JPS63112209A - Air conditioning device for automobile - Google Patents

Air conditioning device for automobile

Info

Publication number
JPS63112209A
JPS63112209A JP25827886A JP25827886A JPS63112209A JP S63112209 A JPS63112209 A JP S63112209A JP 25827886 A JP25827886 A JP 25827886A JP 25827886 A JP25827886 A JP 25827886A JP S63112209 A JPS63112209 A JP S63112209A
Authority
JP
Japan
Prior art keywords
air
damper
cold
hot
mix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25827886A
Other languages
Japanese (ja)
Inventor
Takemasa Horiguchi
兵誠 堀口
Akira Tezuka
手塚 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25827886A priority Critical patent/JPS63112209A/en
Publication of JPS63112209A publication Critical patent/JPS63112209A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • B60H1/00678Damper doors moved by rotation; Grilles the axis of rotation being in the door plane, e.g. butterfly doors

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To improve air mixing characteristics through simple constitution, by providing cold and hot air dampers, the air holes of the one of which are closed with the surface, having no air hole, of the other in a state to be superposed with each other, and a mechanism, selectively interlocking each damper with various states. CONSTITUTION:An air mixing mechanism comprises cold and hot air dampers 6 and 7, respectively, the air holes of the one of which are closed with the surface, having no air hole, of the other in a state to be superposed with each other, a rotary shaft 8, on which the dampers 6 and 7 are commonly mounted, and an interlocking mechanism, where by means of the reaction force of a spring 9, through the force of which the dampers 6 and7 are separated from each other, a projected part 8a formed on a rotary shaft 8 is adhered to either claw parts 6c or 7c formed to the rear ends of the dampers 6 and 7 for rotation of the damper. Since, with the rotary shaft 8 rotated in, for example, a counterclockwise direction, a force F1 is exerted on the projected part 8a, the projected part 8a presses the one claw part 6c, the rotary shaft 8 and the cold air damper 6 are rotated in the same direction, meanwhile, the hot air damper 7 is prevented from rotation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,自動車の空調装置のヒータユニットに係り、
特にエアミックス特性及び混合性を改善するのに好適な
エアミックス機構を有する自動車の空調装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heater unit of an air conditioner for an automobile.
In particular, the present invention relates to an air conditioner for an automobile having an air mix mechanism suitable for improving air mix characteristics and mixing properties.

〔従来の技術〕[Conventional technology]

一般的な自動車の空調装置用ヒータユニットは、第6図
に示す構造である。すなわちヒータユニットのケース内
に、空気吸入側にヒータコア1が設けられているが、こ
の熱交換器であるヒータコア1を通過してできる温風H
と、ヒータコア1をバイパスする冷風Cの風量をエアミ
ックスダンパ2の回動によって制御し、温風Hと冷風C
がエアミ′ツクスしてできる温調風Nの温度を制御する
構造である。この一般的なヒータユニットの問題点は。
A typical heater unit for an automobile air conditioner has a structure shown in FIG. In other words, a heater core 1 is provided on the air intake side within the case of the heater unit, and hot air H generated by passing through the heater core 1, which is a heat exchanger,
The air volume of the cold air C that bypasses the heater core 1 is controlled by the rotation of the air mix damper 2, and the hot air H and the cold air C are controlled by rotating the air mix damper 2.
This structure controls the temperature of the temperature-controlled air N generated by air mixing. What are the problems with this common heater unit?

そのエアミックス特性と混合性とが適切であるかという
点にある。
The issue is whether the air mix characteristics and mixing properties are appropriate.

エアミックス特性とは、第6図に示すエアミックスダン
パ2の回動位置角度θに対する温調風Nの温度変化特性
である。第6図に示す一般的なヒータユニツ1へのエア
ミックス特性を第7図に示す。
The air mix characteristic is a temperature change characteristic of the temperature-controlled air N with respect to the rotational position angle θ of the air mix damper 2 shown in FIG. FIG. 7 shows air mix characteristics for the general heater unit 1 shown in FIG. 6.

その特性曲線は、θ=0°のフルクール角度から1/2
θmax強の角度の間で温調風温度1゛が5℃から10
℃とほとんど変化しないが、1/2θwax強の角度か
らフルホット角度のθmaxの間で温調風温度Tが10
℃から80℃に急変する。このような特性になる原因は
、ヒータコア1が大きな空気抵抗を持ち、エアミックス
ダンパ2によって絞られる冷風Cのバイパス路の空気抵
抗がヒータコア1の空気抵抗と同じになる。つまり冷風
Cと温風Hの風量が同じになり、温調風温度Tが冷風C
と温風I(の中間温度約35℃になる角度θがθma、
xに近い所にあるためである。一方、暖房時の吹出゛□
しモードであるFLOORモードで良く使用される温調
風温度Tの範囲は50−30℃、中間期の吹出しモード
であるB/Lモードで良く使用される温調風温度Tの範
囲は30℃〜20℃、冷房時に使用される吹出しモード
であるTJ P P E Rモードで良く使用される温
調風温度Tの範囲は20℃〜10℃である。第7図のエ
アミックス特性からFLOOR,B/L、UPPER(
71各吹出しモードに対応する回動位置角度θの制御範
囲ΔθF。
Its characteristic curve is 1/2 from the full cool angle of θ=0°
Temperature-controlled air temperature 1゛ changes from 5℃ to 10℃ between angles of θmax
℃, but the controlled air temperature T is 10% between the angle of just over 1/2 θwax and the full hot angle θmax.
The temperature suddenly changes from ℃ to 80℃. The reason for this characteristic is that the heater core 1 has a large air resistance, and the air resistance of the bypass path of the cold air C squeezed by the air mix damper 2 is the same as the air resistance of the heater core 1. In other words, the air volume of cold air C and warm air H will be the same, and the controlled air temperature T will be the same as that of cold air C.
The angle θ at which the intermediate temperature of and warm air I (approximately 35 degrees Celsius) is θma,
This is because it is located close to x. On the other hand, the air blows out during heating.
The range of the controlled air temperature T often used in the FLOOR mode is 50-30°C, and the range of the controlled air temperature T often used in the B/L mode, which is the intermediate blowout mode, is 30°C. ~20°C, and the range of the controlled air temperature T, which is often used in the TJPPER mode, which is the blowing mode used during cooling, is from 20°C to 10°C. From the air mix characteristics in Figure 7, FLOOR, B/L, UPPER (
71 Control range ΔθF of rotational position angle θ corresponding to each blowout mode.

