JPS6311434B2 - - Google Patents

Info

Publication number
JPS6311434B2
JPS6311434B2 JP52030304A JP3030477A JPS6311434B2 JP S6311434 B2 JPS6311434 B2 JP S6311434B2 JP 52030304 A JP52030304 A JP 52030304A JP 3030477 A JP3030477 A JP 3030477A JP S6311434 B2 JPS6311434 B2 JP S6311434B2
Authority
JP
Japan
Prior art keywords
electrode
generated gas
region
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52030304A
Other languages
Japanese (ja)
Other versions
JPS53115669A (en
Inventor
Kenzo Yamaguchi
Teruo Ichizaka
Tadao Ikegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURORIN ENGINEERS KK
Original Assignee
KURORIN ENGINEERS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURORIN ENGINEERS KK filed Critical KURORIN ENGINEERS KK
Priority to JP3030477A priority Critical patent/JPS53115669A/en
Publication of JPS53115669A publication Critical patent/JPS53115669A/en
Publication of JPS6311434B2 publication Critical patent/JPS6311434B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、単極式竪型電解槽を用いたアルカリ
金属塩水溶液の電解に好適な電解方法に関する。
一般に電解法は、電極の形態、隔膜の有無等に従
つて種々の型式のものが知られており、種々の分
野で用いられているが、食塩水を電解して塩素と
苛性ソーダを製造する電解工業では、アスベスト
又はイオン交換膜を用いた隔膜法竪型電解槽が近
年多く採用されてきている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic method suitable for electrolyzing an aqueous alkali metal salt solution using a monopolar vertical electrolytic cell.
In general, various types of electrolysis methods are known depending on the shape of the electrode, the presence or absence of a diaphragm, etc., and are used in various fields. In recent years, vertical membrane electrolytic cells using asbestos or ion exchange membranes have been widely adopted in industry.

この種の電解槽としては大別して単極式のもの
と複極式のものが用いられているが、単極式竪型
電解槽においては、特に陽極において板状電極を
フレーム状に形成した電極構造体が知られてい
る。
This type of electrolytic cell is roughly divided into monopolar type and bipolar type, but in monopolar vertical electrolytic cells, the anode has a plate-shaped electrode formed into a frame shape. structure is known.

従来、この種の電極構造体の形状は、第1図に
示すように電極板1を箱型に構成し、これにリー
ドバー2を直接溶接して通電する方式のもの、或
は第2図イ及びロにおけるように導電板3を設
け、電極板1の内面及びリードバー2の外面に溶
接して通電する方式のものが一般的である。(特
公昭50―35031号公報参照) 前記第1図の方式は、電極体製造コストは割安
であるものの、電解における電流分布は第2図イ
又はロの方式が優れており、電力コストが高い現
状においては、後者の方式が有利である。
Conventionally, the shape of this type of electrode structure has been such that the electrode plate 1 is configured in a box shape as shown in FIG. Generally, as shown in A and B, a conductive plate 3 is provided and welded to the inner surface of the electrode plate 1 and the outer surface of the lead bar 2 to conduct electricity. (Refer to Japanese Patent Publication No. 50-35031) Although the method shown in Figure 1 has a relatively low electrode body manufacturing cost, the method shown in Figure 2 A or B is superior in terms of current distribution during electrolysis, and the power cost is high. At present, the latter method is advantageous.

