JPS631146Y2 - - Google Patents

Info

Publication number
JPS631146Y2
JPS631146Y2 JP1982189298U JP18929882U JPS631146Y2 JP S631146 Y2 JPS631146 Y2 JP S631146Y2 JP 1982189298 U JP1982189298 U JP 1982189298U JP 18929882 U JP18929882 U JP 18929882U JP S631146 Y2 JPS631146 Y2 JP S631146Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
drain
electrolytic cell
exhaust
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982189298U
Other languages
Japanese (ja)
Other versions
JPS5994247U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18929882U priority Critical patent/JPS5994247U/en
Publication of JPS5994247U publication Critical patent/JPS5994247U/en
Application granted granted Critical
Publication of JPS631146Y2 publication Critical patent/JPS631146Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は熱効率を向上する目的で排熱回収用
熱交換器を設け、該熱交換器の外面に発生する有
害成分を含むドレンを電気分解するようにした湯
沸器に関するもので、排熱回収用熱交換器におい
て生ずるドレン水に排気中のSOX、NOXが溶け込
んで酸性度の高いH2SO4、HNO3等を生じてドレ
ン排水が有害となるが、この有害なドレンの排出
を防ぐために従来においてはドレンの排出路に酸
性ドレンを中和する金属粒子、粉状無機化合物等
の中和剤を封入した酸性度中和反応装置を設けた
ものがあるが、中和剤に反応速度の差があるため
その選定に制限があり、反応速度は余り大きくし
得ないので接触面積を大きくするのに大型の中和
反応装置が必要で、かつ大きなスペースを要する
欠点があつた。
[Detailed description of the invention] This invention is a water heater that is equipped with a heat exchanger for waste heat recovery for the purpose of improving thermal efficiency, and electrolyzes condensate containing harmful components generated on the outer surface of the heat exchanger. Regarding this, the SO x and NO x in the exhaust gas dissolve into the drain water generated in the heat exchanger for exhaust heat recovery, producing highly acidic H 2 SO 4 and HNO 3 , etc., making the drain water harmful. In order to prevent the discharge of this harmful condensate, conventional methods have installed an acidity neutralization reaction device in the drain discharge path, which contains neutralizing agents such as metal particles or powdered inorganic compounds to neutralize the acidic condensate. However, the selection of neutralizing agents is limited due to the difference in reaction rate, and since the reaction rate cannot be increased very much, a large neutralization reactor is required to increase the contact area, and it also takes up a large space. There were some important shortcomings.

この考案は排熱回収用熱交換器において発生す
る有害成分を含むドレンを回収排出する湯沸器に
おいてその回収部或いは排出路にドレンを電気分
解する電解槽を設け、従来のアルカリ性金属等の
中和剤による酸性度中和反応装置により中和をさ
せるものと異り、その中和反応速度の調節ができ
るようになして電極材の選定も容易となし得、排
水ドレンを充分中性として無害としうるようにし
た湯沸器に係るものである。
This idea is to install an electrolytic cell to electrolyze the condensate in the recovery section or discharge path of the water heater that collects and discharges the condensate containing harmful components generated in the heat exchanger for waste heat recovery. Unlike the acidity neutralization reaction device that uses additives for neutralization, the neutralization reaction rate can be adjusted, making it easy to select electrode materials, and making the waste water sufficiently neutral and harmless. This relates to a water heater that can be used as a water heater.

以下にこの考案の実施例を図面に基づいて説明
する。
Examples of this invention will be described below based on the drawings.

