JPS63113147A - Air-fuel ratio controlling method for internal combustion engine - Google Patents

Air-fuel ratio controlling method for internal combustion engine

Info

Publication number
JPS63113147A
JPS63113147A JP25920186A JP25920186A JPS63113147A JP S63113147 A JPS63113147 A JP S63113147A JP 25920186 A JP25920186 A JP 25920186A JP 25920186 A JP25920186 A JP 25920186A JP S63113147 A JPS63113147 A JP S63113147A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
value
correction value
ratio control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25920186A
Other languages
Japanese (ja)
Inventor
Yoshitaka Hibino
日比野 義貴
Atsushi Totsune
戸恒 厚志
Naohiko Sato
直彦 佐藤
Koji Kajita
梶田 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25920186A priority Critical patent/JPS63113147A/en
Publication of JPS63113147A publication Critical patent/JPS63113147A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To aim at improvement air-fuel ratio control accuracy just after a drive range variation, by varying a reference correction value, controlling the reference value of air-fuel ratio control, gradually from value just before a variation to that just after the variation at a time when a drive range is varied. CONSTITUTION:A control circuit 20 reads the reference value of air-fuel ratio control to be outputted to a linear type solenoid valve 9, on the basis of each detected value out of a suction absolute pressure sensor 10 and a crank angle sensor 11, and it determines an air-fuel ratio correction value on the basis of the detected value of the oxygen sensor 14 when an air-fuel ratio feedback condition is effected. And, when the detected value of the oxygen sensor 14 is reversed, it calculates a reference for compensating an error in the reference value corresponding to a drive range and renews it. And, when this drive range is varied, it sets the value between the adjacent reference correction value and the newset reference correction value in the adjacent drive range as the reference correction value, thereby determining the air-fuel ratio control output value.

Description

【発明の詳細な説明】 1丘且1 本発明は内燃エンジンの空燃比制御方法に関する。[Detailed description of the invention] 1 hill and 1 The present invention relates to an air-fuel ratio control method for an internal combustion engine.

1旦五I 内燃エンジンの排気ガス浄化、燃費改善等のために排気
ガス中の酸素濃度を酸素濃度センサによって検出し、こ
の酸素濃度センサの出力レベルに応じてエンジンへの供
給混合気の空燃比をフィードバック制御する空燃比1I
Jtll装置が知られている。
1.5I In order to purify the exhaust gas of an internal combustion engine and improve fuel efficiency, the oxygen concentration in the exhaust gas is detected by an oxygen concentration sensor, and the air-fuel ratio of the mixture supplied to the engine is determined according to the output level of this oxygen concentration sensor. Feedback control of air-fuel ratio 1I
Jtll devices are known.

この空燃比11JI!l装置として気化器絞り弁下流に
連通ずる吸気2次空気供給通路に電磁弁を設けて酸素濃
度センサの出力レベルに応じて電磁弁の開度すなわち吸
気2次空気供給旦を制御するフィードバック制御用吸気
2次空気供給力式の空燃比制御装置がある(例えば、特
公昭55−3533号)。
This air fuel ratio is 11JI! As a device, a solenoid valve is provided in the intake secondary air supply passage that communicates with the downstream side of the vaporizer throttle valve, and is used for feedback control to control the opening degree of the solenoid valve, that is, the intake secondary air supply rate, according to the output level of the oxygen concentration sensor. There is an air-fuel ratio control device that uses an intake secondary air supply force (for example, Japanese Patent Publication No. 55-3533).

このような従来の空燃比制御装置においては、酸素濃度
センサの出力レベルから供給混合気の空燃比が目標空燃
比に対してリーン又はリッチのいずれであるかを判別し
、その判別結果に応じて所定周期毎に空燃比補正値を比
例壁又は積分量だけ増減し、空燃比補正値に応じて吸気
2次空気供給員を補正制御するPI(比例積分)制御が
通常行なわれている。
In such conventional air-fuel ratio control devices, it is determined from the output level of the oxygen concentration sensor whether the air-fuel ratio of the supplied air-fuel mixture is lean or rich with respect to the target air-fuel ratio, and the control is performed according to the determination result. PI (proportional integral) control is normally performed in which the air-fuel ratio correction value is increased or decreased by a proportional wall or an integral amount at predetermined intervals, and the intake secondary air supply member is corrected and controlled in accordance with the air-fuel ratio correction value.

