JPS631116B2 - - Google Patents

Info

Publication number
JPS631116B2
JPS631116B2 JP55170691A JP17069180A JPS631116B2 JP S631116 B2 JPS631116 B2 JP S631116B2 JP 55170691 A JP55170691 A JP 55170691A JP 17069180 A JP17069180 A JP 17069180A JP S631116 B2 JPS631116 B2 JP S631116B2
Authority
JP
Japan
Prior art keywords
air
immersed
bed
water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55170691A
Other languages
Japanese (ja)
Other versions
JPS57105289A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP55170691A priority Critical patent/JPS57105289A/en
Publication of JPS57105289A publication Critical patent/JPS57105289A/en
Publication of JPS631116B2 publication Critical patent/JPS631116B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】 本発明は有機性廃水を生物膜で処理する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating organic wastewater with a biofilm.

従来、浸漬床装置による有機性廃水の処理で
は、アンスラサイト、砂、塩ビパイプなどの比重
が1.0より大きい粒状固体又はハニカムチユーブ
などの平板状部材を処理槽内に浸漬し、エアリフ
トエアレーシヨンによつて、浸漬床部への酸素
供給と液の循環が行なわれている。
Conventionally, in the treatment of organic wastewater using immersed bed equipment, granular solids with a specific gravity greater than 1.0, such as anthracite, sand, and PVC pipes, or flat members such as honeycomb tubes are immersed in a treatment tank, and air lift aeration is performed. Therefore, oxygen is supplied to the immersed bed and liquid is circulated.

しかしながら、このような方法は次のような欠
点をもつている。
However, such a method has the following drawbacks.

エアリフトによつて酸素供給を行なつている
ため、空気泡の処理槽内滞留時間が極めて短か
い。この原因はエアリフト部に液の上向流が生
起し、空気泡の上昇速度がこの上向流により加
速されるからである。従つて、酸素供給動力効
率は高々1Kg・O2/KWH程度しか得られない
ので、省エネルギー的でない。
Since oxygen is supplied using an air lift, the residence time of air bubbles in the processing tank is extremely short. This is because an upward flow of the liquid occurs in the air lift section, and the rising speed of the air bubbles is accelerated by this upward flow. Therefore, the oxygen supply power efficiency is only about 1 Kg.O 2 /KWH at most, which is not energy-saving.

材に粒状固体を使用すると床の目詰まり
が頻繁に発生するため、そのたびに原水の供給
を止め、処理水を用いて床の逆洗や水抜きを
行なわなければならないので、運転管理が非常
に面倒であるし、しかも安定した処理効果が得
られない。
When granular solids are used as a material, the floor frequently becomes clogged, so each time the raw water supply has to be stopped and treated water is used to backwash and drain the floor, operation management becomes extremely difficult. This is troublesome, and moreover, stable processing effects cannot be obtained.

生物処理の高速化のためには処理槽内の微生
物量を増大させなければならないが、この目的
のためには材の比表面積を増大させる必要が
ある。ところが、比表面積の大きな、粒径の小
さい材を使用すると前述の床の目詰まりが
極めて短時間で発生するため、実際上は小粒径
の材を用いることができなかつた。
In order to speed up biological treatment, it is necessary to increase the amount of microorganisms in the treatment tank, and for this purpose it is necessary to increase the specific surface area of the material. However, if a material with a large specific surface area and a small particle size is used, the aforementioned bed clogging occurs in an extremely short period of time, so it has been practically impossible to use a material with a small particle size.

本発明は、従来法のこれら諸欠点を適確に解決
し、エアレーシヨンの省エネルギー化と、浸漬
床の目詰まりのトラブルを効果的に防止できる、
新しい浸漬床による生物処理方法を提供するこ
とを目的とするものである。
The present invention appropriately solves these drawbacks of the conventional method, saves energy in aeration, and effectively prevents troubles such as clogging of the immersion bed.
The purpose is to provide a new biological treatment method using a immersed bed.

