JPS6311407B2 - - Google Patents

Info

Publication number
JPS6311407B2
JPS6311407B2 JP4071684A JP4071684A JPS6311407B2 JP S6311407 B2 JPS6311407 B2 JP S6311407B2 JP 4071684 A JP4071684 A JP 4071684A JP 4071684 A JP4071684 A JP 4071684A JP S6311407 B2 JPS6311407 B2 JP S6311407B2
Authority
JP
Japan
Prior art keywords
annealing
secondary recrystallization
content
less
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4071684A
Other languages
Japanese (ja)
Other versions
JPS60184632A (en
Inventor
Shozaburo Nakajima
Yasunari Yoshitomi
Mikio Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4071684A priority Critical patent/JPS60184632A/en
Publication of JPS60184632A publication Critical patent/JPS60184632A/en
Publication of JPS6311407B2 publication Critical patent/JPS6311407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は磁気特性の優れた高磁束密度一方向性
電磁鋼板の製造方法に関するものである。 一方向性電磁鋼板は軟磁性材料として主にトラ
ンスその他の電気機器の鉄心材料として使用され
るもので磁気特性として励磁特性と鉄損特性が良
好でなくてはならない。良好な磁気特性を得るた
めには磁化容易軸である<001>軸を圧延方向に
高度に揃える事が重要である。又板厚、結晶粒
度、固有抵抗、表面被膜等も磁気特性に大きな影
響を及ぼす。 方向性についてはAlN,MnSをインヒビター
として利用した強圧下最終冷延を特徴とする方法
により大巾に向上し、現在では磁束密度が理論値
の96%程度のもの迄製造される様になつて来た。
これに伴つて鉄損は大巾に向上して来た。 一方近年エネルギー価格の高騰を反映しトラン
スメーカーは省エネルギー型トランス用材料とし
て低鉄損素材への指向を一段と強めている。低鉄
損素材としてアモルフアスや6.5%Si鋼等の開発
も進められているがトランス用の商用材料として
使用される迄にはなお解決すべき問題が多く残つ
ている。 (従来技術) 本発明者らは低鉄損素材に対する時代の要請に
応えるべく、一方向性電磁鋼板の低鉄損化につき
種々研究を重ねてきた。本発明者らはこの研究成
果にもとづきさきに特開昭58−23414号公報に示
すとおり珪素鋼にSnとCuとを複合添加すること
を特徴とする鉄損の優れた高磁束密度一方向性電
磁鋼板の製造方法を提案した。この方法により従
来よりかなり鉄損の優れた製品を製造することが
可能になつた。しかしトランスメーカーの素材の
低鉄損化に対する要求はとどまるところを知ら
ず、本発明者らはこれらの要求に応えるべく、よ
り鉄損の低い材料をより安定して製造する方法に
つき引続き研究をすすめてきた。 (発明の目的)(発明の構成・作用) その結果C:0.02〜0.12%,Si:2.7〜4.0%,
Mn:0.03〜0.02%,SとSeの少なくとも1種:
0.01〜0.05%,酸可溶Al:0.01〜0.05%,N:
0.004〜0.012%,、Sn:0.03〜0.5%,Cu:0.02〜
0.4%,Ti:0.0020%以上0.0100未満を含み、残部
が鉄および不可避的不純物からなる珪素鋼スラブ
を熱延し、最終冷延を行う前に焼鈍と急冷処理を
行い、続いて最終冷延を行い、脱炭焼鈍を行い、
焼鈍分離剤を塗布し、高温仕上焼鈍を行うことに
より二次再結晶が良好で結晶粒径は小さく、鉄損
が著しく低くかつ磁束密度も極めて高い一方向性
電磁鋼板を安定して製造できることを見出した。 以下に本発明の詳細について説明する。先づ実
験データに基いて述べる。 C:0.070%,Si:3.25%,Mn:0.074%,S:
0.024%,酸可溶Al:0.027%,N:0.0083%、
Sn:0.10%,Cu:0.08%を含む溶鋼につきTi含
有量を0.0005〜0.0200%に変化させて含有させ、
残部が鉄および不可避的不純物からなるスラブを
製造し、1350℃の高温スラブ加熱を行い、熱間圧
延を行い、2.3m/m厚の熱延板を得た。熱延板
を1100℃で2分間焼鈍し、焼鈍後急冷し、しかる
後0.30m/mに冷延した。引続き湿潤水素雰囲気
中で850℃で3分間脱炭焼鈍し、MgOを主成分と
する焼鈍分離剤を塗布し、窒素を含む水素雰囲気
中で20℃/hrの割合いで1200℃迄昇温し、しかる
後水素雰囲気中で20時間純化焼鈍を施した。 製品の磁気特性測定結果を第1図Aに磁束密度
(B10)、Bに鉄損(W17/50)を示す。第1図A,
Bに示すごとく、Ti含有量によつて磁気特性が