ΔθB及びΔθυを求めると、このΔθF、ΔθB及び
ΔθUは角度θが0°からθmaxの間の約10%〜2
0%と狭い制御角度範囲になる。すなわち、エアミック
ス特性の問題点とは、エアミックスダンパ2の可動角度
範囲内で車両温調時に良く使用される角度範囲が狭く、
手動空調においては、乗員が自分の好みに応じた温調風
温度にエアミックスダンパ2を動かすテンプレバを操作
して合わせることが難しいという点にある。また自動空
調においては、エアミックスダンパ2を駆動するアクチ
ュエータの角度位置制御精度の高さが必要とな;す、こ
の精度が不足すると角度制御のハンチングつまり温調風
温度ハンチングが生じるという問題がある。
When determining ΔθB and Δθυ, these ΔθF, ΔθB, and ΔθU are approximately 10% to 2 of the angle θ between 0° and θmax.
This results in a narrow control angle range of 0%. In other words, the problem with the air mix characteristics is that within the movable angle range of the air mix damper 2, the angle range that is often used for vehicle temperature control is narrow;
The problem with manual air conditioning is that it is difficult for the occupant to operate the temperature lever that moves the air mix damper 2 to adjust the temperature of the air according to his or her preference. In addition, automatic air conditioning requires high accuracy in controlling the angle position of the actuator that drives the air mix damper 2; if this accuracy is insufficient, there is a problem that hunting in the angle control, that is, hunting in the temperature of the heated air, occurs. .

混合性とは、第6図に示す冷風Cと温風Hがヒータユニ
ットの吹出口10に流れる間にどの程度混合され、吹出
口1.0の位置でどの程度均一な温度ま温調風Nになる
かということである。この混合性が悪いと、吹出口10
につながるダクト20が2本〜4本に分岐するため、各
分岐したダクト20に分配される温調風の温度が異なり
、各吹出しグリル間での吹出温度に差が出るので1乗員
が不快感を感じる。
Mixability refers to how much the cold air C and warm air H shown in FIG. The question is whether it will be. If this mixing property is poor, the air outlet 10
Since the ducts 20 connected to the ducts 20 branch into 2 to 4 branches, the temperature of the temperature-controlled air distributed to each branched duct 20 is different, resulting in a difference in the outlet temperature between each outlet grille, which may cause discomfort to one passenger. I feel it.

すなわち、第6図に示す構造のヒータユニットでは良い
混合性が得られず、左右吹出しグリル間に吹出し温度差
が出るという問題点がある。この原因は、バイパスした
冷風Cとヒータコア1を通過した温風Hの両方とも一つ
のまとまった風の流れであり、この両方の風が同じ方向
に流れて混合せず、二層の風の流れを形成してこの二層
の流れのまま吹出口10に達するためである。
That is, the heater unit having the structure shown in FIG. 6 does not provide good mixing properties, and there is a problem that there is a difference in outlet temperature between the left and right outlet grilles. The reason for this is that both the bypassed cold air C and the warm air H that passed through the heater core 1 are one unified wind flow, and these two winds flow in the same direction and do not mix, resulting in a two-layer wind flow. This is because the two-layered flow forms and reaches the outlet 10 as it is.

以上説明した一般的なヒータユニットの問題点を解決す
る従来技術として、実用新案1540087号公報及び
実用新案1566044号公報があり、それらの基本構
造を第8図に示す。その構造は一般的なヒータユニット
をバイパスして流れ冷風Cのバイパス路にサブエアミッ
クスダンパ4を設けたもので、このサブエアミックスダ
ンパ4をメインエアミックスダンパ3と連動させること
により、エアミックス特性を改善している。第9図にメ
インエアミックスダンパ3の回動位置角度Oに対するす
ブエアミックスダンパ4の回動位置角度θ′の連動線と
、この連動によって改善されたエアミックス特性を示す
、第7図の一般的なエアミックス特性に比べて第9図の
エアミックス特性は改善されてΔθF、八〇BへびΔθ
υの制御角度範囲がより広がっている。これはメインエ
アミックスダンパ3がθWaXに近い角度の時にサブエ
アミックスダンパ4がθ’ waxに近い角度にあり、
サブエアミックスダンパ4によって冷風Cのバイパス路
が絞り込まれて冷風Cの風景がより少なくなることによ
る効果である。
Conventional techniques for solving the problems of general heater units described above include Utility Model No. 1540087 and Utility Model No. 1566044, and their basic structures are shown in FIG. Its structure is that a sub air mix damper 4 is provided in the bypass path of the flowing cold air C by bypassing a general heater unit.By interlocking this sub air mix damper 4 with the main air mix damper 3, the air mix Improved characteristics. Figure 9 shows the interlocking line of the rotational position angle θ' of the sub air mix damper 4 with respect to the rotational position angle O of the main air mix damper 3, and the air mix characteristics improved by this interlocking. Compared to the general air mix characteristics, the air mix characteristics shown in Figure 9 are improved by ΔθF, 80B snake Δθ
The control angle range of υ is wider. This means that when the main air mix damper 3 is at an angle close to θWaX, the sub air mix damper 4 is at an angle close to θ'wax.
This effect is due to the fact that the bypass path for the cold air C is narrowed down by the sub air mix damper 4, so that the scenery of the cold air C becomes smaller.

