JPS63111609A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPS63111609A
JPS63111609A JP25895386A JP25895386A JPS63111609A JP S63111609 A JPS63111609 A JP S63111609A JP 25895386 A JP25895386 A JP 25895386A JP 25895386 A JP25895386 A JP 25895386A JP S63111609 A JPS63111609 A JP S63111609A
Authority
JP
Japan
Prior art keywords
lead
semiconductor
solid electrolytic
electrolytic capacitor
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25895386A
Other languages
Japanese (ja)
Inventor
一美 内藤
荒川 美明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP25895386A priority Critical patent/JPS63111609A/en
Publication of JPS63111609A publication Critical patent/JPS63111609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は性能が良好な固体電解コンデンサを容易につく
ることが出来る固体電解コンデンサの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a solid electrolytic capacitor that can easily produce a solid electrolytic capacitor with good performance.

〔従来の技術〕[Conventional technology]

従来、固体電解コンデンサは、陽極酸化皮膜を有するア
ルミニウム等の弁作用金属に半導体を付着させてつくら
れている。
Conventionally, solid electrolytic capacitors are made by attaching a semiconductor to a valve metal such as aluminum having an anodized film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記半導体の付着回数は多く、製造工程が長く
なり、また皮膜が劣化し易い欠点があった。
However, the number of times the semiconductor is deposited is large, the manufacturing process becomes long, and the film tends to deteriorate.

本発明は上記の事情に鑑み、半導体の付着回数を減少し
て、製造工程を簡略し、さらに皮膜の劣化を防止するこ
とが出来る固体電解コンデンサの製造方法を提供するこ
とを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor that can reduce the number of times a semiconductor is deposited, simplify the manufacturing process, and further prevent deterioration of the film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の目的を達成すべくなされたもので、そ
の要旨は、セパレータを介して巻き込まれた陽極箔と陰
極箔からなる巻回素子と、該素子に含浸された半導体か
らなる固体電解コンデンサにおいて、上記セパレータが
巻回される前に上記半導体で含浸処理されたものを用い
る固体電解コンデンサの製造方法にある。
The present invention has been made to achieve the above object, and its gist consists of a wound element consisting of an anode foil and a cathode foil wound together via a separator, and a solid electrolyte consisting of a semiconductor impregnated into the element. The present invention provides a method for manufacturing a solid electrolytic capacitor in which the separator is impregnated with the semiconductor before being wound.

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

以下、本発明の固体電解コンデンサの製造方法を説明す
る。
Hereinafter, a method for manufacturing a solid electrolytic capacitor according to the present invention will be explained.

本発明において使用される陽極箔および陰極箔には、ア
ルミニウム、タンタル、ニオブ、チタン等の弁作用金属
が使用され、陽極箔には耐圧形成のための化成皮膜が公
知の方法で形成されるが、陰極箔にも自然酸化や無極性
等とするための酸化皮膜が形成される。上記陽極箔、陰
極箔には、皮膜を設ける前後にかしめ付け、高周波接合
等の方法によりリード線が接続される。また、本発明に
おいて使用されるセパレータの材質等に特に制限はなく
紙や不織布など公知のセパレータが用いられる。セパレ
ータに含浸処理する半導体およびセパレータを介して巻
き込まれた陽極箔と陰極箔からなる巻回素子に含浸され
る半導体の組成及び作製方法に特に制限はないがコンデ
ンサの性能を高めるためには二酸化鉛もしくは二酸化鉛
と硫酸鉛を主成分として、公知の化学的析出法、或いは
電気化学的析出法で作製するのが好ましい。
Valve metals such as aluminum, tantalum, niobium, and titanium are used for the anode foil and cathode foil used in the present invention, and a chemical conversion coating for pressure resistance is formed on the anode foil by a known method. An oxide film is also formed on the cathode foil to make it naturally oxidized or non-polar. Lead wires are connected to the anode foil and cathode foil by caulking, high frequency bonding, or the like before and after providing the film. Furthermore, the material of the separator used in the present invention is not particularly limited, and known separators such as paper and nonwoven fabric can be used. There are no particular restrictions on the composition or manufacturing method of the semiconductor impregnated into the separator and the semiconductor impregnated into the wound element consisting of the anode foil and cathode foil wound through the separator, but lead dioxide is required to improve the performance of the capacitor. Alternatively, it is preferable to use lead dioxide and lead sulfate as main components and produce it by a known chemical precipitation method or electrochemical precipitation method.