すなわち本発明は、水に浮上する粒状微生物膜
付着材にて浸漬充填層を形成すると共に、該浸
漬充填層の垂直方向にエアリフト管を配備して循
環流を生起せしめることができるよう構成した浸
漬床装置に、原水を前記浸漬充填層内に下向流
に流過せしめると共に前記浸漬充填層内又はその
下部から空気を供給しつつ生物処理し、前記エア
リフト管内への空気供給量を間欠的に増減せしめ
ることを特徴とする有機性廃水の生物処理方法で
ある。なお、この明細書において前記「増減」
は、空気供給の開始・停止(オン・オフ)と、供
給中の空気供給量の増大・減少の両方を意味す
る。
That is, the present invention provides an immersion system in which an immersion packed bed is formed using a particulate microbial film-adhesive material that floats on water, and an air lift pipe is provided in the vertical direction of the immersion packed bed to generate a circulating flow. In the floor device, raw water is caused to flow downward into the immersed packed bed, and air is supplied from within or below the immersed packed bed for biological treatment, and the amount of air supplied into the air lift pipe is intermittently controlled. This is a biological treatment method for organic wastewater characterized by increasing and decreasing the amount of organic wastewater. In addition, in this specification, the above-mentioned "increase/decrease"
means both the start/stop (on/off) of air supply and the increase/decrease of the air supply amount during supply.

本発明の実施態様を図面により説明すれば、槽
内上部に発泡ポリプロピレン、木片、おがくず、
パーライト、シラスガラスバルーンなど比重が
1.0以下の任意の浮上粒状固体を材として形成
した浸漬床部1を設け、該浸漬床部1の直下
部にブロワー10に連なる散気管3を配設すると
共に、前記槽内の上部と浸漬床部1の下部とを
連通するように垂直方向にエアリフト管4を配設
した処理装置により原水2を処理する。すなわ
ち、原水2は浸漬床部1内を下向流で流過する
間に散気管3からの空気5により曝気処理された
のち、流出部7を経て処理水11として系外に排
出される。このように原水2と空気5を向流式
に、しかも、浸漬床部1内で接触させる方法を
採用しているので、空気泡が従来装置のようにす
ぐ大気中に逸出してしまうことがなくなり、浮上
材間の空隙に気泡が捕捉されるので空気泡の浸
漬床部1内の滞留時間が長くなる効果が得ら
れ、したがつて酸素吸収効率が著しく向上する利
益が得られる。
To explain the embodiment of the present invention with reference to the drawings, the upper part of the tank includes foamed polypropylene, wood chips, sawdust,
Specific gravity such as perlite and glass glass balloons
An immersed bed section 1 made of any floating granular solid of 1.0 or less is provided, and an aeration pipe 3 connected to a blower 10 is provided directly below the immersed bed section 1, and an aeration pipe 3 connected to the blower 10 is installed between the upper part of the tank and the immersed bed. The raw water 2 is treated by a treatment device in which an air lift pipe 4 is arranged vertically so as to communicate with the lower part of the section 1. That is, the raw water 2 is aerated with the air 5 from the aeration tube 3 while flowing downward through the immersion bed 1, and then is discharged to the outside of the system as treated water 11 through the outflow section 7. Since the raw water 2 and the air 5 are brought into contact with each other in a countercurrent manner within the immersion bed 1 as described above, air bubbles do not immediately escape into the atmosphere as in conventional devices. Since the air bubbles are trapped in the voids between the floating materials, the residence time of the air bubbles in the immersed bed section 1 is lengthened, and the benefit of significantly improving oxygen absorption efficiency is obtained.