ところで、気化器の経年変化、又は劣化のために気化器
のベース空燃比が予め定められた値からずれることによ
り設定された基準値が目標空燃比に対応しなくなり誤差
を生じてくることが通常である。よって、運転領域毎に
基準値の誤差を補正するための基準補正値を算出し新し
い基準補正値を記憶する学習制御を行ない、空燃比制御
精度の向上を図ったものがある。
By the way, it is common for the base air-fuel ratio of the carburetor to deviate from a predetermined value due to aging or deterioration of the carburetor, causing the set reference value to no longer correspond to the target air-fuel ratio and resulting in an error. It is. Therefore, there are systems that perform learning control in which a reference correction value for correcting the error in the reference value is calculated for each operating region and a new reference correction value is stored, thereby improving the accuracy of air-fuel ratio control.

しかしながら、学習制御により運転領域毎に記憶されて
いる基準補正値に互いに大きな差がある場合には運転領
域が変化すると、基準補正値が変化直前の値から大きく
変動し、基準値及びPI副制御よる空燃比補正値の変化
が小さいときでも基準補正値の変動によって空燃比制御
値が変化するので空燃比制御精度が悪化する可能性があ
る。
However, if there is a large difference between the reference correction values stored for each operating region due to learning control, when the operating region changes, the reference correction value will fluctuate greatly from the value immediately before the change, and the reference value and PI sub-control Even when the change in the air-fuel ratio correction value is small, the air-fuel ratio control value changes due to fluctuations in the reference correction value, so the air-fuel ratio control accuracy may deteriorate.

11夏且I そこで、本発明の目的は、基準補正値を設定するための
運転領域が変化した直後の空燃比制御精度の向上を図る
ことができる内燃エンジンの空燃比制御方法を提供する
ことである。
11 Summer and I Therefore, an object of the present invention is to provide an air-fuel ratio control method for an internal combustion engine that can improve the accuracy of air-fuel ratio control immediately after the operating range for setting a reference correction value changes. be.

本発明の内燃エンジンの空燃比制御方法は、少なくとも
運転領域が変化した直後だけは前回の制御出力値決定に
用いた基準補正値とそのと゛きの運転領域における最新
の基準補正値との間の値を今回の制御出力値決定用の基
準補正値として設定することを特徴としている。
In the air-fuel ratio control method for an internal combustion engine of the present invention, at least immediately after the operating range changes, the value between the reference correction value used for determining the previous control output value and the latest reference correction value in the current operating range is set. is set as the reference correction value for determining the current control output value.

叉−1Jl 以下、本発明の実施例を図面を参照しつつ説明する。叉-1Jl Embodiments of the present invention will be described below with reference to the drawings.

第1図に示した本発明の空燃比制御方法を適用した車載
内燃エンジンの吸気2次空気供給方式の空燃比制御装置
においては、気化器1の絞り弁3より下流の吸気マニホ
ールド4とエアクリーナ2の空気吐出口近傍とは吸気2
次空気供給通路8によって連通されている。吸気2次空
気供給通路8にはリニア型の電磁弁9が設けられている
。電磁弁9の開度はそのソレノイド9aに供給される電
流値に比例して変化する。
In the air-fuel ratio control device of the intake secondary air supply system for an on-vehicle internal combustion engine to which the air-fuel ratio control method of the present invention is applied, as shown in FIG. The vicinity of the air outlet is the intake 2
The air supply passages 8 communicate with each other. A linear solenoid valve 9 is provided in the intake secondary air supply passage 8 . The opening degree of the solenoid valve 9 changes in proportion to the current value supplied to the solenoid 9a.

絞り弁3近傍の気化器1内壁面には負圧検出ボート6が
設けられている。負圧検出ボート6は絞り弁3が所定開
度以下のときに絞り弁3の上流に位置し、絞り弁3が所
定開度より大のときに絞り弁3の下流に位置する。負圧
検出ボート6における負圧は負圧通路6aを介して負圧
スイッチ7に供給される。負圧スイッチ7は絞り弁3の
閉弁状態を検出するために設けられており、負圧検出ボ
ート6における負圧が例えば、30 mmt1g以下の
ときオンとなる。
A negative pressure detection boat 6 is provided on the inner wall surface of the carburetor 1 near the throttle valve 3. The negative pressure detection boat 6 is located upstream of the throttle valve 3 when the opening of the throttle valve 3 is less than a predetermined opening, and is located downstream of the throttle valve 3 when the opening of the throttle valve 3 is greater than the predetermined opening. The negative pressure in the negative pressure detection boat 6 is supplied to the negative pressure switch 7 via the negative pressure passage 6a. The negative pressure switch 7 is provided to detect the closed state of the throttle valve 3, and is turned on when the negative pressure in the negative pressure detection boat 6 is, for example, 30 mmt1g or less.