変化し0.0020%以上0.0100%未満の範囲で磁束密
度B10が高く、鉄損が極めて低い値を示した。Ti
含有量が0.0020%より低いと磁束密度B10が低下
し、鉄損が不良となつた。又Ti含有量が0.0100%
以上では磁束密度B10が低下し、鉄損が不良とな
り、特に0.0140%を超えると磁束密度B10が著し
く低下し、鉄損も著しく不良となつた。 磁気特性測定後の試料を酸洗し、表面被膜を除
去し、製品のマクロ組織を観察した。その結果を
第1図C,Dに示す。第1図Cは二次再結晶良好
部の面積割合(以下二次再結晶率)を示し、第1
図Dは二次再結晶率100%の試料についての平均
結晶粒径を示す。 第1図Cに示すごとく、Ti含有量0.0010%以上
0.0100%未満の範囲では何れも二次再結晶率は
100%であり、0.0010%より低い場合、二次再結
晶率が若干低下した。又Ti含有量が0.0100%以上
では二次再結晶率が低下し、0.0140%を超えると
著しく低下した。Ti含有量0.0010%未満及び
0.0100%以上の場合の磁気特性劣化は二次再結晶
不良によるものと考えられる。 次に第1図Dに示す如く、二次再結晶率が100
%であるTi含有量0.0010%以上、0.0100%未満の
範囲でTi含有量が高いほど結晶粒径が小さくな
つている。特にTiが0.0020%以上では結晶粒径が
小さく鉄損が低くなつている。Ti含有量0.0010%
以上0.0020%未満でも二次再結晶率は前述のよう
に100%であるが、鉄損はそれ程低くない。一般
に磁束密度B10が高くなるとヒステリシス損が減
少し、結晶粒径が小さくなると渦電流損が減少す
る傾向があり第1図BにおけるTi含有量0.0020%
以上、0.0100%未満の範囲における鉄損の変化は
第1図Aにおける磁束密度B10の変化及び第1図
Dにおける結晶粒径の変化で説明できる。 第2図に第1図Cに符したイ,ロ,ハ,ニ,ホ
の試料の製品マクロ組織を示す。イでは線状の細
粒が見られる。ロでは二次再結晶は完全であるが
結晶粒径が大きい。ハでは二次再結晶が完全で結
晶粒径が小さい。ニでは混粒細粒の発生が見ら
れ、ホでは混粒細粒の発生がひどくなつている。 AlNを主インヒビターとして活用する一方向
性電磁鋼板の製造において上記のように鋼中の
Ti含有量が製品の二次再結晶、結晶粒径、磁気
特性に影響を及ぼすメカニズムについては必ずし
も十分解明されていないが、TiはN,C,O等
と親和力の強い元素でありこれらの析出物それ自
体としてあるいはこれらの析出物とAlN,MnS,
MnSe等の複合析出物として、インヒビシヨン効
果に微妙な影響を与えるものと考えられる。 第3図にC=0.070%,Si=3.25%,Mn=0.074
%,S=0.024%,酸可溶Al=0.027%,N=
0.0083%,Sn=0.10%,Cu=0.08%の鋼にTiを
0.0012%,0.0030%,0.0049%それぞれ含有させ、
残部が鉄および不可避的不純物からなる材料につ
いての脱炭焼鈍板の集合組織を示す。この集合組
織の面強度は板表面下に40μのところの測定値で
ある。Ti含有量の増加に伴つて(110)面強度が
増大していることがわかる。 第1図の現象について考察すると次のように考
えることが出来る。Ti含有量が0.0010%未満では
Ti化合物によるインヒビシヨン効果助勢が不足
し、二次再結晶不良が発生した。Ti含有量0.0010
%以上、0.0100%未満の範囲では高目の方が、イ
ンヒビシヨン効果が適正で且つ脱炭焼鈍板の
(110)面強度が強いためとくにTi含有量0.0020%
以上、0.0100未満の範囲で製品の方向性が高く、
結晶粒径が小さく鉄損が良好となつた。また磁束
密度も優れる。Ti含有量が0.0100%を超える場
合、本来AlNとなるべきNがTiに喰われ過ぎ主
インヒビターとしてのAlNが不足して混粒細径
が発生したものと考えられる。 ところで一方向性電磁鋼板の製造においてTi
を添加することはこれ迄にいくつか提案されてい
る。例えば特公昭46−26621号公報では珪素鋼に
Tiを0.01〜0.2%添加し、TiNをインヒビターと
して一方向性電磁鋼板を製造するものであり、
Tiを多量添加している。 本発明に関する製造方法の場合Ti含有量が
0.0100%を超えると第1図から容易に推定されう
るごとく二次再結晶不良となり磁気特性は著しく
劣化するものと考えられる。 特開昭52−24116号公報においては、C:0.085
%以下、Si:2.0〜4.0%、酸可溶性Al:0.010〜
0.065%を含み、更にZr,Ti,B,Nb,Ta,V,
Cr,Mo等の窒化物生成元素を1種又は2種以上
含有し、その含有量としてZr,Ti,Bの場合
0.0005〜0.05%とすることが提示されている。し
かるに本発明の対象範囲であるSi2.7%以上にお
いてTi:0.0005〜0.05%の広い範囲に亘つて安定
して磁気特性の良好な製品を得ることは極めて困
難であり本発明に示すごとくSn,Cuの複合添加
に加えTi:0.0020以上〜0.0100%未満に規制する
ことによりはじめて、二次再結晶が完全で方向性
が高く、結晶粒径が小さく、鉄損の著しく良好な
製品を安定して製造することが可能となつた。 特開昭55−14858号公報においてC:0.06%以
下、Si:2.0〜4.0%、Mn:0.02〜0.15%、Se,S
の何れか1種または2種:0.008〜0.080%を含む
素材中にNb,Tiの何れか少なくとも1種を、