また、混合性を改善する従来技術として第10図に示す
構造がある。その構造は冷風Cが流れるバイパス路に風
向板5を設けたもので、風向板5で冷風Cの方向を変え
て温風Hと冷風Cがぶつかり合うようにして混合性の改
善を図っている。
Furthermore, there is a structure shown in FIG. 10 as a conventional technique for improving mixability. Its structure is such that a wind direction plate 5 is provided in a bypass path through which cold air C flows, and the wind direction plate 5 changes the direction of cold air C so that hot air H and cold air C collide with each other to improve mixing properties. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来技術のうち、エアミックス特性改善のための第
8図に示す技術は、メインエアミックスダンパ3とサブ
エアミックスダンパ4の異なった回転軸を持つ2枚のダ
ンパを連通させる必要があり、2つの回転軸間に連動リ
ンク機構を設けるか、それぞれの回転軸にアクチュエー
タを設けることが必要でコスト増になる問題があった。
Among the conventional techniques, the technique shown in FIG. 8 for improving air mix characteristics requires communication between two dampers having different rotation axes, the main air mix damper 3 and the sub air mix damper 4. There is a problem in that it is necessary to provide an interlocking link mechanism between the two rotating shafts or to provide an actuator for each rotating shaft, resulting in increased costs.

更に、サブエアミックスダンパ4を設けるためのスペー
スが必要でヒータユニットが大きくなるという問題があ
った。
Furthermore, there is a problem in that a space is required to provide the sub air mix damper 4, which increases the size of the heater unit.

また、混合性改善のための第10図に示す技術は、フル
クール時に風向板5が余分な空気抵抗体となり、風量域
によって最大冷房性能が悪くなるという問題があった。
Further, the technique shown in FIG. 10 for improving the mixing property has the problem that the wind direction plate 5 becomes an extra air resistance body during full cooling, and the maximum cooling performance deteriorates depending on the air volume range.

更に、風向板5を設けるためのスペースが必要でヒータ
ユニットが大きくなると云う問題があった。
Furthermore, there is a problem in that a space is required to provide the wind direction plate 5, which increases the size of the heater unit.

本発明は、前記従来技術の問題を解決して、−般的なヒ
ータユニットと同等の大きさで、新たな連動リンク機構
又はアクチュエータを設けないで、最大冷房時の風量を
減少すことがないエアミックス特性及び混合性に優れた
エアモツクス機構を有する自動車の空調装置を提供する
ことを課題とする。
The present invention solves the above-mentioned problems of the prior art, and has the same size as a general heater unit, does not require a new interlocking linkage mechanism or actuator, and does not reduce the air volume during maximum cooling. An object of the present invention is to provide an air conditioner for an automobile having an air mox mechanism with excellent air mix characteristics and mixing properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、2枚が重なり合う状態で一方の風穴が他方の
風穴のない面でふさがれる冷風ダンパ及び温風ダンパと
、その冷風及び温風ダンパを2枚共通に回転自在に取付
ける回転軸と、回転軸に挿着して前記冷風及び温風ダン
パを離す作用をするスプリングの反力で前記回転軸に設
けた爪状の突起部が前記冷風及び温風ダンパの後端に設
けた爪状の突起部のいずれか一方を密着して回動する連
動機構とからなる前記エアミックス機端を有する、こと
で構成される。
The present invention provides a cold-air damper and a hot-air damper in which two dampers are overlapped so that one air hole is blocked by the other air hole-free surface, and a rotating shaft to which the two cold-air and hot-air dampers are rotatably mounted in common. The claw-shaped protrusion provided on the rotating shaft is activated by the reaction force of the spring that is inserted into the rotating shaft and acts to separate the cold air and hot air damper. The air mixer end includes an interlocking mechanism that rotates in close contact with one of the protrusions.

〔作用〕[Effect]

本発明によると、2枚の冷風及び温風ダンパの風穴が任
意の形状と面積をもち、互いに一致しない位置にあるの
で、各回動位置において冷風及び温風の風欣変化が緩や
かになってエアミックス特性が改善されるとともに、風
穴によって冷風及び温風流が分散されるの混合性が良く
、ヒータコアのバイパス側の空気抵抗増加がないので最
大冷房性能も良い、一方、ダンパが連動機構で回動され
るのでヒータユニットの大きさは変らない。
According to the present invention, the air holes of the two cold air and hot air dampers have arbitrary shapes and areas, and are located at positions that do not coincide with each other, so that at each rotating position, the change in the wind direction of the cold air and hot air becomes gradual, and the air The mix characteristics are improved, and the air holes disperse the cold and hot air flow, resulting in good mixing properties, and there is no increase in air resistance on the bypass side of the heater core, so the maximum cooling performance is also good.On the other hand, the damper rotates with an interlocking mechanism. Therefore, the size of the heater unit does not change.

〔実施例〕〔Example〕

本発明の第1実施例を第1図を参照して説明する。第1
図は本発明による自動車の空調装置用ヒータユニットの
一部断面斜視図で、ヒータコア1と、UPPER吹出口
11.FL○OR吹出口12及びDEF吹出口13と、
UPPER/DEF切替えダンパ21及びFLOOR開
閉ダンパ22を有する一般的なヒータユニットに1本発
明による冷風ダンパ6及び温風ダンパ7と、回転軸と、
アクチュエータ30とで構成したエアミックス機構を組
み込んだ構造である。
A first embodiment of the present invention will be described with reference to FIG. 1st
The figure is a partial cross-sectional perspective view of a heater unit for an automobile air conditioner according to the present invention, showing a heater core 1, an upper air outlet 11. FL○OR outlet 12 and DEF outlet 13,
A general heater unit having an UPPER/DEF switching damper 21 and a FLOOR opening/closing damper 22 includes a cold air damper 6 and a hot air damper 7 according to the present invention, a rotating shaft,
This structure incorporates an air mix mechanism configured with an actuator 30.

