 1 is the laser, 2 is the collimator lens, 31.3
□ is a beam splitter 141, 4□ is a reflecting mirror, 5 is a radiation grating, 6 is a rotation axis, 7. .. 7° is 1st order diffracted light, 8 is 0
Next diffraction light, 9, 12. . 12□ is a light receiving element; 10. .. 102 is a quarter wavelength plate, 1
1.1.112 is a polarizing plate. Patent applicant: Canon Co., Ltd. Rabbit 1st 2nd interview 3rd drawing 4th drawing 5th
Claims (2)
ットを設けた回折格子に入射させ、該回折格子からの特
定次数の回折光を重ね合わせて干渉縞を形成し、該干渉
縞の強度変化を検出することによって該被検物体の変位
量を求める際、前期回折格子の複数のスリットの透過率
若しくは反射率を正弦波状に変化させて構成したことを
特徴とするエンコーダ。(1) A coherent light beam is made incident on a diffraction grating with multiple slits connected to the object to be measured, and the diffracted light of a specific order from the diffraction grating is superimposed to form interference fringes. 1. An encoder characterized in that the transmittance or reflectance of a plurality of slits of the diffraction grating is changed in a sinusoidal manner when determining the displacement amount of the object to be tested by detecting a change in intensity of the encoder.
形成されており、前記可干渉性の光束を前記回折格子の
、前記被検回転物体の回転中心に対して略点対称な複数
の位置に入射させ、これらの位置からの回折光を利用し
て前記被検物体の回転状態を求めたことを特徴とする特
許請求の範囲第1項記載のエンコーダ。(2) The diffraction grating is formed along the rotation direction of the rotating object to be tested, and the coherent light beam is divided into a plurality of points of the diffraction grating that are substantially point symmetrical with respect to the rotation center of the rotating object to be tested. 2. The encoder according to claim 1, wherein the rotational state of the object to be inspected is determined using diffracted light from these positions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23796988A JPH0285717A (en) | 1988-09-22 | 1988-09-22 | Encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23796988A JPH0285717A (en) | 1988-09-22 | 1988-09-22 | Encoder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0285717A true JPH0285717A (en) | 1990-03-27 |
Family
ID=17023152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23796988A Pending JPH0285717A (en) | 1988-09-22 | 1988-09-22 | Encoder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0285717A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006170788A (en) * | 2004-12-15 | 2006-06-29 | Canon Inc | Optical encoder |
JP2006254550A (en) * | 2005-03-09 | 2006-09-21 | Ricoh Co Ltd | Drive control device and image forming apparatus |
JP2012127818A (en) * | 2010-12-15 | 2012-07-05 | Canon Inc | Absolute rotary encoder |
JP2020169883A (en) * | 2019-04-03 | 2020-10-15 | 株式会社ミツトヨ | Photoelectric encoder |
-
1988
- 1988-09-22 JP JP23796988A patent/JPH0285717A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006170788A (en) * | 2004-12-15 | 2006-06-29 | Canon Inc | Optical encoder |
JP2006254550A (en) * | 2005-03-09 | 2006-09-21 | Ricoh Co Ltd | Drive control device and image forming apparatus |
JP4676790B2 (en) * | 2005-03-09 | 2011-04-27 | 株式会社リコー | Drive control apparatus and image forming apparatus |
JP2012127818A (en) * | 2010-12-15 | 2012-07-05 | Canon Inc | Absolute rotary encoder |
JP2020169883A (en) * | 2019-04-03 | 2020-10-15 | 株式会社ミツトヨ | Photoelectric encoder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4979826A (en) | Displacement measuring apparatus | |
US4868385A (en) | Rotating state detection apparatus using a plurality of light beams | |
JPS6391515A (en) | Photoelectric angle gage | |
JPH07101181B2 (en) | Position detector and position measuring method | |
JPS626119A (en) | Rotary encoder | |
JP5882673B2 (en) | Optical position measuring device | |
JPH02285214A (en) | Length measuring machine and scale member used for the same | |
JPH0293324A (en) | Origin detection system of rotary encoder | |
US5579111A (en) | Encoding apparatus for making measurements of two-dimensional displacement of an object | |
JP3495783B2 (en) | Encoder | |
JPH0231111A (en) | Rotary encoder | |
US5017777A (en) | Diffracted beam encoder | |
JP3509830B2 (en) | Optical rotary encoder | |
US10859374B2 (en) | Optical angle sensor | |
JPH0285717A (en) | Encoder | |
JPS62200225A (en) | Rotary encoder | |
JP5902891B2 (en) | Encoder and calibration method | |
Chen et al. | Multi-DOF incremental optical encoder with laser wavelength compensation | |
JP2600888B2 (en) | Encoder | |
JPH0462003B2 (en) | ||
JPH02298804A (en) | Interferometer | |
JPS62200226A (en) | Rotary encoder | |
JPH07117426B2 (en) | Optical encoder | |
JPS63115011A (en) | Displacement measuring instrument | |
JPH0462004B2 (en) |