化学的析出法としては、例えば、鉛含有化合物と酸化剤
を含んだ反応母液から化学的に析出させる方法があげら
れる。
Examples of the chemical precipitation method include a method of chemically precipitating from a reaction mother liquor containing a lead-containing compound and an oxidizing agent.

鉛含有化合物としては、例えばオキシン、アセチルアセ
トン、ピロメコン酸、サリチル酸、アリザリン、ポリ酢
酸ビニル、ポルフィリン系化合物。
Examples of lead-containing compounds include oxine, acetylacetone, pyromeconic acid, salicylic acid, alizarin, polyvinyl acetate, and porphyrin compounds.

クラウン化合物、クリブテート化合物等のキレート形成
性化合物に鉛原子が配位結合もしくはイオン結合してい
る鉛含有化合物、クエン酸鉛、酢酸鉛、塩基性酢酸鉛、
塩化鉛、臭化鉛、過塩素酸鉛。
Lead-containing compounds in which a lead atom has a coordinate bond or ionic bond to a chelate-forming compound such as a crown compound or a cributate compound, lead citrate, lead acetate, basic lead acetate,
Lead chloride, lead bromide, lead perchlorate.

塩素酸鉛、リードサルファイメイト、六弗化ケイ素酸鉛
、臭素酸鉛、ホウフッ化鉛、酢酸鉛水和物。
Lead chlorate, lead sulfimate, lead hexafluorosilicate, lead bromate, lead borofluoride, lead acetate hydrate.

硝酸鉛等があげられる。これらの鉛含有化合物は、反応
母液に使用する溶剤によって適宜選択され、溶剤として
は、水または有機溶媒が使用される。
Examples include lead nitrate. These lead-containing compounds are appropriately selected depending on the solvent used for the reaction mother liquor, and water or an organic solvent is used as the solvent.

また、鉛含有化合物は、2種以上混合して使用してもよ
い。
Further, two or more kinds of lead-containing compounds may be used in combination.

反応母液中の鉛含有化合物の濃度は、0.05モル/J
から飽和溶解度を与える濃度までの範囲内であり、好ま
しくは、0.1モル/Jから飽和溶解度を与える濃度ま
での範囲内であり、より好ましくは、0.5モル/Jか
ら飽和溶解度を与える濃度までの範囲内である。反応母
液中の鉛含有化合物の濃度が0.05モル/J未満では
、性能の良好な固体電解コンデンサを得ることができな
い。また反応母液中の鉛含有化合物の濃度が飽和溶解度
を越える場合は、増量添加によるメリットが認められな
い。
The concentration of lead-containing compounds in the reaction mother liquor is 0.05 mol/J
to a concentration that provides saturated solubility, preferably from 0.1 mol/J to a concentration that provides saturated solubility, and more preferably from 0.5 mol/J to a concentration that provides saturated solubility. It is within the range of up to the concentration. If the concentration of the lead-containing compound in the reaction mother liquor is less than 0.05 mol/J, a solid electrolytic capacitor with good performance cannot be obtained. Further, if the concentration of the lead-containing compound in the reaction mother liquor exceeds the saturation solubility, no merit can be observed by adding an increased amount.

酸化剤としては、例えばキノン、クロラニル。Examples of oxidizing agents include quinone and chloranil.