一方、電極間で発生するガスによる電気抵抗
は、電解電圧の上昇を来たし、特に金属不溶性電
極採用による高電流密度操業では無視できない程
に増大するので、発生ガスの極間内通過を出来る
だけ防ぐために、電極面の裏側を通すように電極
をメツシユ、ロツド、又は有孔板とする工夫が一
般に行われている。この場合、発生ガスを多く含
んだ電解液は見掛け比重が小さくなり、上昇流を
生ずることになるが、ガスが室外に排出された上
部の比重の大きい液は、下降流を生じ、特に電極
体内部のガスの発生しない部分等に流れ込む。し
かるに、第1図、第2図イ,ロに示した従来の電
極構造体では、電極内部全体にわたつて発生ガス
の上昇通路となるので、前記した下降流とぶつか
り、その流れが弱まる。従つて、発生ガスを押し
出し新しい電解液を供給する電解液の内部循環が
弱まることになり、その結果、電解電圧の上昇や
電流効率の低下を招く欠点があつた。
On the other hand, the electrical resistance due to the gas generated between the electrodes causes an increase in the electrolytic voltage and increases to an extent that cannot be ignored, especially in high current density operations using metal-insoluble electrodes. For this purpose, it is common practice to make the electrode a mesh, rod, or perforated plate so that it passes through the back side of the electrode surface. In this case, the electrolytic solution containing a large amount of generated gas will have a small apparent specific gravity and will cause an upward flow, but the upper part of the liquid, where the gas has been discharged outside, will cause a downward flow, especially around the electrode. Flows into internal parts where gas is not generated. However, in the conventional electrode structure shown in FIGS. 1 and 2A and 2B, the entire inside of the electrode serves as an upward passage for the generated gas, so that it collides with the above-mentioned downward flow and weakens the flow. Therefore, the internal circulation of the electrolyte that pushes out the generated gas and supplies new electrolyte is weakened, resulting in a disadvantage that the electrolysis voltage increases and the current efficiency decreases.

本発明は、上記の様な欠点を解消するためにな
されたものであつて、少くとも一方の電極を、両
面に極板を有する電極フレームで構成した単極式
竪型電解槽を用いた電解方法において、電解液の
対流を生ずるに十分な長さの筒状の導電性分散体
を用いて該電極フレーム内の電極リードバーの外
周に発生ガス不通過領域を形成し、該発生ガス不
通過領域を電解液の下降流通路として働かせ、電
極室内の内部循環を促進させ、かつ電流密度
14A/dm2以上でアルカリ金属塩水溶液を電解す
る新規な電解方法を提供することにある。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and is an electrolytic cell using a monopolar vertical electrolytic cell in which at least one electrode is constituted by an electrode frame having electrode plates on both sides. In the method, a cylindrical conductive dispersion having a length sufficient to cause convection of the electrolyte is used to form a region where the generated gas does not pass around the outer periphery of the electrode lead bar in the electrode frame, and the generated gas does not pass through the area. area to act as a downward flow path for the electrolyte, promoting internal circulation within the electrode chamber, and increasing the current density.
The object of the present invention is to provide a new electrolysis method for electrolyzing an aqueous alkali metal salt solution at 14 A/dm 2 or higher.

即ち、本発明は、電極リードバーを囲む電解液
の対流を生ずるに十分な長さの筒状体が発生ガス
を内部に混入させないスペースを形成し、該スペ
ースを該発生ガス不通過領域とし、これが前記し
た下降流の通路となり、筒状体外部の上昇流と対
応して対流を形成するので電極体内部の電解液等
の流れが良好となり、発生ガスの除去がスムーズ
となるので、電解電圧を低下させ、電流効率を向
上させる効果がもたらされる。
That is, in the present invention, a cylindrical body having a length sufficient to cause convection of an electrolytic solution surrounding an electrode lead bar forms a space in which generated gas is not mixed inside, and the space is defined as an area through which the generated gas does not pass. This becomes a passage for the downward flow mentioned above, and forms a convection current in correspondence with the upward flow outside the cylindrical body, so that the flow of the electrolyte inside the electrode body is good, and the removal of the generated gas is smooth, so the electrolytic voltage This has the effect of reducing current efficiency and improving current efficiency.

また、前記発生ガス不通過領域を形成する筒状
の分散体は導電性材料で構成し、電極板内面及び
電極リードバーの外周面に接合することにより、
併せて電解における電流分布の改善及び電極体の
強度を増す効果が達成される。
Further, the cylindrical dispersion forming the generated gas impermeable region is made of a conductive material, and is bonded to the inner surface of the electrode plate and the outer circumferential surface of the electrode lead bar.
At the same time, the effect of improving current distribution in electrolysis and increasing the strength of the electrode body is achieved.