しかして、このような処理を続けるにしたがい
材にSSが蓄積し抗が増大してくる。ここで
浸漬床部1の洗浄処理が次のようにして行なわ
れる。すなわち、エアリフト管4の下部に空気5
を供給するか又は供給給量を増大するとエアリフ
ト管4による循環流が生起又は増大し、浸漬床
部1の下向流速が顕著に増大し、床高さの下方
への膨張率が増大する。この際、それまで材間
隙に捕捉されていたSSや過剰の微生物スライム
が剥離し、流出部7を上昇して系外に流出し、後
続する沈澱池、過機、スクリーンなどの固液分
離装置8において、汚泥13が除去される。
However, as this treatment continues, SS accumulates in the material and the resistance increases. Here, the cleaning treatment of the immersed bed section 1 is carried out as follows. That is, air 5 is placed at the bottom of the air lift pipe 4.
When supplying or increasing the supply amount, a circulating flow by the airlift pipe 4 is generated or increased, and the downward flow velocity of the submerged bed section 1 increases significantly, and the downward expansion rate of the bed height increases. At this time, the SS and excess microbial slime that had been trapped in the gaps between the materials are peeled off, ascend the outflow section 7, and flow out of the system, leading to subsequent solid-liquid separation devices such as sedimentation basins, filters, and screens. At 8, sludge 13 is removed.

なお、このときのエアリフト管4への空気供給
は間欠的にオン・オフするか、あるいは間欠的に
増減させることによつて上記のSSや微生物スラ
イムの剥離効果が増大する。また、空気供給量を
さらに大として材を同伴させて循環させるよう
にすれば、エアリフト管4内での剥離作用をも併
せて期待することができる。
At this time, the effect of removing the SS and microbial slime can be increased by intermittently turning on and off the air supply to the air lift tube 4, or by intermittently increasing and decreasing the air supply. Moreover, if the amount of air supplied is increased further and the material is circulated along with it, a peeling effect within the air lift tube 4 can also be expected.

しかるのち、エアリフト管4への空気供給を止
め又は減少せしめ、再び定常処理状態に復帰させ
る。なお、6は浸漬床部1の水面であり、前記
抗の増大はこの水面6の上昇によつて検知する
ことができる。9は浮上粒状固体が系外に流出す
るのを阻止するための多孔透水体(網など)であ
る。また、14は空気5のエアリフト管4への供
給量を調節するための流量可変バルブ、15,1
6は流出部7からの流出液を直接処理水11とし
たり、固液分離装置へ送給するための切替バルブ
であり、12は固液分離水である。
Thereafter, the air supply to the air lift tube 4 is stopped or reduced, and the steady processing state is restored again. Note that 6 is the water surface of the immersed floor portion 1, and the increase in resistance can be detected by the rise of this water surface 6. 9 is a porous water-permeable body (such as a net) for preventing floating granular solids from flowing out of the system. Further, 14 is a variable flow valve for adjusting the amount of air 5 supplied to the air lift pipe 4;
6 is a switching valve for directly converting the effluent from the outflow portion 7 into treated water 11 or feeding it to the solid-liquid separator, and 12 is solid-liquid separated water.

前記エアリフト管4への空気5の供給は通常定
常状態においては停止させるか、浸漬床部1が
膨張しない程度の供給量にとどめておくのが最も
好ましいが、わずかに浸漬床部1が膨張する程
度の量を常時供給しておく方法も採用できる。
It is most preferable that the supply of air 5 to the air lift tube 4 is usually stopped in a steady state or kept at an amount that does not cause the immersion bed 1 to expand, but the immersion bed 1 may expand slightly. A method of constantly supplying a certain amount can also be adopted.

いずれにせよ、定常の生物処理時においては、
浸漬床部1の膨張率(膨張時の床高Hを、固
定床状態の床高hで除したもの、すなわちH/
h)は2.0以下に設定して操作することが大切で
あり、これにより散気管3からの空気泡の上昇が
効果的に抑止できる。流出部7の横断面積をSS
の沈降速度にあわせて設定することによつて、流
出部7を沈降分離部にすることも可能である。ま
た、定常処理時においては浸漬床部1の下部か
ら流出する処理水11中にはSSが殆ど含まれて
いないので固液分離装置8に流入させることなく
そのまま放流することもできる。また、散気管3
の設置位置は床の直下部又は床内好ましくは
最下層であり、通常の曝気槽のように槽底面に設
けることはあまり好ましくない。この理由は、散
気水深が深いほどブロワー10の所要吐出圧が増
大するためである。
In any case, during routine biological treatment,
The expansion coefficient of the immersed bed section 1 (the bed height H at the time of expansion divided by the bed height h in the fixed bed state, that is, H/
It is important to operate with h) set to 2.0 or less, so that the rise of air bubbles from the air diffuser pipe 3 can be effectively suppressed. The cross-sectional area of the outflow part 7 is SS
It is also possible to use the outflow section 7 as a sedimentation separation section by setting it in accordance with the sedimentation speed of . Furthermore, during steady-state treatment, the treated water 11 flowing out from the lower part of the immersed bed section 1 contains almost no SS, so it can be discharged as is without flowing into the solid-liquid separator 8. In addition, air diffuser 3
The installation position is directly below the floor or preferably at the lowest level in the floor, and it is not very preferable to install it at the bottom of the tank like in a normal aeration tank. The reason for this is that the required discharge pressure of the blower 10 increases as the aeration water depth increases.