Nbにあつては0.002〜0.0012%、Tiにあつては
0.005〜0.018%含有させることが提案されてい
る。これはその明細書に示すごとく、酸可溶
Al:0.003%以下の素材をベースにした技術であ
り酸可溶Al:0.01〜0.05%、N:0.004〜0.012%
を含み最終冷延を行う前に焼鈍と急冷処理を行う
ことを特徴とし、AlNを主インヒビターとする
高磁束密度一方向性電磁鋼板の製造に関する本発
明とは考え方を異にしている。 次に本発明における成分、その他の製造条件を
定めた理由を以下に述べる。 Cは0.02%未満の場合、二次再結晶が不良とな
り、0.12%を超えると脱炭性、磁気特性の点から
好ましくない。 Siは2.7%未満では本発明の狙いである低鉄損
が得られず、4%を超えると冷延性が著しく劣化
する。鉄損の点からSiの好ましい範囲は3.0〜4.0
%である。 Mn及びS又はSeはMnS又はMnSeを形成させ
るために必要な元素である。適切なインヒビター
効果を得るためのMnの適量は0.03〜0.20%であ
り、好ましくは0.05〜0.15%である。 S又はSeは0.01%未満では十分なインヒビター
効果が得られず、0.05%を超えると純化が行われ
にくくなり好ましくない。またこのS,Seは少
なくとも一種含有されるものである。 酸可溶Al及びNは主インヒビターとしての
AlNを形成させるために重要な元素であり、適
切なインヒビシヨン効果により十分に二次再結晶
を発現させ優れた磁気特性を得るためには、各々
適正範囲に制御する必要がある。酸可溶Alは0.01
%未満の場合、製品の方向性が劣り0.05%を超え
ると二次再結晶が不安定となり0.020〜0.040%が
特に好ましい範囲である。Nは0.004%未満では
二次再結晶が不安定となり、0.012%を超えると
ブリスターが発生し0.005〜0.009%が特に好まし
い範囲である。 Snは二次再結晶の安定化、製品の結晶粒径の
細分化に役立つもので0.03%未満では効果が弱
く、0.5%を超えると冷延性が劣る。0.05〜0.20%
が特に好ましい範囲である。 CuはSn添加材に良好なグラスフイルムを生成
するのに役立ち、0.02%未満ではその効果が乏し
く0.4%を超えると酸洗性、脱炭性が劣化し、
0.05〜0.20%が特に好ましい範囲である。 Tiについては先に第1図について詳しく述べ
たごとく0.0020%より低い磁束密度B10が低下し、
製品の結晶粒径が大きくなり鉄損が劣化する。
0.0100%を超えると二次再結晶が十分行われず磁
束密度B10、鉄損とも不良となる。 なお上記成分以外に、Sb,Cr,Ni,Mo,V,
Bのごとくインヒビターとしての効果が公知であ
る元素を1種又は2種以上含んでも本発明の効果
が阻害されるものではない。上記成分を含み、残
部が鉄および不可避的不純物からなる珪素鋼スラ
ブを熱延し、最終冷延を行う前に焼鈍と急冷によ
るいわゆるAlNの析出処理が行われる。この焼
鈍としては本発明者らが先に出願した特開昭57−
198214号公報に示されるように2段階の温度域に
加熱する方法も適用される。 その後、最終冷延され、0.10〜0.35mmの板厚と
される。最終冷延の好ましい圧下率は80%以上で
ある。 次いで、かくして得られた冷延板は湿潤水素ま
たは窒素を含む湿潤水素雰囲気等の脱炭可能な雰
囲気下で脱炭焼鈍される。脱炭焼鈍後の鋼板表面
にMgOを主成分とする焼鈍分離剤を塗布し、乾
燥し、高温で仕上焼鈍する。 次に実施例について述べる。 実施例 1 C:0.072%、Si:3.36%、Mn:0.075%、S:
0.023%、酸可溶Al:0.028%、N:0.0084%、
Sn:0.10%、Cu:0.08%を含む溶鋼に、Tiを(a)
0.0006%,(b)0.0050%,(c)0.0155%の3水準に変
えて含有させ、残部が鉄および不可避的不純物か
らなる3種類のスラブとし、1350℃のスラブ加熱
を行い、厚さ2.3m/mの熱延板とした。この熱
延板を1130℃で2分間焼純し、焼鈍後急冷し、し
かる後板厚0.30m/mに冷延した。この冷延板を
湿潤水素雰囲気中において850℃で3分間脱炭焼
鈍し、焼鈍分離剤を塗布し窒素を含む水素雰囲気
中で25℃/hrの割合で1200℃迄昇温し、引続き水
素雰囲気中で1200℃で20時間の純化焼鈍を行つ
た。製品の磁気特性と二次再結晶状況を第1表に
示す。
(Industrial Application Field) The present invention relates to a method for producing a high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties. Unidirectional electrical steel sheets are soft magnetic materials that are mainly used as core materials for transformers and other electrical equipment, and must have good magnetic properties in terms of excitation properties and iron loss properties. In order to obtain good magnetic properties, it is important that the <001> axis, which is the axis of easy magnetization, is highly aligned in the rolling direction. In addition, plate thickness, crystal grain size, specific resistance, surface coating, etc. have a large effect on magnetic properties. The directionality has been greatly improved by a method characterized by final cold rolling under heavy reduction using AlN and MnS as inhibitors, and now products with magnetic flux density of about 96% of the theoretical value are manufactured. It's here.
Along with this, iron loss has improved significantly. On the other hand, reflecting the rise in energy prices in recent years, transformer manufacturers are increasingly turning to low core loss materials as materials for energy-saving transformers. Amorphous amorphous and 6.5% Si steel are being developed as low iron loss materials, but many problems still remain to be solved before they can be used as commercial materials for transformers. (Prior Art) In order to meet the current demand for low core loss materials, the present inventors have conducted various studies on reducing core loss in unidirectional electrical steel sheets. Based on the results of this research, the present inventors have previously proposed a high magnetic flux density unidirectional steel with excellent iron loss, characterized by the composite addition of Sn and Cu to silicon steel, as shown in Japanese Patent Application Laid-Open No. 58-23414. We proposed a manufacturing method for electrical steel sheets. This method has made it possible to manufacture products with significantly better core loss than before. However, the demand from transformer manufacturers for materials with lower core loss shows no signs of stopping, and in order to meet these demands, the present inventors have continued to conduct research into methods for more stably manufacturing materials with lower core loss. Ta. (Objective of the invention) (Structure and operation of the invention) As a result, C: 0.02 to 0.12%, Si: 2.7 to 4.0%,
Mn: 0.03-0.02%, at least one of S and Se:
0.01~0.05%, acid soluble Al: 0.01~0.05%, N:
0.004~0.012%, Sn: 0.03~0.5%, Cu: 0.02~
A silicon steel slab containing 0.4%, Ti: 0.0020% or more and less than 0.0100, with the balance consisting of iron and unavoidable impurities is hot rolled, annealed and quenched before final cold rolling, and then final cold rolled. and decarburization annealing.