更に、本発明は、前記電極リードバーを囲む筒
状体を2個の対称形の導電性分散板で構成し、各
分散板両端部を極板の中間部で重ね合わせて電極
体を構成して実施することができる。
Further, in the present invention, the cylindrical body surrounding the electrode lead bar is composed of two symmetrical conductive dispersion plates, and both ends of each dispersion plate are overlapped at the middle part of the electrode plate to constitute the electrode body. It can be implemented by

かくすることにより、電解槽の製造、組み立て
保守等が容易になる。また、本発明の電極体は、
陽極フレームおよび陰極フレームの両者に適用
し、これらを1対以上設けた単極式竪型電解槽に
適用できる。更に本発明は、陽極フレームと陰極
フレームとを液又はイオン通過性の隔膜を挾んで
多数竪型に並設し、これらを液密に一体としてフ
イルタープレス型に構成した単極式電解槽にも適
用できる。
This facilitates manufacturing, assembly and maintenance of the electrolytic cell. Further, the electrode body of the present invention has
It can be applied to both an anode frame and a cathode frame, and can be applied to a monopolar vertical electrolytic cell in which one or more pairs of these frames are provided. Furthermore, the present invention also relates to a monopolar electrolytic cell in which a large number of anode frames and cathode frames are arranged vertically in parallel with a liquid- or ion-permeable diaphragm in between, and these are integrated in a liquid-tight manner into a filter press type. Applicable.

以下、本発明の実施例を添付図面により具体的
に説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第3図イ,ロは、本発明方法の実施に使用する
電極構造体の断面図で、1はメツシユ状の金属不
溶性電極、2は電極リードバー、3′は電極リー
ドバーを囲む筒状の導電性分散体、4は電解液供
給口である。電解による発生ガスは電極板1の表
面で生成し、メツシユを通して電極体の内部に導
かれて領域Aおよび領域Bを上昇する。
Figures 3A and 3B are cross-sectional views of the electrode structure used to carry out the method of the present invention, in which 1 is a mesh-shaped metal-insoluble electrode, 2 is an electrode lead bar, and 3' is a cylindrical structure surrounding the electrode lead bar. Conductive dispersion, 4 is an electrolyte supply port. Gas generated by electrolysis is generated on the surface of the electrode plate 1, guided into the interior of the electrode body through the mesh, and ascends through regions A and B.

一方、領域Cは筒状の導電性分散体3′により
囲まれているので、この領域Cは、発生ガスの流
入がない発生ガス不通過領域となり、この領域C
が電解液下降流通路を形成する。
On the other hand, since the region C is surrounded by the cylindrical conductive dispersion body 3', this region C becomes a region through which the generated gas does not pass through which the generated gas does not flow.
forms an electrolyte downward flow path.

第3図ロは、筒状体を対称形の2個の導電性分
散板で構成し、両者を極板の中間重ね合せ部5で
重ね合わせた例である。これに対して、従来の第
2図イ,ロに示す構成においては、電極内のすべ
ての領域A,Bが発生ガスの上昇通路となり、下
降流が妨げられる。
FIG. 3B shows an example in which the cylindrical body is composed of two symmetrical conductive dispersion plates, which are overlapped at the intermediate overlapping portion 5 of the electrode plates. On the other hand, in the conventional configuration shown in FIGS. 2A and 2B, all regions A and B within the electrode serve as upward paths for the generated gas, and the downward flow is obstructed.