ピリジン−N−オキサイド、ジメチルスルフォキサイド
、クロム酸、過マンガン酸カリ、セレンオキサイド、酢
酸水銀、酸化バナジウム、塩素酸ナトリウム、過塩素酸
カルシウム、塩素酸カルシウム、次亜塩素酸カルシウム
1.亜塩素酸カルシウム、塩化第2鉄、過酸化水素、サ
ラシ粉、過酸化ベンゾイル等があげられる。これらの酸
化剤は、反応母液に使用する溶剤によって適宜に選択す
ればよく、また酸化剤は、2種以上混合して使用し= 
5 − てもよい。
Pyridine-N-oxide, dimethyl sulfoxide, chromic acid, potassium permanganate, selenium oxide, mercury acetate, vanadium oxide, sodium chlorate, calcium perchlorate, calcium chlorate, calcium hypochlorite 1. Examples include calcium chlorite, ferric chloride, hydrogen peroxide, mustard powder, and benzoyl peroxide. These oxidizing agents may be appropriately selected depending on the solvent used for the reaction mother liquor, and two or more oxidizing agents may be used in combination.
5 - May be.

酸化剤の使用量は、鉛含有化合物の使用モル量の0.1
〜5倍モルの範囲内であることが好ましい。酸化剤の使
用割合が鉛化合物の使用モル量の5倍モルを越える場合
は、コスト的にメリットはなく、また0、1倍モルより
少ない場合は性能の良好な固体N解コンデンサが得られ
ない。
The amount of oxidizing agent used is 0.1 of the molar amount of lead-containing compound used.
It is preferably within the range of ~5 times the mole. If the ratio of the oxidizing agent used exceeds 5 times the molar amount of the lead compound used, there is no cost advantage, and if it is less than 0 or 1 times the molar amount, a solid N-solution capacitor with good performance cannot be obtained. .

二酸化鉛を主成分とする半導体層を形成する方法として
は、例えば鉛含有化合物を溶かした溶液と、酸化剤を溶
かした溶液を混合して反応母液を調製した後、反応母液
にセパレータ或いは巻回素子を浸漬して化学的に析出さ
せる方法があげられる。
As a method for forming a semiconductor layer containing lead dioxide as a main component, for example, a reaction mother liquor is prepared by mixing a solution containing a lead-containing compound and a solution containing an oxidizing agent, and then the reaction mother liquor is coated with a separator or wrapped. An example is a method of chemically depositing the element by immersing it.

−・方、電気化学的析出法としては、例えば本発明者等
が先に提案した高濃度の鉛含有化合物を含んだ電解液中
で電解酸化により二酸化鉛を析出させる方法等があげら
れる(特願昭6l−26952)。
- On the other hand, examples of electrochemical deposition methods include the method previously proposed by the present inventors in which lead dioxide is deposited by electrolytic oxidation in an electrolytic solution containing a high concentration of lead-containing compounds (particularly Gansho 6l-26952).

また、半導体を本来半導体の役割を果たす二酸化鉛と絶
縁物質である硫酸鉛を主成分とする半導−6= 体で構成づると硫酸鉛の配合により、コンデンサの漏れ
電流値を低減せしめることができる。一方、硫酸鉛の配
合により半導体層の電気伝導度が低くなるため例えば損
失係数値が大きくなるが、従来の固体電解コンデンサと
比較しても高水準の性能を維持1発現することが本発明
により見出された。
In addition, since semiconductors are composed of semiconductors whose main components are lead dioxide, which plays the role of a semiconductor, and lead sulfate, which is an insulator, the leakage current value of a capacitor can be reduced by adding lead sulfate. can. On the other hand, the electrical conductivity of the semiconductor layer decreases due to the addition of lead sulfate, which increases the loss factor value, but the present invention maintains a high level of performance compared to conventional solid electrolytic capacitors. discovered.