By applying an annealing separator and performing high-temperature finish annealing, it is possible to stably produce unidirectional electrical steel sheets with good secondary recrystallization, small grain size, extremely low iron loss, and extremely high magnetic flux density. I found it. The details of the present invention will be explained below. First, I will explain based on experimental data. C: 0.070%, Si: 3.25%, Mn: 0.074%, S:
0.024%, acid soluble Al: 0.027%, N: 0.0083%,
For molten steel containing Sn: 0.10%, Cu: 0.08%, the Ti content is varied from 0.0005 to 0.0200%,
A slab with the balance consisting of iron and unavoidable impurities was produced, heated at a high temperature of 1350°C, and hot rolled to obtain a hot rolled sheet with a thickness of 2.3 m/m. The hot rolled sheet was annealed at 1100° C. for 2 minutes, rapidly cooled after annealing, and then cold rolled to 0.30 m/m. Subsequently, decarburization annealing was performed at 850°C for 3 minutes in a moist hydrogen atmosphere, an annealing separator mainly composed of MgO was applied, and the temperature was raised to 1200°C at a rate of 20°C/hr in a hydrogen atmosphere containing nitrogen. Thereafter, purification annealing was performed for 20 hours in a hydrogen atmosphere. Figure 1 shows the magnetic flux density (B 10 ) and B shows the iron loss (W 17/50 ) of the magnetic properties of the product. Figure 1A,
As shown in B, the magnetic properties changed depending on the Ti content, and in the range of 0.0020% or more and less than 0.0100%, the magnetic flux density B10 was high and the iron loss was extremely low. Ti
When the content was lower than 0.0020%, the magnetic flux density B10 decreased and the iron loss became poor. Also, Ti content is 0.0100%
Above this, the magnetic flux density B 10 decreased and the iron loss became poor. Particularly when it exceeded 0.0140%, the magnetic flux density B 10 decreased significantly and the iron loss also became extremely poor. After measuring the magnetic properties, the sample was pickled, the surface coating was removed, and the macrostructure of the product was observed. The results are shown in FIG. 1C and D. Figure 1C shows the area ratio of the good secondary recrystallization area (hereinafter referred to as the secondary recrystallization rate).
Figure D shows the average grain size for a sample with a secondary recrystallization rate of 100%. As shown in Figure 1 C, Ti content is 0.0010% or more
In the range less than 0.0100%, the secondary recrystallization rate is
When it was 100% and lower than 0.0010%, the secondary recrystallization rate decreased slightly. Further, when the Ti content was 0.0100% or more, the secondary recrystallization rate decreased, and when it exceeded 0.0140%, it decreased significantly. Ti content less than 0.0010% and
The deterioration of magnetic properties at 0.0100% or more is considered to be due to poor secondary recrystallization. Next, as shown in Figure 1D, the secondary recrystallization rate is 100
% Ti content in the range of 0.0010% or more and less than 0.0100%, the higher the Ti content, the smaller the crystal grain size. In particular, when Ti is 0.0020% or more, the crystal grain size is small and the iron loss is low. Ti content 0.0010%
Even if it is less than 0.0020%, the secondary recrystallization rate is 100% as described above, but the iron loss is not so low. Generally, as the magnetic flux density B 10 increases, hysteresis loss decreases, and as the grain size decreases, eddy current loss tends to decrease.
As described above, the change in iron loss in the range of less than 0.0100% can be explained by the change in magnetic flux density B 10 in FIG. 1A and the change in crystal grain size in FIG. 1D. FIG. 2 shows the product macrostructures of samples A, B, C, D, and E shown in FIG. 1C. Linear fine grains can be seen in A. In case B, the secondary recrystallization is complete, but the crystal grain size is large. In case 3, the secondary recrystallization is complete and the grain size is small. In D, the occurrence of mixed grains and fine grains is observed, and in E, the occurrence of mixed grains and fine grains is severe. In the production of unidirectional electrical steel sheets using AlN as the main inhibitor, the
Although the mechanism by which Ti content affects the secondary recrystallization, grain size, and magnetic properties of products is not fully understood, Ti is an element that has a strong affinity with N, C, O, etc., and their precipitation may occur. AlN, MnS,
It is thought that as a composite precipitate such as MnSe, it has a subtle influence on the inhibition effect. Figure 3 shows C=0.070%, Si=3.25%, Mn=0.074
%, S = 0.024%, acid soluble Al = 0.027%, N =
Ti added to 0.0083%, Sn=0.10%, Cu=0.08% steel
Contain 0.0012%, 0.0030%, 0.0049%, respectively,
The texture of a decarburized annealed plate for a material in which the remainder consists of iron and unavoidable impurities is shown. The surface strength of this texture was measured at a point 40μ below the plate surface. It can be seen that the (110) surface strength increases as the Ti content increases. If we consider the phenomenon shown in Figure 1, we can think of it as follows. When the Ti content is less than 0.0010%
The inhibition effect support by the Ti compound was insufficient, and secondary recrystallization failure occurred. Ti content 0.0010
In the range of % or more and less than 0.0100%, the higher the Ti content, the more appropriate the inhibition effect and the stronger the (110) plane strength of the decarburized annealed plate, especially when the Ti content is 0.0020%.
Above, the product directionality is high in the range of less than 0.0100,
The grain size was small and iron loss was good. It also has excellent magnetic flux density. When the Ti content exceeds 0.0100%, it is thought that N, which should originally become AlN, is consumed by Ti too much, and AlN, which serves as the main inhibitor, is insufficient, resulting in the generation of mixed particle diameters. By the way, Ti is used in the production of unidirectional electrical steel sheets.