第1図に示すように燃焼室1の上方の主熱交換
器2の排気路を直角に屈曲して側方へ水平方向に
排気路3を構成し、その水平方向の排気路3内の
適所に器具の熱効率を向上させる排熱回収用熱交
換器4を設け、主熱交換器2の吸熱管10の後流
側に排熱回収用熱交換器4の吸熱管11を接続し
た湯沸器で、前記排熱回収用熱交換器4において
排気中のSOX、NOXが溶け込んで生じる有害な
H2SO4、HNO3等を含むドレンを回収する樋状の
ドレン受皿5を該熱交換器4の直下の排気路3の
下壁面に設け、このドレン受皿5に排出路6を接
続して設けて、排出路6に前記の有害なドレン水
を電気分解する電解槽7を備える。
As shown in FIG. 1, the exhaust passage of the main heat exchanger 2 above the combustion chamber 1 is bent at right angles to form an exhaust passage 3 horizontally to the side, and a suitable location within the horizontal exhaust passage 3 is formed. A water heater in which a heat exchanger 4 for waste heat recovery is installed to improve the thermal efficiency of the appliance, and the heat absorption pipe 11 of the heat exchanger 4 for waste heat recovery is connected to the downstream side of the heat absorption pipe 10 of the main heat exchanger 2. In the exhaust heat recovery heat exchanger 4, the harmful SOx and NOx in the exhaust gas are dissolved.
A gutter-shaped drain tray 5 for collecting drain containing H 2 SO 4 , HNO 3 , etc. is provided on the lower wall surface of the exhaust passage 3 directly below the heat exchanger 4, and a discharge passage 6 is connected to this drain tray 5. The discharge path 6 is provided with an electrolytic cell 7 for electrolyzing the harmful drain water.

電解槽7は第2図に示すように水素よりイオン
化傾向の大きい金属Zn、Mg材等からなる陽極
8、溶出しないような炭素電極等からなる陰極9
を備え、両極に電圧をかけてドレン水を電気分解
させて略中性にして無害なドレン水とする。
As shown in FIG. 2, the electrolytic cell 7 has an anode 8 made of a metal such as Zn or Mg, which has a greater tendency to ionize than hydrogen, and a cathode 9 made of a carbon electrode that does not elute.
A voltage is applied to both poles to electrolyze the drain water, making it almost neutral and making it harmless.

即ち電解槽7の陽極8にZnを用いた場合陽極
8の表面でZn→Zn2++2e-の反応が行われ、陰極
9の表面で2H++2e-→H2の反応が行われ、ドレ
ン水に存在するSO4 2-、NO3 -が陽極8の表面近
くでそれぞれZn2++SO4 2-→ZnSO4、Zn2+
2NO3 -→Zn(NO32となつてその生成物は有害で
ないものとなる。
That is, when Zn is used for the anode 8 of the electrolytic cell 7, the reaction Zn→Zn 2+ +2e - takes place on the surface of the anode 8, the reaction 2H + +2e - →H 2 takes place on the surface of the cathode 9, and the drain SO 4 2- and NO 3 - present in water transform into Zn 2+ + SO 4 2- → ZnSO 4 and Zn 2+ + near the surface of the anode 8, respectively.
2NO 3 - →Zn(NO 3 ) 2 and the product becomes non-hazardous.

この電解槽7では陽極8、陰極9にかける電圧
を調整して電解槽7における分解反応速度を調節
するようになし、排熱回収用熱交換器4より回収
排出されるドレンに含まれる有害成分のH2SO4
HNO3を充分分解するに適した電圧に調整して無
害のドレン排水として排出路6へ流出せしめるよ
うになす。又この電気分解において生成された水
素ガスは流出孔7aより散逸し、ZnSO4、Zn
(NO32はドレン水とともに電解槽7よりオーバ
フローして排出路6′へ流出されるから電解槽7
内がH+、2n2+の電気分解ができなくなるような
飽和状態になることはなく、従つて濃度差による
過電圧は増大することはなく、常時一定の電圧に
て電解槽7で安定的にH2SO4、HNO3の電気分解
を行う。
In this electrolytic cell 7, the voltage applied to the anode 8 and the cathode 9 is adjusted to adjust the decomposition reaction rate in the electrolytic cell 7, and the harmful components contained in the drain collected and discharged from the heat exchanger 4 for waste heat recovery are of H 2 SO 4 ,
The voltage is adjusted to be suitable for sufficiently decomposing HNO 3 so that it flows out into the discharge passage 6 as harmless drain water. Moreover, the hydrogen gas generated in this electrolysis is dissipated from the outflow hole 7a, and ZnSO 4 , Zn
(NO 3 ) 2 overflows from the electrolytic cell 7 together with the drain water and flows out to the discharge passage 6'.
Therefore, the electrolytic cell 7 does not reach a saturated state where electrolysis of H + and 2n 2+ is impossible, and therefore the overvoltage due to the concentration difference does not increase, and the electrolytic cell 7 is stably maintained at a constant voltage. Perform electrolysis of H 2 SO 4 and HNO 3 .