なお、エアリフト管4の起動時にも溶存酸素が
微生物膜に供給されるので生物処理が継続される
結果、従来のように床洗浄時に原水の供給を停
止する操作は不要である。
Note that since dissolved oxygen is supplied to the microbial membrane even when the air lift tube 4 is activated, the biological treatment continues, and as a result, there is no need to stop the supply of raw water during floor cleaning as in the conventional method.

以上述べたように本発明方法は、浮上粒状材
による浸漬床の内部又は下部に設けた散気装置
から曝気し、浸漬床内に空気泡を進入させつつ
原水を、浸漬床内に下向流で流過させて生物処
理することを定常処理とし、エアリフトにより液
循環量を間欠的に変化させて、前記浸漬床の層
高を増減させるようにしたものであり、従来法の
ごとく浮上材層に対する酸素供給と液循環をエ
アリフトエアレーシヨンのみによつて行なうもの
とは根本的に異なるので、従来の浸漬床法の欠
点をことごとく解決することができる。即ち、粒
径の小さな比表面積の大きい材を用いても床
の目詰まりによつて運動が不能になることがな
く、しかも、逆洗が不要であり原水供給を停止す
る必要がなく処理でき、さらに小粒径の材が使
用できるので、処理槽内の微生物量を高濃度に維
持できて生物処理の高速化が可能になるほか、空
気など酸素含有気泡の槽内滞留時間が長いため酸
素吸収効率が良く、ブロワー送風量が少なくま
た、ブロワー吐出圧も小さくてすんでエアレーシ
ヨンの省エネルギーが可能となるし、且つまたエ
アリフトエアレーシヨンを間欠的又は副次的に行
なうようにしたので、エアレーシヨン用動力の消
費効率も向上し、低コストで処理できる利益があ
る。
As described above, the method of the present invention aerates from an aeration device installed inside or below a immersed bed made of floating granular material, and allows raw water to flow downward into the immersed bed while introducing air bubbles into the immersed bed. The liquid circulation rate is changed intermittently using an air lift to increase or decrease the layer height of the immersed bed. This method is fundamentally different from the method in which oxygen supply and liquid circulation are carried out only by air lift aeration, and all the drawbacks of the conventional submerged bed method can be overcome. In other words, even if a material with a small particle size and a large specific surface area is used, it will not become impossible to move due to bed clogging, and furthermore, backwashing is not required and the raw water supply can be processed without having to be stopped. Furthermore, since materials with small particle sizes can be used, the amount of microorganisms in the treatment tank can be maintained at a high concentration, making it possible to speed up biological treatment.In addition, the residence time of oxygen-containing bubbles such as air in the tank is long, so oxygen can be absorbed. The efficiency is high, the blower air flow is small, and the blower discharge pressure is also small, making it possible to save energy during aeration. Furthermore, since air lift aeration is performed intermittently or as a secondary operation, the power for aeration is reduced. It also improves consumption efficiency and has the benefit of being able to process at a lower cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示す系統説明図であ
る。 1……浸漬床部、2……原水、3……散気
管、4……エアリフト管、5……空気、6……水
面、7……流出部、8……固液分離装置、9……
多孔透水体、10……ブロワー、11……処理
水、12……固液分離水、13……汚泥、14〜
16……バルブ。
The drawings are system explanatory diagrams showing embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Immersed floor part, 2... Raw water, 3... Air diffuser pipe, 4... Air lift pipe, 5... Air, 6... Water surface, 7... Outflow part, 8... Solid-liquid separator, 9... …
Porous water permeable body, 10... blower, 11... treated water, 12... solid-liquid separated water, 13... sludge, 14-
16...Valve.