従って、半導体を、二酸化鉛と硫酸鉛の混合物で構成す
る場合、二酸化鉛を10重量部以上、100重量部未満
に対して硫酸鉛を90重量部以下という広範囲の組成で
良好なコンデンザ性能を維持1発現することができる。
Therefore, when the semiconductor is composed of a mixture of lead dioxide and lead sulfate, good capacitor performance can be maintained over a wide range of compositions in which the lead dioxide is 10 parts by weight or more and less than 100 parts by weight and the lead sulfate is 90 parts by weight or less. 1 can be expressed.

とりわけ二酸化鉛20〜50重量部に対して硫酸鉛80
〜50重量部、更には、二酸化鉛25〜35@量部に対
して硫酸鉛75〜65重量部の範囲で漏れ電流値と損失
係数値のバランスが良好である。二酸化鉛が10重量部
未満であると導電性が悪くなるために損失係数が大きく
なり、また容量が充分出現しない。
Especially 80 parts by weight of lead sulfate to 20 to 50 parts by weight of lead dioxide
~50 parts by weight, and moreover, a good balance between the leakage current value and the loss factor value is achieved in the range of 75 to 65 parts by weight of lead sulfate to 25 to 35 parts by weight of lead dioxide. If the amount of lead dioxide is less than 10 parts by weight, conductivity will be poor, resulting in a large loss factor and insufficient capacity.

二酸化鉛と硫酸鉛を主成分とする半導体は、例えば鉛イ
オン及び過硫酸イオンを含んだ水溶液を反応母液として
化学的析出によって形成することができる。又、過硫酸
イオンを含まない適当な酸化剤を加えてもよい。
A semiconductor containing lead dioxide and lead sulfate as main components can be formed by chemical precipitation using, for example, an aqueous solution containing lead ions and persulfate ions as a reaction mother liquor. Additionally, a suitable oxidizing agent that does not contain persulfate ions may be added.

母液中の鉛イオン濃度は、飽和溶解度を与える濃度から
0.05モル/J、好ましくは飽和溶解度を与える濃度
から0.1モル/J、より好ましくは飽和溶解度を与え
る2!麿から0.5モル/jの範囲内である。鉛イオン
の1!麿が飽和溶解度より高い場合には、増量添加によ
るメリットがない。
The lead ion concentration in the mother liquor is 0.05 mol/J from the concentration that gives saturated solubility, preferably 0.1 mol/J from the concentration that gives saturated solubility, more preferably 2! It is within the range of 0.5 mol/j from Maro. Lead ion 1! If the solubility of malt is higher than the saturation solubility, there is no benefit from adding an increased amount.

また、鉛イオンの濃度が0.05モル/jより低い場合
には、母液中の鉛イオンが薄すぎるため塗布回数を多く
しなければならないという難点がある。
Further, when the concentration of lead ions is lower than 0.05 mol/j, there is a problem that the number of applications must be increased because the lead ions in the mother liquor are too thin.

一方、母液中の過硫酸イオン濃度は鉛イオンに対してモ
ル比で5から0.05の範囲内である。
On the other hand, the concentration of persulfate ions in the mother liquor is within the range of 5 to 0.05 in molar ratio to lead ions.

過硫酸イオンの濃度が鉛イオンに対してモル比で5より
多いと、未反応の過硫酸イオンが残るためコスi−高と
なり、また過硫酸イオンの濃度が鉛イオンに対してモル
比で0.05より少ないと、未反応の鉛イオンが残り導
電性が悪くなるので好ましくない。
If the concentration of persulfate ions is more than 5 in molar ratio to lead ions, unreacted persulfate ions remain, resulting in a high cost i, and the concentration of persulfate ions is 0 in molar ratio to lead ions. If it is less than .05, unreacted lead ions remain and conductivity deteriorates, which is not preferable.