上記実施例では排気路3を主熱交換器2の上部
側方へ水平方向へ屈曲してそこに排熱回収用熱交
換器を設けた場合を説明したが、これに限られる
ものでなはなく、主熱交換器の直上の排気路に排
熱回収用熱交換器を設け、その熱交換器において
生ずるドレンを受皿で回収して排出路に排出する
ようにしたものにも適用することができる。又、
電解槽7を排出路6に介挿配設した場合を示した
が、ドレン受皿5にドレン集合部を設けてその中
に陽極、陰極を挿入しても良い。
In the above embodiment, the exhaust passage 3 is bent horizontally to the upper side of the main heat exchanger 2 and the exhaust heat recovery heat exchanger is provided there, but the invention is not limited to this. It can also be applied to systems in which a heat exchanger for exhaust heat recovery is installed in the exhaust passage directly above the main heat exchanger, and the drain generated in the heat exchanger is collected in a saucer and discharged to the exhaust passage. can. or,
Although a case is shown in which the electrolytic cell 7 is inserted and disposed in the discharge path 6, a drain collection part may be provided in the drain tray 5 and the anode and cathode may be inserted therein.

なお、12は整流装置で、これを介して陽極、
陰極に直流電圧をかける。13は給水管、14は
給湯管、15はガスバーナである。
In addition, 12 is a rectifier, through which the anode,
Apply DC voltage to the cathode. 13 is a water supply pipe, 14 is a hot water supply pipe, and 15 is a gas burner.

前記したこの考案によればドレン排出路等に介
装設置した電解槽においてドレン水に含まれる。
H2SO4、HNO3等を電気分解反応させてZnSO4
Zn(NO32等に変化せしめて無害のドレン排水と
することができ、電解装置は陽極の消耗電極を補
充すれば済むので維持管理は簡便であり、又廃棄
されるドレン水をほぼ完全に無害となし得るので
確実に公害を防止することができる。
According to this invention described above, the water is contained in the drain water in the electrolytic cell installed in the drain discharge path or the like.
Electrolysis reaction of H 2 SO 4 , HNO 3 etc. produces ZnSO 4 ,
Zn(NO 3 ) 2 can be converted into harmless drain water, and maintenance is simple because all you need to do with the electrolyzer is to replenish the consumable anode, and waste water can be almost completely removed. Since it can be made harmless to other people, it is possible to reliably prevent pollution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の湯沸器を示す概略断面図、
第2図は電解槽を説明する拡大断面図である。 1…燃焼室、2…主熱交換器、3…排気路、4
…排熱回収用熱交換器、5…ドレン受皿、6,
6′…排出路、7…電解槽、8…陽極、9…陰極。
Figure 1 is a schematic sectional view showing the water heater of this invention.
FIG. 2 is an enlarged sectional view illustrating the electrolytic cell. 1... Combustion chamber, 2... Main heat exchanger, 3... Exhaust path, 4
...heat exchanger for exhaust heat recovery, 5...drain tray, 6,
6'...Discharge path, 7...Electrolytic cell, 8...Anode, 9...Cathode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model claims] 燃焼室1の主熱交換器2の上部の排気路3に備
えた排熱回収用熱交換器4に生ずるドレンを回収
排出するものにおいて、ドレンの回収部6或いは
ドレンを排出する排出路6′に陽極が水素よりイ
オン化傾向の大きい亜鉛やマグネシウム等よりな
る電解槽7を設けて成る湯沸器。
In a device that collects and discharges condensate generated in the exhaust heat recovery heat exchanger 4 provided in the exhaust passage 3 above the main heat exchanger 2 of the combustion chamber 1, the condensate recovery section 6 or the discharge passage 6' that discharges the condensate. The water heater is equipped with an electrolytic cell 7 in which the anode is made of zinc, magnesium, or the like, which has a greater tendency to ionize than hydrogen.
JP18929882U 1982-12-15 1982-12-15 water heater Granted JPS5994247U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18929882U JPS5994247U (en) 1982-12-15 1982-12-15 water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18929882U JPS5994247U (en) 1982-12-15 1982-12-15 water heater