Claims (1)

【特許請求の範囲】 1 水に浮上する粒状微生物膜付着材にて浸漬
充填層を形成すると共に該浸漬充填層の垂直方向
にエアリフト管を配備して循環流を生起せしめる
ことができるよう構成した浸漬床装置に、原水
を前記浸漬充填層内に下向流に流過せしめると共
に前記浸漬充填層上端部よりも下方から空気を供
給しつつ生物処理し、前記エアリフト管内への空
気供給量を間欠的に増減せしめることを特徴とす
る有機性廃水の生物処理方法。 2 前記空気供給量の増減操作が、空気供給をオ
ン・オフせしめて行なわれる特許請求の範囲第1
項記載の方法。 3 前記空気供給量の増減操作が、前記材が水
に同伴されるように増大せしめて行なわれる特許
請求の範囲第1項又は第2項記載の方法。
[Scope of Claims] 1. A immersed packed bed is formed using particulate microbial film adhering material that floats on water, and an air lift pipe is provided in the vertical direction of the immersed packed bed to generate a circulating flow. In the immersed bed device, raw water is allowed to flow downward into the immersed packed bed, and air is supplied from below the upper end of the immersed packed bed for biological treatment, and the amount of air supplied into the air lift pipe is intermittently controlled. A biological treatment method for organic wastewater characterized by increasing or decreasing the amount of organic wastewater. 2. Claim 1, wherein the operation of increasing and decreasing the air supply amount is performed by turning on and off the air supply.
The method described in section. 3. The method according to claim 1 or 2, wherein the air supply amount is increased or decreased so that the material is entrained in water.
JP55170691A 1980-12-03 1980-12-03 Biological treatment of organic waste water Granted JPS57105289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55170691A JPS57105289A (en) 1980-12-03 1980-12-03 Biological treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55170691A JPS57105289A (en) 1980-12-03 1980-12-03 Biological treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS57105289A JPS57105289A (en) 1982-06-30
JPS631116B2 true JPS631116B2 (en) 1988-01-11

Family

ID=15909601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55170691A Granted JPS57105289A (en) 1980-12-03 1980-12-03 Biological treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS57105289A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585187B2 (en) * 1989-12-20 1997-02-26 株式会社荏原製作所 Organic wastewater biological treatment method

Also Published As

Publication number Publication date
JPS57105289A (en) 1982-06-30

Similar Documents

Publication Publication Date Title
JP2795620B2 (en) Biological water treatment apparatus using floating filter medium and backwashing method thereof
JP2584386B2 (en) Biological filtration method and device
JP2002307088A (en) Wastewater treatment apparatus
JP3836576B2 (en) Fluidized bed wastewater treatment equipment
JPS631116B2 (en)
JPS6323999Y2 (en)
JPS6340597B2 (en)
JPH03188993A (en) Sewage treating device
JPH0214118B2 (en)
JPH0434960Y2 (en)
JPS59115789A (en) Activated sludge method using packing material
JPH05138185A (en) Treatment of organic sewage and equipment
JPH02184398A (en) Moving bed-type denitrification device
JPH09276885A (en) Biological membrane filter apparatus using foldable filter material
JPH0642794Y2 (en) Organic wastewater biological treatment equipment
JP2554563B2 (en) Method and apparatus for biological treatment of organic wastewater
JPS6321554B2 (en)
JP2552493B2 (en) Pressurized upflow wastewater treatment equipment and its usage
JPH07251165A (en) Method for separating and removing actinomycetes scum and device therefor
JPS6219917B2 (en)
JPH0128872Y2 (en)
JPS5842077Y2 (en) Biological “filtration” device
JPH0128867Y2 (en)
JPH08294699A (en) Biological denitrification apparatus of waste water
JP3369834B2 (en) Biofilm filtration device