エアモツクス機構とは、すなわち、2枚重なり合った状
態で一方の風穴が他方の風穴のない面でふさがれる冷風
ダンパ6及び温風ダンパ7と、その冷風ダンパ6及び温
風ダンパ7を2枚共通に回転自在に取付ける回転軸8と
、回転軸8に挿着して冷風ダンパ6及び温風ダンパ7を
離す作用をするスプリング9の反力で回転軸8に設けた
爪状の突起部8aが前記冷風ダンパ6及び温風ダンパ7
の後端に設けた爪状の突起部6cのいずれか一方を密着
して回動する連動機構とからなるエアミックス機構であ
って、前記ヒータコア側を通過する温風と前記ヒータコ
アをバイパスする冷風との風量比を変えることができる
The Air Motx mechanism consists of a cold air damper 6 and a warm air damper 7 in which two sheets are overlapped and one air hole is blocked by the other surface without air holes, and the two cold air dampers 6 and hot air damper 7 are common to each other. The claw-shaped protrusion 8a provided on the rotating shaft 8 is activated by the reaction force of the rotating shaft 8 which is rotatably attached and the spring 9 which is inserted into the rotating shaft 8 and acts to separate the cold air damper 6 and the warm air damper 7. Cold air damper 6 and warm air damper 7
It is an air mix mechanism consisting of an interlocking mechanism that closely rotates either one of the claw-shaped protrusions 6c provided at the rear end, and the air mix mechanism is configured to mix warm air passing through the heater core side and cold air bypassing the heater core. You can change the air volume ratio.

第13図〜第19図によって回転軸の回転角αに連動す
る前記冷風ダンパ6及び温風ダンパ7のそれぞれの回動
位置角度θ工及びθ2に対するエアミックス状況、すな
わちエアミックス特性及び混合性について説明する。
FIG. 13 to FIG. 19 show the air mix situation, that is, air mix characteristics and mixing properties, for the respective rotational position angles θ and θ2 of the cold air damper 6 and hot air damper 7 that are linked to the rotation angle α of the rotating shaft. explain.

第13図及び第14図は回転軸8の回転角αと、冷風ダ
ンパ6及び温風ダンパ7の回動位置角度θ工及びθ2と
の関係を示す。
13 and 14 show the relationship between the rotation angle α of the rotating shaft 8 and the rotation position angles θ and θ2 of the cold air damper 6 and the hot air damper 7.

第15図はa=2amaxの吹出しモードがFLOQR
モードの状態であり、この時のel及びOzは最大回動
位置角度でθwaxに等しい。冷風及び温風ダンパ6及
び7は重なり合って風穴6a及び7aはふさがれて、バ
イパス路は全開となり、ヒータコア1にのみ温風が通る
フルホット状態である。
In Figure 15, the balloon mode for a=2amax is FLOQR.
mode, and el and Oz at this time are equal to θwax at the maximum rotational position angle. The cold air and hot air dampers 6 and 7 overlap each other, the air holes 6a and 7a are blocked, and the bypass path is fully opened, creating a fully hot state in which warm air passes only through the heater core 1.

第16図はα=2αn+axの吹出しモードはFL○O
Rモードであり、θ1はθmaXのままであるがθ2は
θwax弱となり、冷風ダンパ6と温風ダンパ7の間に
透き間ができて、温風ダンパ7の先端とヒータユニット
内面の間及び風穴7aより前記透き間に冷風Cが流れ込
み、この冷風Cが風穴6aを通ってFLOOR吹口12
へ流れていく。一方、温風HもFLOOR吹出口12へ
流れていく、この時、冷風Cのバイパスには風穴6によ
る空気抵抗があるため、Oの変化すなわちθ2の変化に
に対する冷風Cの風量変化は、一般的なヒータユニット
に比べより緩やかになる。つまりθの変化に対する温調
風Nの温度変化が緩やかになる。また、冷風Cが数個の
風穴6aから分散して流れるため、エアミックスダンパ
先端とヒータユニット内面との間にできる1個の流入穴
から流入する一般のヒータユニットに比べ混合性が良く
なる。
Figure 16 shows that the blowout mode for α=2αn+ax is FL○O.
In the R mode, θ1 remains θmax, but θ2 becomes weaker than θwax, and a gap is created between the cold air damper 6 and the hot air damper 7, and between the tip of the hot air damper 7 and the inner surface of the heater unit, and the air hole 7a. Cold air C flows into the gap, and this cold air C passes through the air hole 6a and reaches the FLOOR outlet 12.
flowing to. On the other hand, the hot air H also flows to the FLOOR outlet 12. At this time, since there is air resistance due to the air hole 6 in the bypass of the cold air C, the change in the air volume of the cold air C in response to a change in O, that is, a change in θ2 is generally It is more gentle than other heater units. In other words, the temperature change of the temperature-controlled air N with respect to the change in θ becomes gradual. Furthermore, since the cold air C flows in a dispersed manner through several air holes 6a, the mixing performance is improved compared to a general heater unit in which the cold air C flows in through a single inlet hole formed between the tip of the air mix damper and the inner surface of the heater unit.

第17図はα=α+maxの吹出しモードはB / L
モードであるm Olはθll1axでθ2は0′とな
り。
In Figure 17, the blowout mode for α=α+max is B/L.
The mode mOl is θll1ax and θ2 is 0'.