鉛イオン種を与える化合物の代表例として、クエン酸鉛
、過塩素酸鉛、硝酸鉛、酢酸鉛、塩基性酢酸鉛、塩素酸
鉛、リードサルファメイト、六弗化ケイ素鉛、臭素酸鉛
、塩化鉛、臭化鉛等が挙げられる。これらの鉛イオン種
を与える化合物は2種以上混合して使用してもよい。
Typical examples of compounds that provide lead ion species include lead citrate, lead perchlorate, lead nitrate, lead acetate, basic lead acetate, lead chlorate, lead sulfamate, lead silicon hexafluoride, lead bromate, and chloride. Examples include lead and lead bromide. Two or more of these compounds providing lead ion species may be used in combination.

一方、過硫酸イオン種を与える化合物としては、例えば
過硫酸カリ、過硫酸ナトリウム、過硫酸アンモニウム等
が挙げられる。これらの過硫酸イオン種を与える化合物
は、2種以上混合して使用してもよい。
On the other hand, examples of compounds that provide persulfate ion species include potassium persulfate, sodium persulfate, ammonium persulfate, and the like. Two or more of these compounds that provide persulfate ion species may be used in combination.

一方、酸化剤としては、たとえば過酸化水素。On the other hand, examples of oxidizing agents include hydrogen peroxide.

次亜塩素酸カルシウム、亜塩素酸カルシウム、塩素酸カ
ルシウム、過塩素酸カルシウム等が挙げられる。
Examples include calcium hypochlorite, calcium chlorite, calcium chlorate, calcium perchlorate, and the like.

以上のように構成される本発明の方法でつくられた固体
電解コンデンサは例えば樹脂モールド。
A solid electrolytic capacitor manufactured by the method of the present invention configured as described above is, for example, a resin mold.

樹脂ケース、金属製の外装ケース、樹脂のディッピング
、ラミネー1へフィルムによる外装により各種用途の汎
用固体電解コンデンサ製品とすることができる。
A general-purpose solid electrolytic capacitor product for various uses can be made by using a resin case, a metal outer case, resin dipping, and lamination 1 with a film exterior.

〔実施例〕〔Example〕

以下、実施例、比較例を示して、本発明の方法を更に詳
しく説明する。
Hereinafter, the method of the present invention will be explained in more detail by showing Examples and Comparative Examples.

実施例1 厚さ約70μmの不織紙を酢酸鉛三水和物2.4モル/
jの水溶液と過硫酸アンモニウム4モル/Jの水溶液の
混合液(反応母液)に浸漬し80℃で30分反応させ水
洗した後乾燥した。この操作を5回くり返した後半導体
処理された不織紙から所定の長さの片を切出しセパレー
タとした。
Example 1 Non-woven paper with a thickness of about 70 μm was treated with 2.4 mol/lead acetate trihydrate.
The sample was immersed in a mixed solution (reaction mother liquor) of an aqueous solution of J and an aqueous solution of 4 mol/J of ammonium persulfate, reacted at 80° C. for 30 minutes, washed with water, and then dried. After repeating this operation five times, a piece of a predetermined length was cut out from the semiconductor-treated nonwoven paper and used as a separator.

ひき続き、陽極箔と陰極箔と、上記セパレータで巻回素
子を作製した。さらに上記反応母液と同様な種類と濃度
の反応母液に巻回素子を浸漬し80℃で30分は反応さ
せた後乾燥した。この操作を2回くり返した。作製した
半導体が含浸された巻回素子をアルミニウム缶に収納し
樹脂封止を行ない固体電解コンデンサを作製した。また
、セパレータ中の半導体および巻回素子中の半導体は、
二酸化鉛が約25重量%、硫酸鉛が約75重量%からな
ることをX線分析、赤外分光分析より確認した。
Subsequently, a wound element was produced using an anode foil, a cathode foil, and the above separator. Further, the wound element was immersed in a reaction mother liquor of the same type and concentration as the above reaction mother liquor, reacted at 80° C. for 30 minutes, and then dried. This operation was repeated twice. The wound element impregnated with the fabricated semiconductor was housed in an aluminum can and sealed with resin to fabricate a solid electrolytic capacitor. In addition, the semiconductor in the separator and the semiconductor in the wound element are
It was confirmed by X-ray analysis and infrared spectroscopy that it consisted of about 25% by weight of lead dioxide and about 75% by weight of lead sulfate.