第4図及び第5図は、本発明方法をイオン交換
膜法食塩電解槽に適用した場合を示したものであ
り、11は陽極板、13は陽極リードバー、15
は陽極分散体、17は陽極エレメントフレームで
あり、陽極リードバー13は、スタツドボルトナ
ツト19、コネクター20を介して陽極ブスバー
21に接続する。12は陰極板で陽極側と同様に
陰極リードバー14、陰極分散体16、陰極エレ
メントフレーム18等により構成されている。陰
極リードバー14はスタンドボルトナツト19′、
コネクター20′を有して陰極ブスバー22に接
続する。筒状分散体15,16は、図示のよう
に、チタン等の流体不通過性の導電性板をリード
バー13,14を囲むように上下を開口させて筒
状に構成し、また発生ガスの混入防止及び電解液
等の対流効果を達成するに十分な長さとする。
4 and 5 show the case where the method of the present invention is applied to an ion-exchange membrane method salt electrolyzer, where 11 is an anode plate, 13 is an anode lead bar, and 15 is an anode plate.
is an anode dispersion, 17 is an anode element frame, and the anode lead bar 13 is connected to an anode bus bar 21 via a stud bolt nut 19 and a connector 20. Reference numeral 12 denotes a cathode plate, which is composed of a cathode lead bar 14, a cathode dispersion body 16, a cathode element frame 18, etc., similar to the anode side. The cathode lead bar 14 has a stand bolt nut 19',
It has a connector 20' and is connected to the cathode bus bar 22. As shown in the figure, the cylindrical dispersion elements 15 and 16 are made of a fluid-impermeable conductive plate made of titanium or the like with openings at the top and bottom so as to surround the lead bars 13 and 14, and have a cylindrical shape, and are made of a conductive plate made of titanium or the like that is open at the top and bottom so as to surround the lead bars 13 and 14. The length should be sufficient to prevent contamination and to achieve a convection effect for electrolyte, etc.

尚、塩水はヘツダー(図示せず)より、塩水ブ
ランチ24、塩水マニホールド25、塩水供給パ
イプ30を介して陽極エレメントフレーム17内
に供給し、リサイクル苛性ソーダ水溶液はヘツダ
ー(図示せず)より苛性ソーダブランチ26、苛
性ソーダマニホールド27、苛性ソーダ供給パイ
プ31を介して陰極エレメントフレーム18内に
供給して電解する。陽極エレメントフレーム17
内の陽極室においては塩素ガスが発生し、陽極液
からナトリウムイオンがイオン交換膜23を透過
して陰極エレメントフレーム18内の陰極室に移
動する。陰極室では水素ガスと水酸イオンが発生
し、陰極液中に苛性ソーダが生成する。
The salt water is supplied from the header (not shown) into the anode element frame 17 via the salt water branch 24, the salt water manifold 25, and the salt water supply pipe 30, and the recycled caustic soda aqueous solution is supplied from the header (not shown) to the caustic soda branch 26. , the caustic soda manifold 27 and the caustic soda supply pipe 31 into the cathode element frame 18 for electrolysis. Anode element frame 17
Chlorine gas is generated in the anode chamber in the cathode element frame 18, and sodium ions from the anolyte pass through the ion exchange membrane 23 and move to the cathode chamber in the cathode element frame 18. Hydrogen gas and hydroxide ions are generated in the cathode chamber, and caustic soda is generated in the catholyte.

陽極室で発生した塩素ガスは、食塩水とともに
ノズル28より流出し、食塩水と塩素ガスとを分
離する。一方、陰極室で発生した水素ガスは、生
成した苛性ソーダとともに、ノズル29より流出
し、水素ガスと苛性ソーダとに分離され、分離さ
れた苛性ソーダは再び陰極室にリサイクルして使
用される。
The chlorine gas generated in the anode chamber flows out from the nozzle 28 together with the saline solution, separating the saline solution and the chlorine gas. On the other hand, the hydrogen gas generated in the cathode chamber flows out from the nozzle 29 together with the generated caustic soda and is separated into hydrogen gas and caustic soda, and the separated caustic soda is recycled back to the cathode chamber for use.