Several proposals have been made so far to add . For example, in Japanese Patent Publication No. 46-26621, silicon steel
Unidirectional electrical steel sheets are produced by adding 0.01 to 0.2% Ti and using TiN as an inhibitor.
A large amount of Ti is added. In the case of the production method related to the present invention, the Ti content is
If it exceeds 0.0100%, as can be easily estimated from FIG. 1, secondary recrystallization will occur and the magnetic properties will be significantly deteriorated. In JP-A No. 52-24116, C: 0.085
% or less, Si: 2.0~4.0%, acid soluble Al: 0.010~
Contains 0.065%, and further contains Zr, Ti, B, Nb, Ta, V,
Contains one or more nitride-forming elements such as Cr, Mo, etc., and the content is Zr, Ti, B
It has been suggested that the content be 0.0005 to 0.05%. However, it is extremely difficult to obtain a product with stable magnetic properties over a wide range of Ti: 0.0005 to 0.05% in Si 2.7% or more, which is the target range of the present invention, and as shown in the present invention, Sn, By controlling Ti to 0.0020 or more and less than 0.0100% in addition to the combined addition of Cu, it is possible to stably produce products with complete secondary recrystallization, high directionality, small grain size, and extremely good iron loss. It became possible to manufacture it. In JP-A-55-14858, C: 0.06% or less, Si: 2.0 to 4.0%, Mn: 0.02 to 0.15%, Se, S
Any one or two of: 0.008 to 0.080% of at least one of Nb and Ti in the material,
0.002 to 0.0012% for Nb, and 0.002% for Ti.
It is proposed to contain 0.005 to 0.018%. As shown in the specification, this is an acid-soluble
A technology based on materials with Al: 0.003% or less, acid-soluble Al: 0.01-0.05%, N: 0.004-0.012%
The present invention is different from the present invention, which relates to the production of high magnetic flux density unidirectional electrical steel sheets using AlN as the main inhibitor. Next, the reasons for determining the components and other manufacturing conditions in the present invention will be described below. When C is less than 0.02%, secondary recrystallization becomes poor, and when it exceeds 0.12%, it is unfavorable from the viewpoint of decarburization and magnetic properties. If Si is less than 2.7%, the low core loss that is the aim of the present invention cannot be obtained, and if it exceeds 4%, cold rollability will be significantly degraded. From the point of view of iron loss, the preferred range of Si is 3.0 to 4.0.
%. Mn and S or Se are elements necessary to form MnS or MnSe. The appropriate amount of Mn to obtain a suitable inhibitor effect is 0.03-0.20%, preferably 0.05-0.15%. If S or Se is less than 0.01%, a sufficient inhibitor effect cannot be obtained, and if it exceeds 0.05%, purification becomes difficult, which is not preferable. Moreover, at least one type of S and Se is contained. Acid soluble Al and N as main inhibitors
These are important elements for forming AlN, and each must be controlled within an appropriate range in order to sufficiently exhibit secondary recrystallization through appropriate inhibition effects and obtain excellent magnetic properties. Acid soluble Al is 0.01
If it is less than 0.05%, the orientation of the product will be poor, and if it exceeds 0.05%, secondary recrystallization will become unstable, so a particularly preferable range is 0.020 to 0.040%. If N is less than 0.004%, secondary recrystallization becomes unstable, and if it exceeds 0.012%, blistering occurs, so 0.005 to 0.009% is a particularly preferable range. Sn is useful for stabilizing secondary recrystallization and refining the crystal grain size of the product. If it is less than 0.03%, the effect is weak, and if it exceeds 0.5%, cold rollability is poor. 0.05~0.20%
is a particularly preferred range. Cu helps produce a good glass film in Sn-added materials, and if it is less than 0.02%, its effect is poor, and if it exceeds 0.4%, pickling properties and decarburization properties deteriorate.
A particularly preferred range is 0.05-0.20%. Regarding Ti, as described in detail in Figure 1 earlier, the magnetic flux density B 10 lower than 0.0020% decreases,
The crystal grain size of the product increases and iron loss deteriorates.