一方、10は吸気マニホールド4に設けられ吸気マニホ
ールド4内の絶対圧に応じたレベルの出力を発生する絶
対圧センサ、11はエンジン5のクランクシャフト(図
示せず)の回転に応じてパルスを発生するクランク角セ
ンサ、12はエンジン5の冷却水温に応じたレベルの出
力を発生する冷却水温センサ、13は吸気温を検出する
吸気温センサ、14はエンジン5の排気マニホールド1
5に設けられ排気ガス中の酸素濃度に応じた出力電圧を
発生する酸素濃度センサであるa酸素濃度センサ14の
配設位置より下流の排気マニホールド15には排気ガス
中の有害成分の低減を促進させるために触媒コンバータ
33が設けられている。
On the other hand, 10 is an absolute pressure sensor installed in the intake manifold 4 and generates an output at a level corresponding to the absolute pressure inside the intake manifold 4, and 11 generates a pulse in accordance with the rotation of the crankshaft (not shown) of the engine 5. 12 is a cooling water temperature sensor that generates an output at a level corresponding to the cooling water temperature of the engine 5; 13 is an intake temperature sensor that detects the intake air temperature; 14 is an exhaust manifold 1 of the engine 5;
The exhaust manifold 15 downstream of the installation position of the a oxygen concentration sensor 14, which is an oxygen concentration sensor installed in the exhaust gas and generates an output voltage according to the oxygen concentration in the exhaust gas, is equipped with an exhaust manifold 15 that promotes the reduction of harmful components in the exhaust gas. A catalytic converter 33 is provided for this purpose.

負圧スイッチ7、電磁弁9、絶対圧センサ101クラン
ク角センサ11、水温センサ12、吸気温センサ13及
び酸素濃度センサ14は制御回路20に接続されている
。負圧スイッチ7はオフ時に低レベル出力を発生し、オ
ン時に高レベル出力を発生する。
The negative pressure switch 7 , solenoid valve 9 , absolute pressure sensor 101 , crank angle sensor 11 , water temperature sensor 12 , intake temperature sensor 13 , and oxygen concentration sensor 14 are connected to a control circuit 20 . The negative pressure switch 7 generates a low level output when turned off, and generates a high level output when turned on.

制御回路20は第2図に示すように絶対圧センサ10、
水温センサ12、吸気温センサ13、酸素S度センサ1
4の各出力レベルを変換するレベル変換回路21と、レ
ベル変換回路21を経た各センサ出力の1つを選択的に
出力するマルチプレクサ22と、このマルチプレクサ2
2から出力される信号をディジタル信号に変換するA/
D変換器23と、クランク角センサ11の出力信号を波
形整形する波形整形回路24と、波形整形回路24から
パルスとして出力されるTDC信号の発生間隔をクロッ
クパルス発生回路(図示せず)から出力されるクロック
パルス数によって計測するカウンタ25と、負圧スイッ
チ7の出力レベルを変換するレベル変換回路26と、そ
の変換出力をディジタルデータとするディジタル入カモ
シュレータ27と、電磁弁9を開弁駆動する駆動回路2
8と、プログラムに従ってディジタル演算を行なうCP
U (中央演算回路)29と、各種の処理プログラム及
びデータが予め書き込まれたROM30と、RAM31
とからなっている。電磁弁9のソレノイド9aは駆動回
路28の駆動トランジスタ及び電流検出用抵抗(共に図
示せず)に直列に接続されてその直列回路の両端間に電
源電圧が供給される。マルチプレクサ22、A/D変換
器23、カウンタ25、ディジタル入カモシュレータ2
7、駆動回路28、CPtJ29、ROM30及びRA
M31は入出力バス32によって互いに接続されている
The control circuit 20 includes an absolute pressure sensor 10, as shown in FIG.
Water temperature sensor 12, intake temperature sensor 13, oxygen S degree sensor 1
4, a multiplexer 22 that selectively outputs one of the sensor outputs that have passed through the level conversion circuit 21;
A/2 converts the signal output from 2 into a digital signal.
A D converter 23, a waveform shaping circuit 24 that shapes the output signal of the crank angle sensor 11, and a clock pulse generation circuit (not shown) that outputs the generation interval of the TDC signal output as a pulse from the waveform shaping circuit 24. A counter 25 that measures the number of clock pulses, a level conversion circuit 26 that converts the output level of the negative pressure switch 7, a digital input camosulator 27 that converts the converted output into digital data, and a solenoid valve 9 that is driven to open. Drive circuit 2
8, and a CP that performs digital operations according to the program.
U (central processing circuit) 29, ROM 30 in which various processing programs and data are written in advance, and RAM 31
It consists of The solenoid 9a of the electromagnetic valve 9 is connected in series with a drive transistor and a current detection resistor (both not shown) of a drive circuit 28, and a power supply voltage is supplied across the series circuit. Multiplexer 22, A/D converter 23, counter 25, digital input camosulator 2
7. Drive circuit 28, CPtJ29, ROM30 and RA
M31 are connected to each other by an input/output bus 32.