冷風Cは風穴6aを通って流れ、温風Hは風穴7aとヒ
ータコア1を通って流れる。この状態の一歩手前、すな
わちαがαwax強からαmaxになるに従い、温風ダ
ンパ7がヒータコア1に近づくため、温風Hの風量が減
り、温調風Nの温度が下がるが、風穴7aがあるためそ
の温度変化は緩やかになる。また冷風Cが数個の風穴6
aから分散して流れるため、一般のヒータユニットに比
べ混合性が良くなる。
The cold air C flows through the air hole 6a, and the warm air H flows through the air hole 7a and the heater core 1. One step before this state, that is, as α increases from αwax strength to αmax, the hot air damper 7 approaches the heater core 1, so the air volume of the hot air H decreases and the temperature of the temperature-controlled air N decreases, but there is an air hole 7a. Therefore, the temperature change becomes gradual. In addition, there are several air holes 6 for cold air C.
Since it flows in a dispersed manner from a, the mixing properties are better than in a general heater unit.

第18図はα=α1IIax弱の状態で吹出しモードは
B/Lモードである。この時、θ2は0″のままで01
は0181弱となり、冷風Cのバイパス路が風穴6a及
び冷風ダンパ6の先端とヒータユニット内面との間の透
き間になる。αが小さくなるに従って01が小さくなり
、前記透き間が大きくなって冷風Cの風量が増加し、温
調風Nの温度が下るが、風穴6aがあるため、冷風Cの
風量変化率は小さく、αに対する温調風Nの温度変化は
緩やかになる。また冷風Cが数個の風穴6aとその透き
間から分散して流れるため、混合性が良くなる。
In FIG. 18, the blowing mode is the B/L mode in a state where α=α1IIax. At this time, θ2 remains 0'' and is 01
is a little less than 0181, and the bypass path for the cold air C becomes the gap between the air hole 6a and the tip of the cold air damper 6 and the inner surface of the heater unit. As α becomes smaller, 01 becomes smaller, the gap becomes larger, the air volume of the cold air C increases, and the temperature of the temperature-controlled air N decreases, but because of the air hole 6a, the rate of change in the air volume of the cold air C is small, and α The temperature change of the temperature-controlled air N becomes gradual. Furthermore, since the cold air C flows in a dispersed manner through the several air holes 6a and their gaps, mixing properties are improved.

第19図はα=O#の吹出しモードはtlPPERモー
ドである。この時、θ工及びθ2はOoとなり。
In FIG. 19, the blowing mode when α=O# is the tlPPER mode. At this time, θ engineering and θ2 become Oo.

風穴6a及び7aはふさがれてヒータコア1に風は流れ
ず、冷風Cのみがバイパス路を流れてフルクール状態に
なる。この時の冷風Cのバイパス路空気抵抗は1般的な
ヒータユニットと同じになる。
The air holes 6a and 7a are blocked so that no air flows into the heater core 1, and only the cold air C flows through the bypass path, resulting in a fully cooled state. At this time, the bypass path air resistance of the cold air C is the same as that of a general heater unit.

この状態の手前、すなわちαが0′強からO″になるに
従い、θ1も06強から0″となり、温風Hの風量が変
化し、θに対して温調風Nの温度も変化し、α=0″に
おいて約5℃の最低温となる。
Before reaching this state, that is, as α goes from a little over 0' to 0'', θ1 also goes from a little over 06 to 0'', the air volume of the warm air H changes, and the temperature of the temperature-controlled air N also changes with respect to θ. At α=0″, the lowest temperature is about 5°C.

1 次に、冷風ダンパ6及び温風ダンパ7を連動ささせ
るための構造と動作を説明する。
1 Next, the structure and operation for interlocking the cold air damper 6 and the hot air damper 7 will be explained.

第2図は前記エアミックス機構の斜視図(風穴6a及び
7aは省略)であって、1本の回転軸8に2枚共通に回
転自在に冷風ダンパ6及び温風ダンパ7を取り付け、こ
の冷風及び温風ダンパの後端に爪状の突起部(以下、爪
部と称する)6G及び7Cと、回転軸8に設けた爪部8
aと、冷風及び温風ダンパ6及び7が開く作用をするス
プリング9とからなる構成で、この構成による連動の動
作を第3図〜第5図で説明する。第3図〜第5図は第2
図L−L’断面を矢印M方向から見た断面図である。第
3図は回転軸8に反時計廻り方向の力が加わった状態を
示し、その力によって爪部8aに矢印F1の力が加わり
、この力によって爪部8aが爪部6cを押して図の状態
になる。この状態から爪部8aが時計廻り方向に回転す
ると、第2図に示したスプリン9の反力によって、爪部
8aに爪部60が密着した状態で回転する。すなわち回
転軸8と冷風ダンパ6は同じ方向に回転するが、温風ダ
ンパ7は回転しない。
FIG. 2 is a perspective view of the air mix mechanism (air holes 6a and 7a are omitted), in which a cold air damper 6 and a warm air damper 7 are commonly rotatably attached to one rotating shaft 8, and and claw-like projections (hereinafter referred to as claws) 6G and 7C at the rear end of the hot air damper, and a claw 8 provided on the rotating shaft 8.
a, and a spring 9 that acts to open the cold air and hot air dampers 6 and 7. The interlocking operation of this structure will be explained with reference to FIGS. 3 to 5. Figures 3 to 5 are 2
It is a cross-sectional view of the figure LL' cross section seen from the arrow M direction. FIG. 3 shows a state in which a counterclockwise force is applied to the rotating shaft 8. This force applies a force F1 to the claw portion 8a, and this force causes the claw portion 8a to push the claw portion 6c, resulting in the state shown in the figure. become. When the claw portion 8a rotates clockwise from this state, the claw portion 60 rotates in close contact with the claw portion 8a due to the reaction force of the spring 9 shown in FIG. That is, the rotating shaft 8 and the cold air damper 6 rotate in the same direction, but the hot air damper 7 does not rotate.