実施例2 レーヨンを主成分とする厚さ25μmの平箔状ll雑を
実施例1と同様な反応母液に、さらに過酸化水素水0,
05モル/Jを加えた以外は実施例1と同様にして半導
体処理した後セパレータを切出した。さらに実施例1と
同様にして巻回素子を作った後、本実施例のセパレータ
を作製したものと同様な溶液で処理することにより半導
体を含浸させた。ついで実施例1と同様にして固体電解
コンデンサを作製した。また、セパレータ中の半導体お
よび巻回素子中の半導体は二酸化鉛と硫酸鉛からなる組
成物であって、二酸化鉛が約50重1%含まれることを
確認した。
Example 2 A 25 μm thick flat foil material containing rayon as the main component was added to the same reaction mother liquor as in Example 1, and hydrogen peroxide solution (0.0%,
After semiconductor processing was carried out in the same manner as in Example 1 except that 0.5 mol/J was added, a separator was cut out. Further, a wound element was produced in the same manner as in Example 1, and then impregnated with a semiconductor by treatment with a solution similar to that used to produce the separator of this embodiment. A solid electrolytic capacitor was then produced in the same manner as in Example 1. Furthermore, it was confirmed that the semiconductor in the separator and the semiconductor in the wound element were composed of lead dioxide and lead sulfate, and that lead dioxide contained approximately 50% by weight.

実施例3 厚さ50μmのナイロン製平箔状繊維を酢酸鉛三水和物
1.0モル/j水溶液に浸漬し、0.5倍モルの過酸化
水素水の希釈水溶液を加えた。1時間放置後、水洗して
乾燥した。この操作を2回くり返して半導体処理した後
、所定の長さの片を切出しセパレータとした。ひきつづ
き実施例1と同様にして巻回素子を作った後、本実施例
のセパレーターを作製したものと同様な溶液で処理する
ことにより半導体を含浸させた。ついで実施例1と同様
にして固体電解コンデンサを作製した。また、セパレー
タ中の半導体及び巻回素子中の半導体は二酸化鉛からな
ることを確認した。
Example 3 A nylon flat foil fiber having a thickness of 50 μm was immersed in a 1.0 mol/j aqueous solution of lead acetate trihydrate, and a diluted aqueous solution of 0.5 times the mol of hydrogen peroxide was added thereto. After being left for 1 hour, it was washed with water and dried. After repeating this operation twice to process the semiconductor, a piece of a predetermined length was cut out and used as a separator. Subsequently, a wound element was made in the same manner as in Example 1, and then impregnated with a semiconductor by treatment with the same solution as that used to prepare the separator of this example. A solid electrolytic capacitor was then produced in the same manner as in Example 1. It was also confirmed that the semiconductor in the separator and the semiconductor in the wound element were made of lead dioxide.

比較例1 実施例2で、半導体処理をしなかつICセパレータを使
用した以外は、実施例2と同様にして固体電解コンデン
サを作製した。
Comparative Example 1 A solid electrolytic capacitor was produced in the same manner as in Example 2, except that no semiconductor treatment was performed and an IC separator was used.

実施例1〜3、比較例1において作製した固体電解コン
デンサの特性値を一括して第1表に示す。
Table 1 shows the characteristic values of the solid electrolytic capacitors manufactured in Examples 1 to 3 and Comparative Example 1.