If it exceeds 0.0100%, secondary recrystallization will not be performed sufficiently, resulting in poor magnetic flux density B 10 and iron loss. In addition to the above components, Sb, Cr, Ni, Mo, V,
Even if one or more elements such as B, which are known to have inhibitory effects, are included, the effects of the present invention will not be inhibited. A silicon steel slab containing the above components with the remainder consisting of iron and unavoidable impurities is hot rolled, and before final cold rolling, a so-called AlN precipitation treatment is performed by annealing and rapid cooling. As for this annealing, the present inventors previously filed an application for JP-A-57-
A method of heating in two temperature ranges as shown in Japanese Patent No. 198214 is also applicable. After that, it is finally cold rolled to a thickness of 0.10 to 0.35 mm. A preferable rolling reduction ratio in the final cold rolling is 80% or more. The cold-rolled sheet thus obtained is then decarburized and annealed in a decarburizing atmosphere such as wet hydrogen or a wet hydrogen atmosphere containing nitrogen. After decarburization annealing, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, dried, and final annealed at a high temperature. Next, an example will be described. Example 1 C: 0.072%, Si: 3.36%, Mn: 0.075%, S:
0.023%, acid soluble Al: 0.028%, N: 0.0084%,
Ti (a) is added to molten steel containing Sn: 0.10% and Cu: 0.08%.
The content was changed to 0.0006%, (b) 0.0050%, and (c) 0.0155% to form three types of slabs with the remainder consisting of iron and unavoidable impurities, and the slabs were heated to 1350°C to a thickness of 2.3 m. /m hot rolled sheet. This hot-rolled sheet was annealed at 1130° C. for 2 minutes, rapidly cooled after annealing, and then cold-rolled to a thickness of 0.30 m/m. This cold-rolled sheet was decarburized annealed at 850°C for 3 minutes in a wet hydrogen atmosphere, coated with an annealing separator, heated to 1200°C at a rate of 25°C/hr in a hydrogen atmosphere containing nitrogen, and then heated to 1200°C in a hydrogen atmosphere containing nitrogen. Purification annealing was carried out at 1200°C for 20 hours. Table 1 shows the magnetic properties and secondary recrystallization status of the product.

【表】 実施例 2 C:0.080%、Si:3.35%、Mn:0.076%、S:
0.024%、酸可溶Al:0.027%、N:0.0083%、
Sn:0.13%、Cu:0.09%を含む溶鋼に、Tiを(d)
0.0006%,(e)0.0015%,(f)0.0042%,(g)0.0125%
の4水準に変えて含有させ、残部が鉄および不可
避的不純物からなる4種類のスラブとし、1350℃
のスラブ加熱を行い、板厚2.0m/mの熱延板と
した。最終冷延の前に1120℃で2分間焼鈍し、焼
鈍後急冷し、しかる後板厚0.20m/mに冷延し
た。かくして得られた冷延板を湿潤水素雰囲気中
において840℃で3分間脱炭焼鈍し、焼鈍分離剤
を塗布し窒素を含む水素雰囲気中で20℃/hrで
1200℃迄昇温し引続き水素雰囲気中で1200℃で20
時間の純化焼鈍を行つた。製品の磁気特性と二次
再結晶状況を第2表に示す。
[Table] Example 2 C: 0.080%, Si: 3.35%, Mn: 0.076%, S:
0.024%, acid soluble Al: 0.027%, N: 0.0083%,
Ti (d) is added to molten steel containing Sn: 0.13% and Cu: 0.09%.
0.0006%, (e) 0.0015%, (f) 0.0042%, (g) 0.0125%
1350°C.
The slab was heated to produce a hot-rolled sheet with a thickness of 2.0 m/m. Before final cold rolling, it was annealed at 1120°C for 2 minutes, rapidly cooled after annealing, and then cold rolled to a thickness of 0.20 m/m. The thus obtained cold-rolled sheet was decarburized and annealed at 840°C for 3 minutes in a humid hydrogen atmosphere, coated with an annealing separator, and then annealed at 20°C/hr in a nitrogen-containing hydrogen atmosphere.
The temperature was raised to 1200℃ and then heated at 1200℃ for 20 minutes in a hydrogen atmosphere.
A time purification annealing was performed. Table 2 shows the magnetic properties and secondary recrystallization status of the product.

【表】 実施例 3 C:0.070%、Si:3.25%、Mn:0.075%、Se:
0.025%、酸可溶Al:0.028%、N:0.0085%、
Sn:0.12%、Cu:0.08%を含む溶鋼に、Tiを(h)
0.0010%,(i)0.0067%,(j)0.0142%の3水準に変
えて含有させ、残部が鉄および不可避的不純物か
らなる3種類のスラブとし、実施例1記載の方法
に準じて熱延及び工程処理を行つた。製品の磁気
特性と二次再結晶状況を第3表に示す。
[Table] Example 3 C: 0.070%, Si: 3.25%, Mn: 0.075%, Se:
0.025%, acid soluble Al: 0.028%, N: 0.0085%,
Ti (h) is added to molten steel containing Sn: 0.12% and Cu: 0.08%.