Publications (2)

Publication Number Publication Date
JPS5994247U JPS5994247U (en) 1984-06-26
JPS631146Y2 true JPS631146Y2 (en) 1988-01-12

Family

ID=30408161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18929882U Granted JPS5994247U (en) 1982-12-15 1982-12-15 water heater

Country Status (1)

Country Link
JP (1) JPS5994247U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989242B2 (en) * 2007-02-05 2012-08-01 株式会社パロマ Water heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168054A (en) * 1980-05-28 1981-12-24 Osaka Gas Co Ltd Hot water supplier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168054A (en) * 1980-05-28 1981-12-24 Osaka Gas Co Ltd Hot water supplier

Also Published As

Publication number Publication date
JPS5994247U (en) 1984-06-26

Similar Documents

Publication Publication Date Title
US10363523B2 (en) Exhaust gas purifying apparatus
WO2012176634A1 (en) Exhaust gas treatment apparatus and orp control method therefor
CN100500586C (en) Apparatus for electrolysis method water treatment
JPS631146Y2 (en)
CN1057245A (en) Purifier for cyanogen removal reaches the technological process for purifying of removing prussiate from waste liquid
CN210505701U (en) Device for continuously and efficiently recycling chloride ions in industrial wastewater
CN102872704A (en) Device and method for purifying residual HCN (hydrogen cyanide) through electro-Fenton
DE2554007A1 (en) PROCESS FOR PURIFYING EXHAUST GASES AND SYSTEM FOR CARRYING OUT THE PROCESS
JP4660853B2 (en) Hydrogen gas generating apparatus and hydrogen gas generating method
CN110605003B (en) Recycling method of fly ash washing waste gas absorption liquid
CN102895853A (en) Device and method for electro-dynamic migration recovery and cyanogen-containing waste gas purification
CN211537008U (en) Flue gas purification device for boiler
GB2026033A (en) Production or regeneration of hydrogen halide for electrolysis
JP4268033B2 (en) Combustion method and apparatus
CN210117303U (en) Purification equipment for salt-containing condensate water
RU170631U1 (en) DEVICE FOR CLEANING GAS MIXTURES FROM HYDROGEN SULFUR
JPH07213861A (en) Treatment of carbon dioxide, treatment of waste gas containing carbon dioxide and treating equipment therefor
SU927919A1 (en) Device for cleaning the filters of operating water wells
CN110499516A (en) The clean energy resource system and its application method of a kind of application of solar energy to coal-burning installation
CN211712707U (en) High-concentration ammonia nitrogen wastewater treatment equipment
JP3845578B2 (en) Method and apparatus for recovering nitric acid component from aqueous nitric acid solution
JPS59166289A (en) Treatment of waste water by electrolysis
CN213804007U (en) Ozone preparation generating device with heat dissipation function
JPH08155461A (en) Method and apparatus for removing nitric-and/or nitrous-nitrogen
JPH07299465A (en) Electrolytic treatment of waste water and anode used therefor