かかる構成においては、A/D変換器23から吸気マニ
ホールド4内の絶対圧、冷W*扇、吸気温、及び排気ガ
ス中の酸素濃度の情報が択一的に、カウンタ25からエ
ンジン回転数を表わす情報が、またディジタル入カモシ
ュレータ27から負圧スイッチ7のオンオフがCPLJ
29に入出力バス32を介して各々供給される。CPL
I29は後述の如く所定周期T+  (例えば、50m
5ec)毎に処理プログラムを実行することにより電磁
弁9のソレノイド9aへの供給電流値を表わす空燃比制
御出力値DOUTをデータとして算出し、その算出した
出力値DOUTを駆動回路28に供給する。
In such a configuration, the information on the absolute pressure in the intake manifold 4, the cold W*fan, the intake temperature, and the oxygen concentration in the exhaust gas is alternatively transmitted from the A/D converter 23, and the engine speed is determined from the counter 25. The information displayed is also the on/off of the negative pressure switch 7 from the digital input camosulator 27.
29 via an input/output bus 32. C.P.L.
I29 has a predetermined period T+ (for example, 50 m
By executing the processing program every 5 ec), an air-fuel ratio control output value DOUT representing the value of current supplied to the solenoid 9a of the solenoid valve 9 is calculated as data, and the calculated output value DOUT is supplied to the drive circuit 28.

駆動回路28はソレノイド9aに流れる電流値が出力値
DOUTになるようにソレノイド9aに流れる電流値を
閉ループ制御する。
The drive circuit 28 performs closed loop control on the current value flowing through the solenoid 9a so that the current value flowing through the solenoid 9a becomes the output value DOUT.

次に、かかる本発明による空燃比制御方法の手順を第3
図に示したCPU29の動作フロー図に従って詳細に説
明する。
Next, the steps of the air-fuel ratio control method according to the present invention will be described in the third step.
A detailed explanation will be given according to the operation flow diagram of the CPU 29 shown in the figure.

CPU29は第3図に示すように先ず、吸気絶対圧P 
s A 1冷却水温Tw1吸気温TA、エンジン回転数
Ne及び酸素濃度02を各々読み込み(ステップ51)
、吸気温TAが所定温度T1(例えば、25℃)より大
であるか否かを判別する(ステップ52)。TA >T
Iならば、冷却水m T wが所定温度T2  (例え
ば、80℃)より大であるか否かを判別する(ステップ
53)。TA≦T+、又はTW≦T2ならば、空燃比フ
ィード□  バック制御条件を充足していないので出力
値DOLJTをOに等しクシ(ステップ54)、空燃比
フィードバック係数Kozを1に等しくする(ステップ
55)。T W > T 2ならば、空燃比フィードバ
ック制御条件を充足しているとして電磁弁9へ供給する
基準電流値を表わす基準1iflDe A S Eを検
索する(ステップ56)。ROM30には第4図に示す
ように絶対圧PBAとエンジン回転数Neとから定まる
基準値D8ASεがDOA S Eデータマツプとして
予め書き込まれているので、CPU29は読み込んだ絶
対圧PBAとエンジン回転数Neとに対応する基準値D
8A s EをDBASEデータマツプから検索する。
As shown in FIG. 3, the CPU 29 first calculates the intake absolute pressure P.
s A 1 Cooling water temperature Tw 1 Intake temperature TA, engine speed Ne, and oxygen concentration 02 are each read (step 51)
, it is determined whether the intake air temperature TA is higher than a predetermined temperature T1 (for example, 25° C.) (step 52). TA>T
If it is I, it is determined whether the cooling water m T w is higher than a predetermined temperature T2 (for example, 80° C.) (step 53). If TA≦T+ or TW≦T2, the air-fuel ratio feed □ back control condition is not satisfied, so the output value DOLJT is made equal to O (step 54), and the air-fuel ratio feedback coefficient Koz is made equal to 1 (step 55). If T W > T 2, it is assumed that the air-fuel ratio feedback control conditions are satisfied, and a reference 1iflDeASE representing a reference current value to be supplied to the electromagnetic valve 9 is searched (step 56). As shown in FIG. 4, the reference value D8ASε determined from the absolute pressure PBA and the engine speed Ne is pre-written in the ROM 30 as a DOA SE data map, so the CPU 29 uses the read absolute pressure PBA and the engine speed Ne. Reference value D corresponding to
Search for 8A s E from the DBASE data map.