The content was changed to three levels: 0.0010%, (i) 0.0067%, and (j) 0.0142%, and three types of slabs were prepared, with the remainder consisting of iron and unavoidable impurities, and hot rolled and rolled according to the method described in Example 1. Process processing was performed. Table 3 shows the magnetic properties and secondary recrystallization status of the product.

【表】 以上詳述したように本発明方法によると高磁束
密度でかつ鉄損の低いすぐれた一方向性電磁鋼板
が製造される。
[Table] As detailed above, according to the method of the present invention, an excellent unidirectional electrical steel sheet with high magnetic flux density and low core loss can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関する一実験結果を示す図、
第2図は本発明に関する一実験においての製品の
マクロ組織を示す金属顕微鏡写真図、第3図は脱
炭焼鈍板の集合組織におよぼすTi含有量の影響
を示す図である。
FIG. 1 is a diagram showing the results of an experiment related to the present invention;
FIG. 2 is a metallurgical microscope photograph showing the macrostructure of a product in an experiment related to the present invention, and FIG. 3 is a diagram showing the influence of Ti content on the texture of a decarburized annealed plate.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.02〜0.12%,Si:2.7〜4.0%,Mn:
0.03〜0.20%,SとSeの少なくとも1種:0.01〜
0.05%,酸可溶Al:0.01〜0.05%,N:0.004〜
0.012%,Sn:0.03〜0.5%,Cu:0.02〜0.4%,
Ti:0.0020%以上0.0100%未満を含み、残部が鉄
および不可避的不純物からなる珪素鋼スラブを熱
延し、最終冷延を行う前に焼鈍と急冷処理を行
い、続いて最終冷延を行い、脱炭焼鈍を行い、焼
鈍分離剤を塗布し、高温仕上焼鈍を行うことを特
徴とする磁気特性の優れた高磁束密度一方向性電
磁鋼板の製造方法。
1 C: 0.02-0.12%, Si: 2.7-4.0%, Mn:
0.03~0.20%, at least one of S and Se: 0.01~
0.05%, acid soluble Al: 0.01~0.05%, N: 0.004~
0.012%, Sn: 0.03~0.5%, Cu: 0.02~0.4%,
Hot-rolling a silicon steel slab containing Ti: 0.0020% or more and less than 0.0100%, with the balance consisting of iron and unavoidable impurities, annealing and rapid cooling treatment before final cold rolling, followed by final cold rolling, A method for producing a high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties, which comprises performing decarburization annealing, applying an annealing separator, and performing high-temperature finish annealing.
JP4071684A 1984-03-03 1984-03-03 Production of grain oriented electrical steel sheet having high magnetic flux density and excellent magnetic characteristic Granted JPS60184632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4071684A JPS60184632A (en) 1984-03-03 1984-03-03 Production of grain oriented electrical steel sheet having high magnetic flux density and excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4071684A JPS60184632A (en) 1984-03-03 1984-03-03 Production of grain oriented electrical steel sheet having high magnetic flux density and excellent magnetic characteristic

Publications (2)

Publication Number Publication Date
JPS60184632A JPS60184632A (en) 1985-09-20
JPS6311407B2 true JPS6311407B2 (en) 1988-03-14

Family

ID=12588307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4071684A Granted JPS60184632A (en) 1984-03-03 1984-03-03 Production of grain oriented electrical steel sheet having high magnetic flux density and excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS60184632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262304A (en) * 1988-08-25 1990-03-02 Seibu Electric & Mach Co Ltd Picker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262304A (en) * 1988-08-25 1990-03-02 Seibu Electric & Mach Co Ltd Picker

Also Published As

Publication number Publication date
JPS60184632A (en) 1985-09-20

Similar Documents

Publication Publication Date Title
US20090126832A1 (en) Method of production of grain-oriented electrical steel sheet having a high magnetic flux density
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
US5139582A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
KR930004849B1 (en) Electrcal steel sheet having a good magnetic property and its making process
JPH02298219A (en) Production of thin grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss
JP2014208895A (en) Method of producing grain oriented electrical steel
JPS6311406B2 (en)
JPS6311407B2 (en)
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
KR102513027B1 (en) Grain oriented electrical steel sheet and method for menufacturing the same
JP2525721B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JP2724659B2 (en) High magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JPH02282422A (en) Production of high-flux-density thin grain-oriented magnetic steel sheet
KR930004847B1 (en) Oriented electrical steel sheet having a good high magnetic flux and its making process
JP2525722B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP4075088B2 (en) Method for producing grain-oriented electrical steel sheet
JP2000345305A (en) High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss and its production
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPS6253577B2 (en)
JPH02209426A (en) Production of thin grain-oriented silicon sheet with high magnetic flux density excellent in magnetic property of product by single-stage cold rolling method