JPS63111443A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPS63111443A
JPS63111443A JP25739486A JP25739486A JPS63111443A JP S63111443 A JPS63111443 A JP S63111443A JP 25739486 A JP25739486 A JP 25739486A JP 25739486 A JP25739486 A JP 25739486A JP S63111443 A JPS63111443 A JP S63111443A
Authority
JP
Japan
Prior art keywords
optical
cutout
transmission line
lacking part
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25739486A
Other languages
Japanese (ja)
Inventor
Masafumi Seki
雅文 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP25739486A priority Critical patent/JPS63111443A/en
Publication of JPS63111443A publication Critical patent/JPS63111443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To detect whether or not there is a specific material (ice) to be detected by providing a lacking part to the intermediate part of an optical transmission line and slanting the end surface of the optical transmission line facing the absence part by a specific angle to the optical axis. CONSTITUTION:The lacking part 15 which is sectioned in a right-angled isosceles triangle shape is provided to a glass substrate 14, and an optical waveguide 14 is divided by this lacking part 15 into two optical waveguides 14a and 14b. When ice is formed on the lacking part 15 and increases in thickness to some extent, the refractive index at the lacking part 15 increases and total reflection is not caused. Consequently, transmitted light is incident on the optical waveguide 14b to a considerable extent and a photodetector outputs a signal. For the purpose, the output signal of the photodetector is monitored to detect the icing on a blade 18.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被検出物質の存否を検出するためのセンサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sensor for detecting the presence or absence of a substance to be detected.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様なセンサにおいて、光伝送路の中間
部に欠除部を設け、この欠除部における屈折率が所定値
以下の場合に伝送光を全反射させる様に欠除部に臨む光
伝送路の端面を光軸に対して傾斜させることによって、
小形でありしかも所望の被検出位置での検出を直接に行
うことができる様にしたものである。
The present invention provides a sensor as described above, in which a cutout is provided in the middle of the optical transmission path, and the cutout is configured such that the transmitted light is totally reflected when the refractive index of the cutout is less than or equal to a predetermined value. By tilting the facing end of the optical transmission line with respect to the optical axis,
It is small in size and allows direct detection at a desired detection position.

〔従来の技術〕[Conventional technology]

例えば航空機では、飛行中における翼への着氷を検出す
る必要があり、このためにセンサが用いられている。こ
の様なセンサとしては、水晶振動子と着氷ロッドとを組
み合わせたロッド式着氷センサが従来からあった。
For example, in aircraft, it is necessary to detect ice buildup on the wings during flight, and sensors are used for this purpose. As such a sensor, there has conventionally been a rod-type icing sensor that combines a crystal resonator and an icing rod.

このロッド式着氷センサは、航空機内に配されている水
晶振動子に機械的に結合されているロッドを航空機外へ
突出させ、そのロフトに着氷した氷の量を水晶振動子の
固有振動数の変化として検出するものである。
This rod-type icing sensor uses a rod that is mechanically connected to a crystal oscillator placed inside the aircraft to protrude outside the aircraft, and measures the amount of ice that has formed in the loft using the natural vibration of the crystal oscillator. It is detected as a change in number.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしロフト式着氷センサでは、ロフトを航空機から突
出させる必要があるために構造が複雑であり、翼に取り
付けるとこの翼の形状を実質的に乱してしまう。
However, loft-type icing sensors have a complicated structure because the loft needs to protrude from the aircraft, and when attached to a wing, the sensor substantially disturbs the shape of the wing.

このために、ロッド式着氷センサを翼に取り付けること
ができず、胴体に取り付けたロッド式着氷センサによる
検出結果から翼における着氷状態を推定せざるを得なか
った。従ってロッド式着氷センサでは、翼への着氷を正
確に検出することができなかった。
For this reason, rod-type icing sensors cannot be attached to the wings, and the state of icing on the wings must be estimated from the detection results of the rod-type icing sensors attached to the fuselage. Therefore, the rod-type icing sensor could not accurately detect icing on the wing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による光センサは、中間部に欠除部15が設けら
れており、この欠除部15における屈折率が所定値以下
の場合に伝送光を全反射させる様に前記欠除部15に臨
む端面が光軸に対して傾斜している光伝送路11a、l
lb、14と、この光伝送路11a、llb、14の両
端に接続されている光源及び受光器とを夫々具備してい
る。
The optical sensor according to the present invention is provided with a cutout 15 in the middle part, and faces the cutout 15 so as to totally reflect the transmitted light when the refractive index in the cutout 15 is less than or equal to a predetermined value. Optical transmission lines 11a, l whose end faces are inclined with respect to the optical axis
lb, 14, and a light source and a light receiver connected to both ends of the optical transmission lines 11a, llb, 14, respectively.