基準値D8ASEの検索後、酸素濃度が目標空燃比に対
応する基準温度よりリーンであるか否かを、すなわち酸
素濃度センサ14の出力電圧VO2が基準値v’rer
(,0,5(V))より小であるか否かを判別する(ス
テップ57)。VO2<Vrefならば、空燃比が目標
空燃比よりリーンであるので前回のステップ57の判別
結果を表わす空燃比フラグFAFが1であるか否かを判
別する(ステップ58)。
After searching for the reference value D8ASE, it is determined whether the oxygen concentration is leaner than the reference temperature corresponding to the target air-fuel ratio, that is, the output voltage VO2 of the oxygen concentration sensor 14 is determined as the reference value v'rer.
It is determined whether it is smaller than (, 0, 5 (V)) (step 57). If VO2<Vref, the air-fuel ratio is leaner than the target air-fuel ratio, so it is determined whether the air-fuel ratio flag FAF representing the determination result of the previous step 57 is 1 (step 58).

FAF=Oならば、前回の空燃比がリッチであると判別
されリッチからリーンに反転したので空燃比補正係数K
O2(空燃比補正値)から比例制御分PLを減算しその
算出値を今回の補正係数に02としくステップ59)、
空燃比フラグFAFを1に等しく設定する(ステップ6
0)。FA F −1ならば、前回も空燃比がリーンで
あると判別したので空燃比補正係数KO2から積分制御
分ILを減算しその算出値を今回の補正係数KO2とす
る(ステップ61)。一方、ステップ57においてVO
2≧V refならば、空燃比が目標空燃比よりリッチ
であるので空燃比フラグFAFが0であるか否かを判別
する(ステップ62)。FA r−−1ならば、前回の
空燃比がリーンであると判別されリーンからリッチに反
転したので空燃比補正係数KO2に比例制御分PRを加
算しその算出値を今回の補正係数KO2としくステップ
63)、空燃比フラグFAFをOに等しく設定する(ス
テップ64)。FA F−0ならば、前回も空燃比がリ
ッチであると判別したので空燃比補正係数KO2に積分
制御分IRを加算しその算出値を今回の補正係数Koz
とする(ステップ65)。ステップ60又は64の実行
後は吸気マニホールド絶対圧PBAとエンジン回転数N
eとに応じた補正係数Krer(基準補正値)をK r
efデータマツプから検索する(ステップ66)。Kr
erデータマツプはRAM31に形成されており、第5
図に示すように吸気マニホールド絶対圧PBAとエンジ
ン回転数Neとに応じて定まる複数の運転領域毎に補正
係数K refが富き込まれる。この各補正係数Kre
fは制御回路20への電源投入時に初期化され、その初
期値は1.0である。補正係数K rerを検索すると
、その補正係数Krefを用いて次式により補正係数K
 refを算出する(ステップ67)。
If FAF=O, the previous air-fuel ratio was determined to be rich and changed from rich to lean, so the air-fuel ratio correction coefficient K
Subtract the proportional control amount PL from O2 (air-fuel ratio correction value) and set the calculated value as 02 as the current correction coefficient (step 59),
Set the air-fuel ratio flag FAF equal to 1 (step 6
0). If FA F -1, it was determined that the air-fuel ratio was lean last time as well, so the integral control portion IL is subtracted from the air-fuel ratio correction coefficient KO2, and the calculated value is set as the current correction coefficient KO2 (step 61). On the other hand, in step 57, the VO
If 2≧V ref, the air-fuel ratio is richer than the target air-fuel ratio, so it is determined whether the air-fuel ratio flag FAF is 0 (step 62). If FA r--1, the previous air-fuel ratio was determined to be lean and reversed from lean to rich, so add the proportional control amount PR to the air-fuel ratio correction coefficient KO2 and set the calculated value as the current correction coefficient KO2. Step 63) and setting the air-fuel ratio flag FAF equal to O (Step 64). If it is FA F-0, the air-fuel ratio was determined to be rich last time, so the integral control amount IR is added to the air-fuel ratio correction coefficient KO2, and the calculated value is used as the current correction coefficient Koz.
(Step 65). After execution of step 60 or 64, intake manifold absolute pressure PBA and engine speed N
The correction coefficient Krer (reference correction value) corresponding to e is K r
Search from the ef data map (step 66). Kr
The er data map is formed in the RAM 31, and
As shown in the figure, the correction coefficient K ref is enriched for each of a plurality of operating regions determined according to the intake manifold absolute pressure PBA and the engine rotation speed Ne. Each of these correction coefficients Kre
f is initialized when power is turned on to the control circuit 20, and its initial value is 1.0. When the correction coefficient K rer is searched, the correction coefficient K is calculated using the following formula using the correction coefficient Kref.
ref is calculated (step 67).