第4図は回転軸8に回転力が加わっていない時の状態で
、第2図に示したスプリング9の反力によって冷風ダン
パ6と温風ダンパ7とが相互に離れるように動いて、そ
れぞれの空気流吹入側の先端が、一方はヒータコア側に
、他方はヒータユニットの内壁に接した状態になる。こ
の時は、冷風ダンパ6、温風ダンパ7及び回転軸8の後
端に設けた3個の爪部6c、7c及び8aが重なり合い
FIG. 4 shows a state when no rotational force is applied to the rotating shaft 8, and the cold air damper 6 and the hot air damper 7 move away from each other due to the reaction force of the spring 9 shown in FIG. One end of the airflow inlet side is in contact with the heater core side, and the other end is in contact with the inner wall of the heater unit. At this time, the three claws 6c, 7c, and 8a provided at the rear end of the cold air damper 6, the hot air damper 7, and the rotating shaft 8 overlap.

冷風ダンパ6は爪部6cとのなす角度、また温風ダンパ
7は爪部7cとのなす角度の状態となる。
The cold air damper 6 forms an angle with the claw portion 6c, and the hot air damper 7 forms an angle with the claw portion 7c.

第5図は回転@8に時計廻り方向の力が加すつた時の状
態でその力によって爪部8aが爪部7Cを押して図の状
態になる。この状態から爪部8aが反時計廻り方向に回
転すると、第2図に示したスプリング9の反力によって
、爪部8aに爪部7cが密着した状態で回転する。すな
わち回転軸8と温風ダンパ7が同じ方向に回動するが、
冷風ダンパ6は回転しない。
FIG. 5 shows a state in which a clockwise force is applied to the rotation @8, and the force causes the claw portion 8a to push the claw portion 7C, resulting in the state shown in the figure. When the claw portion 8a rotates counterclockwise from this state, the claw portion 7c rotates in a state in which the claw portion 8a is in close contact with the claw portion 7c due to the reaction force of the spring 9 shown in FIG. In other words, although the rotating shaft 8 and the hot air damper 7 rotate in the same direction,
The cold air damper 6 does not rotate.

本発明による第2実施例を第20図を参照して説明する
。第20図は本発明による効果確認の実験結果を示する
A second embodiment of the present invention will be described with reference to FIG. 20. FIG. 20 shows experimental results for confirming the effect of the present invention.

実験は一般的なヒータユニットのエアミックスダンパを
本発明のエアミックス機構に改造し、改造前及び改造後
のエアミックス特性を比較する。
In the experiment, the air mix damper of a general heater unit was modified to the air mix mechanism of the present invention, and the air mix characteristics before and after the modification were compared.

第20図の点線Aが改造前のエアミックス特性で。Dotted line A in Figure 20 shows the air mix characteristics before modification.

実線が改造後のエアミックス特性である。実験に用いた
ヒータユニットの改造前のエアミックスダンパの回動角
度範囲、すなわち回転軸可動角度は40°であったが、
改造したエアミックス機構では回転軸可動角度は改造前
の倍の80’である。
The solid line shows the air mix characteristics after modification. Before modification of the heater unit used in the experiment, the rotation angle range of the air mix damper, that is, the rotation axis movable angle, was 40 degrees.
In the modified air mix mechanism, the movable angle of the rotating shaft is 80', which is double the angle before modification.

そこで点線Aの特性の横軸を2倍に引き押ばしたのが点
線Bの特性である。従来のものの特性である点1iAB
と本発明によるものの実線の特性とを比べると、各吹出
モードの温調範囲に対した制御角度範囲はΔθυ′、Δ
θB′及びΔθF′からΔθυ。
Therefore, the characteristic shown by dotted line B is obtained by pushing the horizontal axis of the characteristic shown by dotted line A twice. Point 1iAB, which is a characteristic of the conventional one
Comparing the characteristic of the present invention with the solid line, the control angle range for the temperature control range of each blowing mode is Δθυ′, Δ
Δθυ from θB' and ΔθF'.

ΔOB及びΔθFに改善されている。すなわち従来技術
に比べ本発明では約1.5倍〜3倍に制御角度範囲が広
がり改善できることが判った。また混合性も従来技術は
吹出口における温度変化が最大で20℃程度であったも
のが、本発明によって10℃程度に改善されることが判
った。
ΔOB and ΔθF have been improved. That is, it has been found that the present invention can improve the control angle range by approximately 1.5 to 3 times as much as the conventional technology. It was also found that the mixing property was improved to about 10°C by the present invention, whereas in the prior art, the maximum temperature change at the outlet was about 20°C.

本実施例によれば、従来技術のヒータユニットのエアミ
ックスダンパ部のみを本発明によるエアミックス機構に
取り替えることによって、エアミックス特性及び混合性
が改善でき、そのエアミックス機構のコスト増加は僅か
であり、コストパーフオマンスの高いヒータユニットを
実現できる。
According to this embodiment, by replacing only the air mix damper section of the conventional heater unit with the air mix mechanism according to the present invention, the air mix characteristics and mixing properties can be improved, and the cost increase of the air mix mechanism is small. Yes, it is possible to realize a heater unit with high cost performance.

本発明の第3実施例を第21図及び第22図を参照して
説明する。第21図において、本発明によるエアミック
ス機構のエアミックス性改善の効果をより上げる手法と
して、温風ダンパ7に風穴7aに突起物7bを設ける。
A third embodiment of the present invention will be described with reference to FIGS. 21 and 22. In FIG. 21, a protrusion 7b is provided in the air hole 7a of the hot air damper 7 as a method for further increasing the effect of improving the air mixing property of the air mixing mechanism according to the present invention.

第22図に示すフルホット付近における回転軸の回転角
に対する冷風の風量増加の度合がより緩やかになる。
The degree of increase in the amount of cold air with respect to the rotation angle of the rotating shaft becomes more gradual near full hot as shown in FIG.