第  1  表 但し、*は120H2での測定値、 第1表から明らかなように、半導体処理したセパレータ
を用いた固体電解コンデンサは、巻回素子への半導体含
浸回数が少なくてすみ製造工程が簡単である。また性能
も良好であるため工業的利用価値が高い。
Table 1 However, * indicates the measured value at 120H2. As is clear from Table 1, solid electrolytic capacitors using semiconductor-treated separators require fewer times of impregnating the wound element with semiconductor, and the manufacturing process is simple. It is. Furthermore, since the performance is good, it has high industrial utility value.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によって製造される固体電解]ンデンザは
、セパレータに既に半導体が付着しているために、素子
への半導体の含浸回数が少なくてすみ、製造工程を簡略
することができる。さらに、酸化皮膜の劣化を減少する
ことができ極めて工業的利用価値が高い。
In the solid electrolytic sensor manufactured by the method of the present invention, since the semiconductor is already attached to the separator, the number of times the element is impregnated with the semiconductor can be reduced, and the manufacturing process can be simplified. Furthermore, the deterioration of the oxide film can be reduced, and the value of industrial use is extremely high.

Claims (3)

【特許請求の範囲】[Claims] (1)セパレータを介して巻き込まれた陽極箔と陰極箔
からなる巻回素子と、該素子に含浸された半導体からな
る固体電解コンデンサにおいて、上記セパレータが巻回
される前に上記半導体で含浸処理されたものを用いるこ
とを特徴とする固体電解コンデンサの製造方法。
(1) In a solid electrolytic capacitor consisting of a wound element consisting of an anode foil and a cathode foil wound together through a separator, and a semiconductor impregnated into the element, the separator is impregnated with the semiconductor before being wound. A method for manufacturing a solid electrolytic capacitor, characterized in that a solid electrolytic capacitor is manufactured using a solid electrolytic capacitor.
(2)半導体層が二酸化鉛を主成分とする半導体である
特許請求の範囲第1項記載の固体電解コンデンサの製造
方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the semiconductor layer is a semiconductor containing lead dioxide as a main component.
(3)半導体層が二酸化鉛と硫酸鉛を主成分とする半導
体である特許請求の範囲第1項記載の固体電解コンデン
サの製造方法。
(3) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the semiconductor layer is a semiconductor whose main components are lead dioxide and lead sulfate.
JP25895386A 1986-10-30 1986-10-30 Manufacture of solid electrolytic capacitor Pending JPS63111609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25895386A JPS63111609A (en) 1986-10-30 1986-10-30 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25895386A JPS63111609A (en) 1986-10-30 1986-10-30 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63111609A true JPS63111609A (en) 1988-05-16

Family

ID=17327320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25895386A Pending JPS63111609A (en) 1986-10-30 1986-10-30 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63111609A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214519A (en) * 1984-04-09 1985-10-26 日本ケミコン株式会社 Method of producing solid electrolytic condenser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214519A (en) * 1984-04-09 1985-10-26 日本ケミコン株式会社 Method of producing solid electrolytic condenser

Similar Documents

Publication Publication Date Title
US4758929A (en) Solid electrolyte capacitor and process for preparation thereof
JPH0727851B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63111609A (en) Manufacture of solid electrolytic capacitor
JPS6347917A (en) Solid electrolytic capacitor
JPH0770438B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0198212A (en) Solid electrolytic capacitor
JPH0821523B2 (en) Solid electrolytic capacitor
JP2533911B2 (en) Solid electrolytic capacitor
JPS6323307A (en) Solid electrolytic capacitor
JPH0695492B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0577283B2 (en)
JPS62268122A (en) Solid electrolytic capacitor
JPH01158717A (en) Solid electrolytic capacitor
JPH07120610B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0777181B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63169715A (en) Electrolytic capacitor
JPS63152113A (en) Manufacture of solid electrolytic capacitor
JPS63283116A (en) Manufacture of solid electrolytic capacitor
JPH01248608A (en) Manufacture of solid electrolytic capacitor
JPS63166208A (en) Solid electrolytic capacitor
JPS6328028A (en) Solid electrolytic capacitor
JPH0821522B2 (en) Solid electrolytic capacitor
JPH0640538B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JPH0727848B2 (en) Method for manufacturing solid electrolytic capacitor