ここで、crerは定数、10000+は16進数の1
0000であり、またDouvn→は前回ステップ73
において算出された出力値DOLITである。
Here, crer is a constant, 10000+ is 1 in hexadecimal
0000, and Douvn→ is the previous step 73
This is the output value DOLIT calculated in .

補正係数K refを算出すると、絶対圧PBAとエン
ジン回転数Neとに対応するK refデータマツプの
領域に算出した補正係数Krefを書き込み(ステップ
68)、アイドル運転域であるか否か、を判別する。(
ステップ69)。またステップ61又は65において積
分制御をルたならば、吸気マニホールド絶対圧PEAと
エンジン回転数Neとに応じた補正係数K refをK
 refデータマツプから検索しくステップ70)、ス
テップ69においてアイドル運転域であるか否かを判別
する。
After calculating the correction coefficient Kref, the calculated correction coefficient Kref is written in the area of the Kref data map corresponding to the absolute pressure PBA and the engine speed Ne (step 68), and it is determined whether or not it is in the idle operating range. . (
Step 69). Furthermore, if the integral control is performed in step 61 or 65, the correction coefficient Kref corresponding to the intake manifold absolute pressure PEA and the engine speed Ne is set to K.
The engine is searched from the ref data map (step 70), and in step 69 it is determined whether or not the engine is in the idle operating range.

アイドル運転域ならば、補正係数KAVεをそのとき読
み出した、又は算出した補正係数Kref。
If it is in the idle operating range, the correction coefficient KAVε is the correction coefficient Kref read or calculated at that time.

すなわちKrefoに等しクシ(ステップ71)、アイ
ドル運転域でないならば、読み出した、又は算出した補
正係数Krerを用いて次式により補正係数KA V 
E j!r算出する(ステップ72)。
In other words, if the value is equal to Krefo (step 71), and if it is not in the idle operating range, the correction coefficient KA V is calculated by the following formula using the read or calculated correction coefficient Krer.
E j! r is calculated (step 72).

・・・(2) ここで、α、βは重みづけ平均の算出率変化係数、KA
 v i: n−+は前回の本ルーチン実行時に定めら
れだ補正係数KAVεであり、ステップ71又は72に
おいて補正係数KAVεが定められると、次回のステッ
プ71又は72の実行時点までは保持される。このよう
に補正係数KAVEを定めると、基準値DBASε、補
正係数KAVE及び空燃比補正係数KO2を乗算するこ
とによりに出力1!ID0LJTを算出しくステップ7
3)、その算出した出力値Dourを駆動回路28に対
して出力する(ステップ74)。
...(2) Here, α and β are weighted average calculation rate change coefficients, KA
v i:n-+ is the correction coefficient KAVε determined during the previous execution of this routine, and once the correction coefficient KAVε is determined in step 71 or 72, it is held until the next execution of step 71 or 72. When the correction coefficient KAVE is determined in this way, the output is 1! by multiplying the reference value DBASε, the correction coefficient KAVE, and the air-fuel ratio correction coefficient KO2. Calculate ID0LJT Step 7
3) The calculated output value Dour is output to the drive circuit 28 (step 74).

駆動回路28は電磁弁9のソレノイド9aに流れる電流
値を電流検出用抵抗によって検出してその検出電流値と
出力値DOUTとを比較し、比較結果に応じて駆動トラ
ンジスタをオンオフすることによりソレノイド9aに電
流を供給する。よって、ソレノイド9aには出力1iI
Do u yが表わす大きさの電流が流れ、ソレノイド
9aに流れる電流値に比例した量の吸気2次空気が吸気
マニホールド4内に供給されるのである。また出力値D
OUTが0の場合には電磁弁9が閉弁して吸気2次空気
の供給が停止される。
The drive circuit 28 detects the current value flowing through the solenoid 9a of the solenoid valve 9 using a current detection resistor, compares the detected current value with the output value DOUT, and turns on and off the drive transistor according to the comparison result to control the solenoid 9a. supply current to. Therefore, the solenoid 9a has an output 1iI.
A current having a magnitude represented by Do u y flows, and an amount of secondary intake air proportional to the value of the current flowing through the solenoid 9a is supplied into the intake manifold 4. Also, the output value D
When OUT is 0, the solenoid valve 9 is closed and the supply of intake secondary air is stopped.

なお、アイドル運転域は例えば、次の如く判別される。Note that the idle operating range is determined as follows, for example.