本発明の第4実施例を第23図及び第24図を参照して
説明する。第23図において、本発明によるエアミック
ス機構の混合性改善の効果をより上げる手法として、冷
風ダンパ6の風穴6aの出口側に風向ノズル6bを設け
る。この風向ノズル6bにより、第24図の冷風ダンパ
6の位置で風穴6aを通った冷風Cが流速が速い細流に
なって下方に流れるため乱流が生じ易くなり、混合性が
より向上する。そしてフルクール状態では第24図の点
線の位置にその風向ノズル6bがあり、この時に風向ノ
ズル6bは、冷風Cが流れるバイパス路の空気抵抗体に
はならない。
A fourth embodiment of the present invention will be described with reference to FIGS. 23 and 24. In FIG. 23, a wind direction nozzle 6b is provided on the outlet side of the air hole 6a of the cold air damper 6 as a method for further increasing the effect of improving the mixing property of the air mix mechanism according to the present invention. With this wind direction nozzle 6b, the cold wind C that has passed through the wind hole 6a at the position of the cold wind damper 6 in FIG. 24 becomes a fast stream and flows downward, so that turbulence is more likely to occur, and the mixing property is further improved. In the full cool state, the wind direction nozzle 6b is located at the position indicated by the dotted line in FIG. 24, and at this time, the wind direction nozzle 6b does not act as an air resistance element in the bypass path through which the cold air C flows.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来技術の一般的なヒータユニットの
構造及び大きさを全く変えることなく、また最大冷房時
の風量を犠牲にすることがなく、非常に簡単な構造で各
吹出しモードにおける吹出し風の温度制御中に対応した
エアミックス機構の回転軸の角度範囲を1.5倍〜3倍
程度に広げることができ、手動空調においては、乗員の
好みに応じたテンプレバ操作がやり易くなり、自動空調
においては、制御が安定して吹出し温度のハンチング問
題を解消できる。
According to the present invention, the airflow in each airflow mode is achieved with a very simple structure, without changing the structure and size of the general heater unit of the prior art, and without sacrificing the air volume during maximum cooling. The angle range of the rotation axis of the air mix mechanism that can be used during wind temperature control can be expanded by 1.5 to 3 times, and in manual air conditioning, it is easier to operate the template lever according to the passenger's preference. In automatic air conditioning, control is stable and the hunting problem of outlet temperature can be solved.

またヒータユニット吹出口におけるエア温度変化を従来
技術の約半分以下にすることができ、左右の吹出しグリ
ル間の温度差が小さくなって、その温度差による乗員の
不快感及び左右乗員間の温調フィーリングの差を解消で
きる。
In addition, the air temperature change at the heater unit outlet can be reduced to less than half that of conventional technology, reducing the temperature difference between the left and right outlet grills, reducing the discomfort of the occupants due to the temperature difference, and controlling the temperature between the left and right occupants. The difference in feeling can be resolved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示すヒータユニットの一
部断面斜視図、第2図はエアミックス機構の斜視図、第
3図〜第5図は第2図のL−L’断面を矢印のM方向か
ら見た断面図、第6図、第8図及び第10図は従来例の
ヒータユニットの縦断面図、第7図及び第9図は従来例
のヒータユニットのエアミックス特性図、第11図は本
発明の第1実施例を示すエアミックスダンパの斜視図、
第12図は本発明の第1実施例を示すエアミックスダン
パの正面図、第13図、第15図、第16図、第17図
、第18図及び第19図は本発明の第1実施例を示すヒ
ータユニットの縦断面図、第14図は本発明の第1実施
例を示す2枚ダンパの角度関係図、第20図は本発明の
第2実施例及び従来例のヒータユニットのエアミックス
特性図、第21図及び第22図は本発明の第3実施例を
示すヒータユニットの縦断面図及び温風ダンパの縦断面
図、第23図及び第24図は本発明の第4実施例を示す
のヒータユニットの縦断面図及び冷風ダンパの縦断面図
である。 1・・・ヒータコア、6・・・冷風ダンパ(エアミック
スダンパ)6a・・・風穴、6b・・・突起物、6c・
・・爪状の突起部、7・・・温風ダンパ(エアミックス
ダンパ)、7a・・・風穴、7b・・・突起物、7c・
・・爪状の突起部、8・・・回転軸、8a・・・爪状の
突起部、9・・・スプリング。
Fig. 1 is a partial cross-sectional perspective view of a heater unit showing a first embodiment of the present invention, Fig. 2 is a perspective view of an air mix mechanism, and Figs. 3 to 5 are LL' cross sections of Fig. 2. 6, 8 and 10 are longitudinal sectional views of conventional heater units, and FIGS. 7 and 9 are air mix characteristics of conventional heater units. 11 is a perspective view of an air mix damper showing a first embodiment of the present invention,
FIG. 12 is a front view of an air mix damper showing the first embodiment of the present invention, and FIGS. 13, 15, 16, 17, 18, and 19 are views of the first embodiment of the present invention. FIG. 14 is a longitudinal sectional view of a heater unit showing an example, FIG. 14 is an angular relationship diagram of two dampers showing a first embodiment of the present invention, and FIG. Mix characteristic diagrams, FIGS. 21 and 22 are longitudinal cross-sectional views of a heater unit and a warm air damper showing a third embodiment of the present invention, and FIGS. 23 and 24 are a fourth embodiment of the present invention. FIG. 2 is a vertical cross-sectional view of a heater unit and a cold-air damper, each showing an example. 1...Heater core, 6...Cold air damper (air mix damper) 6a...Air hole, 6b...Protrusion, 6c...
...Claw-shaped protrusion, 7...Hot air damper (air mix damper), 7a...Air hole, 7b...Protrusion, 7c...
... Claw-shaped protrusion, 8... Rotating shaft, 8a... Claw-shaped protrusion, 9... Spring.