〔作用〕 本発明による光センサでは、欠除部15における屈折率
が所定値以下の場合に伝送光を全反射させる様に欠除部
15に臨む光伝送路11a、11b、14の端面を光軸
に対して傾斜させているので、上記の所定値よりも高い
屈折率を有している物質が欠除部15内に存在すれば、
伝送光は全反射されない。
[Function] In the optical sensor according to the present invention, the end surfaces of the optical transmission paths 11a, 11b, and 14 facing the cutout 15 are exposed to light so that the transmitted light is totally reflected when the refractive index in the cutout 15 is less than or equal to a predetermined value. Since it is tilted with respect to the axis, if a substance having a refractive index higher than the above-mentioned predetermined value exists in the cutout part 15,
The transmitted light is not totally reflected.

従って、欠除部15を被検出位置に位置させ、受光器の
出力を監視することによって、所定の被検出物質の存否
を検出することができる。
Therefore, the presence or absence of a predetermined substance to be detected can be detected by positioning the cutout portion 15 at the detection target position and monitoring the output of the light receiver.

〔実施例〕〔Example〕

以下、航空機用の着氷センサに適用した本発明の一実施
例を図面を参照しながら説明する。
An embodiment of the present invention applied to an aircraft icing sensor will be described below with reference to the drawings.

本実施例は、光ファイバIla、llbと光導波路体1
2とから成る光伝送路を有している。先導波路体12は
、ガラス基板13に対するイオン交換によってこのガラ
ス基板13中に光導波路14を形成したものである。
In this embodiment, the optical fibers Ila and llb and the optical waveguide body 1 are
It has an optical transmission line consisting of 2. The guide waveguide body 12 has an optical waveguide 14 formed in the glass substrate 13 by ion exchange with the glass substrate 13.

但し、ガラス基板14には断面が直角二等辺三角形を成
している欠除部15が設けられており、この欠除部15
によって、光導波路14も2つの光導波路14a、14
bに分断されている。
However, the glass substrate 14 is provided with a cutout 15 whose cross section is a right-angled isosceles triangle.
Accordingly, the optical waveguide 14 also has two optical waveguides 14a and 14.
It is divided into b.

光ファイバlla、llbの各々の一端は、光導波路1
4a、14bの欠除部15に臨んでいる端面とは反対側
の端面に、光フアイバ配列具16によって光学的に結合
されている。また、光ファイバllaの他端には光T1
.(図示せず)が接続されており、光ファイバllbの
他端には受光器(図示せず)が接続されている。
One end of each of the optical fibers lla and llb is connected to an optical waveguide 1.
They are optically coupled to the end faces of 4a and 14b opposite to the end face facing the cutout 15 by an optical fiber arraying device 16. In addition, at the other end of the optical fiber lla, a light T1 is provided.
.. (not shown) is connected to the optical fiber llb, and a light receiver (not shown) is connected to the other end of the optical fiber llb.

光導波路体12と光ファイバlla、llbの一端部を
固定している状態の光フアイバ配列具16とは、光導波
路体12のうちで欠除部15が設けられている面を除い
て、シース17によって保護されている。
The optical fiber arraying tool 16 fixes the optical waveguide body 12 and one end of the optical fibers lla and llb. Protected by 17.

シース17は翼18の孔18a内へ挿入されており、先
導波路体12及びシース17のうちの欠除部15側の面
が翼18の外表面と面一になる様に、突出部17aによ
ってシース17が位置決めされている。
The sheath 17 is inserted into the hole 18a of the blade 18, and the protrusion 17a is inserted so that the leading waveguide body 12 and the surface of the sheath 17 on the cutout 15 side are flush with the outer surface of the blade 18. Sheath 17 is positioned.