CPU29は、第6図に示すように先ず、負圧スイッチ
7がオンであるか否かを判別する(ステップ81)。負
圧スイッチ7がオンならば、吸気マニホールド4内の絶
対圧PBAが所定値PeArof(例えば、460〜4
80a+11g)より小であるか否かを判別する(ステ
ップ82)。P8^<PaArefならば、吸気マニホ
ールド4内には多きな負圧が存在し絞り弁3が全閉して
いるとし、エンジン回転数Neが所定値Ne!Dしく例
えば、900〜1000r、p、m )より小であるか
否かを判別する(ステップ83)。Ne<NeTDLな
らば、アイドル運転域であると判断するのである。
As shown in FIG. 6, the CPU 29 first determines whether the negative pressure switch 7 is on (step 81). When the negative pressure switch 7 is on, the absolute pressure PBA in the intake manifold 4 reaches a predetermined value PeArof (for example, 460 to 4
80a+11g) (step 82). If P8^<PaAref, it is assumed that a large negative pressure exists in the intake manifold 4 and the throttle valve 3 is fully closed, and the engine speed Ne is the predetermined value Ne! It is determined whether the value is smaller than (for example, 900 to 1000r, p, m) (step 83). If Ne<NeTDL, it is determined that the engine is in the idle operating range.

及JJと1里 以上の如く、本発明の空燃比制御方法においては、基準
補正値の学習制御のための運転領域が変化したとき変化
直前に空燃比制御出力値Douy決定に用いた基準補正
値から最新の基準補正値に徐々に変化するように空燃比
制御出力値決定用の基準補正値KAVεを設定するので
運転領域毎に記憶されている基準補正値に互いに大きな
差があっても運転領域変化直後に空燃比制御出力値が変
化直前の値と大きく異なることが防止される。よって、
運転領域変化直後の空燃比制御精度の向上を図ることが
でき、良好な排気浄化性能を得ることができるのである
As shown in JJ and 1 Ri, in the air-fuel ratio control method of the present invention, when the operating region for learning control of the reference correction value changes, the reference correction value used for determining the air-fuel ratio control output value Douy immediately before the change is changed. Since the reference correction value KAVε for determining the air-fuel ratio control output value is set so that the reference correction value gradually changes from Immediately after the change, the air-fuel ratio control output value is prevented from being significantly different from the value immediately before the change. Therefore,
This makes it possible to improve the accuracy of air-fuel ratio control immediately after a change in the operating range, and to obtain good exhaust purification performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の空燃比制御方法を適用した装置の概略
構成図、第2図は第1図の装置中の制御回路の具体的構
成を示すブロック図、第3図及び第6図はCPUの動作
を示すフロー図、第4図はDBASεデータマツプを示
す図、第5図はKrafデータマツプを示す図である。 主要部分の符号の説明 1・・・・・・気化器 2・・・・・・エアクリーナ 3・・・・・・絞り弁 4・・・・・・吸気マニホールド 7・・・・・・負圧スイッチ 8・・・・・・吸気2次空気供給通路 9・・・・・・リニア型電磁弁 10・・・・・・絶対圧センサ 11・・・・・・クランク角センサ 12・・・・・・冷却水温センサ 14・・・・・・酸素濃度センサ 15・・・・・・排気マニホールド 33・・・・・・触媒コンバータ 出願人   本田技研工業株式会社 代理人   弁理士  藤村元彦 手続補正書 昭和63年1月27日
FIG. 1 is a schematic configuration diagram of an apparatus to which the air-fuel ratio control method of the present invention is applied, FIG. 2 is a block diagram showing a specific configuration of a control circuit in the apparatus of FIG. 1, and FIGS. 3 and 6 are FIG. 4 is a flowchart showing the operation of the CPU, FIG. 4 is a diagram showing a DBASε data map, and FIG. 5 is a diagram showing a Kraf data map. Explanation of symbols for main parts 1... Carburetor 2... Air cleaner 3... Throttle valve 4... Intake manifold 7... Negative pressure Switch 8...Intake secondary air supply passage 9...Linear type solenoid valve 10...Absolute pressure sensor 11...Crank angle sensor 12... ... Cooling water temperature sensor 14 ... Oxygen concentration sensor 15 ... Exhaust manifold 33 ... Catalytic converter Applicant Honda Motor Co., Ltd. Agent Patent attorney Motohiko Fujimura Procedural Amendment Form Showa January 27, 63

Claims (1)