Claims (4)

【特許請求の範囲】[Claims] 1. ケース内に吸入される空気を分配してヒータコア
側を通過する温風と前記ヒータコアをバイパスする冷風
との風量比を変えるエアミツクスダンパと、このエアミ
ツクスダンパを回転自在に取り付ける回転軸とからなる
エアミツクス機構を有する自動車の空調装置において、
2枚が重なり合う状態で一方の風穴が他方の風穴のない
面でふさがれる冷風ダンパ及び温風ダンパと、その冷風
ダンパ及び温風ダンパを2枚共通に回転自在に取り付け
る回転軸と、回転軸に挿着して前記冷風ダンパと温風ダ
ンパを離す作用をするスプリングの反力で前記回転軸に
設けた爪状の突起部が前記冷風ダンパ及び温風ダンパの
後端に設けた爪状の突起部のいずれか一方を密着して回
動する連動機構とからなる前記エアミツクス機構を有す
ることを特徴とする自動車の空調装置。
1. an air mix damper that distributes air drawn into the case and changes the air volume ratio between warm air passing through the heater core side and cold air bypassing the heater core; and a rotating shaft to which the air mix damper is rotatably attached. In an automobile air conditioner having an air mix mechanism consisting of
A cold-air damper and a hot-air damper in which the air holes on one side are blocked by a surface without air holes in the other when the two pieces are overlapped, a rotating shaft to which the cold-air damper and the hot-air damper are rotatably attached in common to the rotating shaft, and A claw-like protrusion provided on the rotating shaft is caused by a reaction force of a spring that acts to separate the cold-air damper and the hot-air damper when they are inserted into each other. An air conditioning system for an automobile, characterized in that the air mix mechanism includes an interlocking mechanism that rotates one of the parts in close contact with the other.
2. 前記冷風ダンパ及び温風ダンパとそれぞれの爪状
の突起部とは角度を有し、中間に挟まれる前記回転軸に
設けた爪状の突起部が、前記冷風ダンパ及び温風ダンパ
の可動角度範囲より倍増した回転軸可動角度で回動する
連動機構からなる前記エアミツクス機構を有することを
特徴とする特許請求の範囲第1項に記載の自動車の空調
装置。
2. The cold air damper and warm air damper have an angle with their respective claw-shaped protrusions, and the claw-shaped protrusions provided on the rotating shaft sandwiched between the cold air damper and the hot air damper control the movable angular range of the cold air damper and the hot air damper. The air conditioner for an automobile according to claim 1, characterized in that the air mix mechanism includes an interlocking mechanism that rotates at a rotational axis movable angle that is doubled.
3. 2枚のうち一方の温風ダンパの風穴に突起物を設
けたことを特徴とする前記特許請求の範囲第1項又は第
2項に記載の自動車の空調装置。
3. The air conditioner for an automobile according to claim 1 or 2, characterized in that a protrusion is provided in the air hole of one of the two warm air dampers.
4. 2枚のうち一方の冷風ダンパの風穴の出口側に風
向ノズルを設けたことを特徴とする前記特許請求の範囲
前項のうちのいずれか1項に記載の自動車の空調装置。
4. An air conditioner for an automobile according to any one of the preceding claims, characterized in that a wind direction nozzle is provided on the outlet side of the air hole of one of the two cold air dampers.
JP25827886A 1986-10-31 1986-10-31 Air conditioning device for automobile Pending JPS63112209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25827886A JPS63112209A (en) 1986-10-31 1986-10-31 Air conditioning device for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25827886A JPS63112209A (en) 1986-10-31 1986-10-31 Air conditioning device for automobile

Publications (1)

Publication Number Publication Date
JPS63112209A true JPS63112209A (en) 1988-05-17

Family

ID=17318024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25827886A Pending JPS63112209A (en) 1986-10-31 1986-10-31 Air conditioning device for automobile

Country Status (1)

Country Link
JP (1) JPS63112209A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007421A (en) * 1997-09-26 1999-12-28 Valeo Climatisation Temperature control device
US7188481B2 (en) * 2002-10-30 2007-03-13 Honeywell International Inc. Adjustable damper actuator
WO2015169589A1 (en) * 2014-05-06 2015-11-12 Valeo Klimasysteme Gmbh Valve flap sub-assembly
JP2015223930A (en) * 2014-05-28 2015-12-14 株式会社ヴァレオジャパン Vehicular air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007421A (en) * 1997-09-26 1999-12-28 Valeo Climatisation Temperature control device
US7188481B2 (en) * 2002-10-30 2007-03-13 Honeywell International Inc. Adjustable damper actuator
WO2015169589A1 (en) * 2014-05-06 2015-11-12 Valeo Klimasysteme Gmbh Valve flap sub-assembly
JP2015223930A (en) * 2014-05-28 2015-12-14 株式会社ヴァレオジャパン Vehicular air conditioner

Similar Documents

Publication Publication Date Title
JP3584681B2 (en) Vehicle air conditioner
JP2000052745A (en) Air-conditioning device for automobile
GB2062846A (en) Bypass passageway construction for a vehicle air conditioner system
US8661844B2 (en) Door for controlling temperature and airflow distribution of a heating, ventilation, and air conditioning system in a vehicle
JPH09175147A (en) Air conditioner
JP4310905B2 (en) Air conditioner for vehicles
US9610823B2 (en) Vehicle HVAC temperature control system
JPS63112209A (en) Air conditioning device for automobile
JP4671566B2 (en) Automotive air conditioner
JPH10244822A (en) Door structure for car air conditioning device
JP4600211B2 (en) Air conditioner for vehicles
JP3896671B2 (en) Air conditioner for vehicles
JPH0671222U (en) Air conditioning unit
JPH0723291Y2 (en) Automotive air conditioner
JP2830691B2 (en) Automotive air conditioners
JP3936795B2 (en) Air conditioner for vehicles
JPH09263120A (en) Air conditioner for automobile
JPS6322089Y2 (en)
JPH0513606Y2 (en)
JPH11254943A (en) Vehicle air-conditioning device
JPH11342721A (en) Control door for controlling fluid flow
JPS6140587Y2 (en)
JPS633282Y2 (en)
JPS6232890Y2 (en)
JPS6010886Y2 (en) Automotive air conditioner