この様な本実施例では、翼18の外表面、従って欠除部
15に着氷が発生していない状態では、光源から射出さ
て光ファイバlla及び光導波路14a中を伝送されて
来た光は、光導波路14aの欠除部15に臨んでいる端
面で、図中に矢印Aで示す方向へ全反射されてしまう。
In this embodiment, when no icing occurs on the outer surface of the blade 18, and therefore on the cutout 15, the light emitted from the light source and transmitted through the optical fiber lla and the optical waveguide 14a is , the light is totally reflected in the direction shown by arrow A in the figure at the end face of the optical waveguide 14a facing the cutout 15.

このために、光導波路14aから光導波路14bへは光
が伝送されず、この結果、光ファイバ11bに接続され
ている受光器からは信号が出力されない。
Therefore, no light is transmitted from the optical waveguide 14a to the optical waveguide 14b, and as a result, no signal is output from the light receiver connected to the optical fiber 11b.

一方、欠除部15に着氷が発生しており、しかも着氷の
厚みがある程度以上ある場合には、欠除部15における
屈折率が高くなって、上述の全反射は起こらない。この
ために、相当程度の伝送光が先導波路14b中へ入射し
て、受光器からは信号が出力される。従って、受光器か
らの出力信号を監視することによって、翼18への着氷
を検出することができる。
On the other hand, if ice has formed on the cutout 15 and the thickness of the ice is more than a certain level, the refractive index in the cutout 15 will be high and the above-mentioned total reflection will not occur. For this reason, a considerable amount of transmitted light enters the leading waveguide 14b, and a signal is output from the optical receiver. Therefore, by monitoring the output signal from the light receiver, icing on the wing 18 can be detected.

なお、光導波路14のパターンや欠除部15の形状を図
面に示したちの以外のものとすることも可能である。そ
して、欠除部15の形状や角度等を適宜に変更すること
によって、着氷の最小感度を変えることができる。
Note that the pattern of the optical waveguide 14 and the shape of the cutout 15 may be other than those shown in the drawings. By appropriately changing the shape, angle, etc. of the cutout portion 15, the minimum sensitivity to icing can be changed.

また、上述の実施例は本発明を航空機用の着氷センサに
適用したものであるが、本発明は例えば油漏れを検出す
るためのセンサにも適用することができる。
Moreover, although the above-described embodiments apply the present invention to an icing sensor for aircraft, the present invention can also be applied to a sensor for detecting oil leakage, for example.

〔発明の効果〕〔Effect of the invention〕

本発明による光センサでは、光伝送路の中間部に欠除部
を設け、この欠除部に臨む光伝送路の端面を光軸に対し
て所定の角度だけ傾斜させておくだけで、所定の被検出
物質の存否を検出することができる。従って、小形であ
り、しかも小形であると共にその形状において突出部を
設ける必要がないので、所望の被検出位置への取り付け
が容易で所望の被検出位置での検出を直接に行うことが
できる。
In the optical sensor according to the present invention, a cutout is provided in the middle of the optical transmission line, and the end face of the optical transmission line facing the cutout is inclined at a predetermined angle with respect to the optical axis. The presence or absence of a substance to be detected can be detected. Therefore, since it is small and does not require a protrusion in its shape, it can be easily attached to a desired detection position, and detection can be performed directly at the desired detection position.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例の要部の側断面図である。 なお図面に用いた符号において、 11 a 、 11 b−−−−−−−−・−・−・・
光ファイバ14・・−・・−・・・−−−−−−−−・
・・・・・・・−・−・・光導波路15−一−−−・・
−・−・・・−・−・・−・・−・・−・・欠除部であ
る。
The drawing is a side sectional view of a main part of an embodiment of the present invention. In addition, in the symbols used in the drawings, 11 a, 11 b-----・---・・
Optical fiber 14...
・・・・・・・・・−・−・・Optical waveguide 15-1−−・・
−・−・・−・−・・−・・−・・−・・This is the missing part.