【特許請求の範囲】[Claims] 排気系に排気ガス中の排気成分濃度に応じた出力を発生
する排気成分濃度センサを備えた内燃エンジンにおいて
エンジン負荷に関する複数の運転パラメータに応じた空
燃比制御基準値を予め設定し、空燃比フィードバック制
御条件を充足するとき所定周期毎に前記排気成分濃度セ
ンサの出力値と目標値とを比較してその比較結果に応じ
て空燃比補正値を設定し、少なくとも前記排気成分濃度
センサの出力値が前記目標値に対する反転を検出したと
きにそのときの前記複数の運転パラメータの検出値に対
応する前記空燃比制御基準値の誤差を補正するための基
準補正値を算出して前記複数の運転パラメータによって
定めた運転領域に対応させて記憶し、前記複数の運転パ
ラメータの検出値に対応する前記空燃比制御基準値を前
記空燃比補正値及び前記基準補正値に応じて補正して目
標空燃比に対する空燃比制御出力値を決定し、エンジン
に供給される混合気の空燃比を前記制御出力値に応じて
調整する空燃比制御方法であって、少なくとも運転領域
が変化した直後だけは前回の前記制御出力値決定に用い
た基準補正値とそのときの運転領域における最新の基準
補正値との間の値を今回の前記制御出力値決定用の基準
補正値として設定することを特徴とすることを特徴とす
る空燃比制御方法。
In internal combustion engines equipped with an exhaust component concentration sensor in the exhaust system that generates an output according to the concentration of exhaust components in exhaust gas, air-fuel ratio control reference values are set in advance according to multiple operating parameters related to engine load, and air-fuel ratio feedback is performed. When the control conditions are satisfied, the output value of the exhaust component concentration sensor is compared with a target value at predetermined intervals, and an air-fuel ratio correction value is set according to the comparison result, so that at least the output value of the exhaust component concentration sensor is When a reversal with respect to the target value is detected, a reference correction value for correcting an error in the air-fuel ratio control reference value corresponding to the detected value of the plurality of operating parameters at that time is calculated, and based on the plurality of operating parameters. The air-fuel ratio control reference value corresponding to the detected values of the plurality of operating parameters is corrected according to the air-fuel ratio correction value and the reference correction value to adjust the air-fuel ratio to the target air-fuel ratio. An air-fuel ratio control method that determines a fuel ratio control output value and adjusts the air-fuel ratio of the air-fuel mixture supplied to the engine according to the control output value, and at least immediately after the operating region changes, the previous control output is used. A value between the reference correction value used for value determination and the latest reference correction value in the operating region at that time is set as the reference correction value for determining the current control output value. air-fuel ratio control method.
JP25920186A 1986-10-30 1986-10-30 Air-fuel ratio controlling method for internal combustion engine Pending JPS63113147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25920186A JPS63113147A (en) 1986-10-30 1986-10-30 Air-fuel ratio controlling method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25920186A JPS63113147A (en) 1986-10-30 1986-10-30 Air-fuel ratio controlling method for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63113147A true JPS63113147A (en) 1988-05-18

Family

ID=17330787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25920186A Pending JPS63113147A (en) 1986-10-30 1986-10-30 Air-fuel ratio controlling method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63113147A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322926A (en) * 1976-08-17 1978-03-02 Toyota Motor Corp Air-fuel ratio interpolation apparatus for internal combustio n engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322926A (en) * 1976-08-17 1978-03-02 Toyota Motor Corp Air-fuel ratio interpolation apparatus for internal combustio n engine

Similar Documents

Publication Publication Date Title
JP3348434B2 (en) Air-fuel ratio control device for internal combustion engine
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
US5255662A (en) Engine air-fuel ratio controller
JP2518247B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
JPS63120835A (en) Air-fuel ratio control device for internal combustion engine
US4703619A (en) Double air-fuel ratio sensor system having improved response characteristics
JP2690482B2 (en) Air-fuel ratio control device for internal combustion engine
JPS63113147A (en) Air-fuel ratio controlling method for internal combustion engine
US4765305A (en) Control method of controlling an air/fuel ratio control system in an internal combustion engine
JP2726257B2 (en) Air-fuel ratio control method for internal combustion engine
JP2609230B2 (en) Air-fuel ratio control method for internal combustion engine
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
JPS623159A (en) Intake secondary air supply device for internal-combustion engine
JP2551558B2 (en) Air-fuel ratio control method for internal combustion engine
JP2594943Y2 (en) Fuel control device for internal combustion engine
JP3728818B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6313012B2 (en)
JPS63113145A (en) Air-fuel ratio controlling method for internal combustion engine
JP2655639B2 (en) Air-fuel ratio control method for internal combustion engine
JPS62637A (en) Air-fuel ratio control device of internal-combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2560303B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0318019B2 (en)
JP3516219B2 (en) Air-fuel ratio feedback control device for internal combustion engine