第6図は、イオン交換膜法食塩電解での発生ガ
スによる電解電圧の影響を測定した結果を示すも
ので、線aは従来の電極体を用いた場合の例、線
bは本発明方法による場合を示したものであり、
線cは発生ガスの影響のない理想的な場合を示
す。図から明らかのように、本発明による電解電
圧上昇を防止する効果は、従来のものに比して、
電流密度約8A/dm2以上で認められ特に14A/
dm2以上で顕著である。
Figure 6 shows the results of measuring the influence of electrolytic voltage due to generated gas in ion-exchange membrane salt electrolysis, where line a is an example when a conventional electrode body is used, and line b is an example when the method of the present invention is used. It shows the case,
Line c shows an ideal case without the influence of generated gas. As is clear from the figure, the effect of preventing the electrolytic voltage rise by the present invention is greater than that of the conventional one.
Recognized at current density of approximately 8A/dm2 or higher, especially 14A/dm2
It is noticeable at dm 2 or higher.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の電極構造体の斜視図、第2図
イ,ロは、従来の電極構造体の断面図、第3図
イ,ロは、本発明方法の実施に使用する電極構造
体の断面図、第4図は、本発明を適用した電解槽
の内部を示す説明図、第5図は、本発明をイオン
交換膜食塩電解槽に適用した場合の全体を示す概
略図、第6図は、本発明の効果を示す電解電圧測
定図である。 1:電極板、2:電極リードバー、3,3′:
導電性分散体、4:電解液供給口、5:中間重ね
合わせ部、A,B:発生ガス通過領域、C:発生
ガス不通過領域、11:陽極板、12:陰極板、
13:陽極リードバー、14:陰極リードバー、
15:陽極分散体、16:陰極分散体、17:陽
極エレメントフレーム、18:陰極エレメントフ
レーム、19,19′:スタツドボルトナツト、
20,20′:コネクター、21:陽極ブスバー、
22:陰極ブスバー、23:イオン交換膜、2
4:塩水ブランチ、25:塩水マニホールド、2
6:苛性ソーダブランチ、27:苛性ソーダマニ
ホールド、28,29:ノズル、30:塩水供給
パイプ、31:苛性ソーダ供給パイプ。
FIG. 1 is a perspective view of a conventional electrode structure, FIG. 2 A and B are cross-sectional views of the conventional electrode structure, and FIGS. FIG. 4 is an explanatory diagram showing the inside of an electrolytic cell to which the present invention is applied. FIG. 5 is a schematic diagram showing the entire structure when the present invention is applied to an ion exchange membrane salt electrolytic cell. The figure is an electrolytic voltage measurement diagram showing the effects of the present invention. 1: Electrode plate, 2: Electrode lead bar, 3, 3':
Conductive dispersion, 4: Electrolyte supply port, 5: Intermediate overlapping portion, A, B: Generated gas passing region, C: Generated gas non-passing region, 11: Anode plate, 12: Cathode plate,
13: Anode lead bar, 14: Cathode lead bar,
15: anode dispersion element, 16: cathode dispersion element, 17: anode element frame, 18: cathode element frame, 19, 19': stud bolt nut,
20, 20': Connector, 21: Anode busbar,
22: Cathode bus bar, 23: Ion exchange membrane, 2
4: Salt water branch, 25: Salt water manifold, 2
6: Caustic soda branch, 27: Caustic soda manifold, 28, 29: Nozzle, 30: Salt water supply pipe, 31: Caustic soda supply pipe.

Claims (1)