Claims (1)

【特許請求の範囲】 1、中間部に欠除部が設けられており、この欠除部にお
ける屈折率が所定値以下の場合に伝送光を全反射させる
様に前記欠除部に臨む端面が光軸に対して傾斜している
光伝送路と、 この光伝送路の両端に接続されている光源及び受光器と
を夫々具備する光センサ。 2、前記欠除部が空気で満たされている場合は前記伝送
光を全反射させ且つ前記欠除部が氷で満たされている場
合は前記伝送光を全反射させない様に前記傾斜の角度が
定められている特許請求の範囲第1項に記載の光センサ
[Claims] 1. A cutout is provided in the intermediate portion, and the end face facing the cutout is configured such that the transmitted light is totally reflected when the refractive index at the cutout is less than or equal to a predetermined value. An optical sensor that includes an optical transmission line that is inclined with respect to an optical axis, and a light source and a light receiver that are connected to both ends of the optical transmission line. 2. The angle of the inclination is set so that when the cutout is filled with air, the transmitted light is totally reflected, and when the cutout is filled with ice, the transmitted light is not totally reflected. Optical sensor as defined in claim 1.
JP25739486A 1986-10-29 1986-10-29 Optical sensor Pending JPS63111443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25739486A JPS63111443A (en) 1986-10-29 1986-10-29 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25739486A JPS63111443A (en) 1986-10-29 1986-10-29 Optical sensor

Publications (1)

Publication Number Publication Date
JPS63111443A true JPS63111443A (en) 1988-05-16

Family

ID=17305779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25739486A Pending JPS63111443A (en) 1986-10-29 1986-10-29 Optical sensor

Country Status (1)

Country Link
JP (1) JPS63111443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134543A (en) * 1989-10-19 1991-06-07 Togami Electric Mfg Co Ltd Measuring apparatus of concentration of liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148484A (en) * 1977-05-30 1978-12-25 Yuasa Battery Co Ltd Optical measuring device
JPS5527947A (en) * 1978-08-19 1980-02-28 Yuasa Battery Co Ltd Optical type measuring device
JPS5748477B2 (en) * 1977-07-19 1982-10-16

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148484A (en) * 1977-05-30 1978-12-25 Yuasa Battery Co Ltd Optical measuring device
JPS5748477B2 (en) * 1977-07-19 1982-10-16
JPS5527947A (en) * 1978-08-19 1980-02-28 Yuasa Battery Co Ltd Optical type measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134543A (en) * 1989-10-19 1991-06-07 Togami Electric Mfg Co Ltd Measuring apparatus of concentration of liquid

Similar Documents

Publication Publication Date Title
US4850666A (en) Slab-type optical device
US4627728A (en) Compensated Fabry Perot sensor
US5321779A (en) Optical substrate with light absorbing segments
US6018165A (en) Optoelectronic sensor device
US5253037A (en) Optimal length for refractive index sensors
CA1267790A (en) Fiber optic doppler anemometer
US6239865B1 (en) Sensor and a method for measuring distances to, and/or physical properties of, a medium
US4372165A (en) Apparatus for measuring fluid flow
JPS6213642B2 (en)
CA2424820A1 (en) Prismatic reflection optical waveguide device
KR20130019889A (en) Reflective probe type apparatus for detecting gas and method for detecting gas using optical fiber with hollow core
EP0355134B1 (en) Optical fluid level sensor
JPS63132139A (en) Liquid refractive index meter
JPS63111443A (en) Optical sensor
US20040190833A1 (en) Optical monitor module
JPS63135810A (en) Detector for light pervious deposit
JP2650998B2 (en) Optical fiber for detecting liquid, gas, etc.
KR100361441B1 (en) tap coupler
CN206638340U (en) A kind of dual-polarization state analyzer for vibrating sensing
US5224188A (en) Eccentric core optical fiber
WO2022157820A1 (en) Optical waveguide element, light guide plate, and optical axis adjustment method
FI80521C (en) Fiber optic location sensor
JPS57194324A (en) Optical temperature measuring device
JPH0575086B2 (en)
JPS63273044A (en) Refractive index detecting sensor