【特許請求の範囲】 1 少くとも一方の電極を、両面に極板を有する
電極フレームで構成した単極式竪型電解槽を用い
た電解方法において、電解液の対流を生ずるに十
分な長さの筒状の導電性分散体を用いて、該電極
フレーム内の電極リードバーの外周に発生ガス不
通過領域を形成し、該発生ガス不通過領域を電解
液の下降流通路として働かせ電極室の内部循環を
促進させ、かつ電流密度14A/dm2以上でアルカ
リ金属塩水溶液を電解することを特徴とする電解
方法。 2 両面に陽極板を有する陽極フレームと、両面
に陰極板を有する陰極フレームとを液又はイオン
透過性の隔膜をはさんで多数竪型に併設し、これ
らを液密的に一体としたフイルタープレス型の単
極式竪型電解槽を用いた電解方法において、電解
液の対流を生ずるに十分な長さの筒状の導電性分
散体を用いて、該電極フレーム内の電極リードバ
ーの外周に発生ガス不通過領域を形成し、該発生
ガス不通過領域を電解液の下降流通路とに働か
せ、電極室の内部循環を促進させ、かつ電流密度
14A/dm2以上でアルカリ金属塩水溶液を電解す
ることを特徴とする特許請求の範囲第1項記載の
電解方法。
[Scope of Claims] 1. In an electrolysis method using a monopolar vertical electrolytic cell in which at least one electrode is constituted by an electrode frame having electrode plates on both sides, a length sufficient to cause convection of the electrolyte solution. A cylindrical conductive dispersion is used to form a region through which the generated gas does not pass around the outer periphery of the electrode lead bar in the electrode frame, and the region through which the generated gas does not pass is used as a downward flow path for the electrolytic solution to prevent the passage of the generated gas through the electrode chamber. An electrolysis method characterized by promoting internal circulation and electrolyzing an aqueous alkali metal salt solution at a current density of 14 A/dm 2 or more. 2. A filter press in which a large number of anode frames with anode plates on both sides and cathode frames with cathode plates on both sides are installed vertically with a liquid- or ion-permeable diaphragm in between, and these are integrated in a liquid-tight manner. In an electrolysis method using a monopolar vertical electrolytic cell, a cylindrical conductive dispersion with a length sufficient to cause convection of the electrolyte is used to coat the outer periphery of the electrode lead bar in the electrode frame. A region through which the generated gas does not pass is formed, and the region through which the generated gas does not pass acts as a downward flow path for the electrolytic solution to promote internal circulation of the electrode chamber, and to increase the current density.
The electrolytic method according to claim 1, characterized in that an aqueous alkali metal salt solution is electrolyzed at 14 A/dm 2 or more.
JP3030477A 1977-03-22 1977-03-22 Electrolytic method Granted JPS53115669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3030477A JPS53115669A (en) 1977-03-22 1977-03-22 Electrolytic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3030477A JPS53115669A (en) 1977-03-22 1977-03-22 Electrolytic method

Publications (2)

Publication Number Publication Date
JPS53115669A JPS53115669A (en) 1978-10-09
JPS6311434B2 true JPS6311434B2 (en) 1988-03-14

Family

ID=12300004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3030477A Granted JPS53115669A (en) 1977-03-22 1977-03-22 Electrolytic method

Country Status (1)

Country Link
JP (1) JPS53115669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066581A2 (en) 2008-12-09 2010-06-17 Robert Bosch Gmbh Method and device for controlling a drive train

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129394A (en) * 1974-09-06 1976-03-12 Tokuyama Soda Kk

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129394A (en) * 1974-09-06 1976-03-12 Tokuyama Soda Kk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066581A2 (en) 2008-12-09 2010-06-17 Robert Bosch Gmbh Method and device for controlling a drive train

Also Published As

Publication number Publication date
JPS53115669A (en) 1978-10-09

Similar Documents

Publication Publication Date Title
US4643818A (en) Multi-cell electrolyzer
US4137144A (en) Hollow bipolar electrolytic cell anode-cathode connecting device
JPS6315354B2 (en)
JPS59190379A (en) Vertical type electrolytic cell and electrolyzing method using said cell
PL113658B1 (en) Unipolar diaphragm cell
SU1291029A3 (en) Bipolar electrode
JPH0561356B2 (en)
EP0505899A1 (en) A bipolar, filter press type electrolytic cell
JP4302386B2 (en) Electrolyzer
AU594214B2 (en) Electrode assembly for gas-producing electrolyzer comprising vertical plate electrodes
CA1106312A (en) Electrolytic cell with membrane
CA1091187A (en) Electrolytic cell
JPH11106977A (en) Bipolar type ion exchange membrane electrolytic cell
CA1175780A (en) Internal downcomer for electrolytic recirculation
JPS6311434B2 (en)
JP3229266B2 (en) Bipolar filter press type electrolytic cell
JPH0324287A (en) Frame unit for filter press- type electrolytic device and filter press-type electrolytic device
US4654135A (en) Electrolytic cell for sea water
CN207276733U (en) It is used to prepare the ion-exchange membrane electrolyzer of stannous sulfate
JPH0819540B2 (en) Filter-press type electrolytic cell
JPH08503739A (en) Electrolyzer and its electrode
JP2816029B2 (en) Bipolar filter press type electrolytic cell
JPS599632B2 (en) electrolytic cell
JPH0216389B2 (en)
CN2457174Y (en) Single pole type ion film electrolytic bath