JPS63111432A - Temperature measuring instrument - Google Patents

Temperature measuring instrument

Info

Publication number
JPS63111432A
JPS63111432A JP25773286A JP25773286A JPS63111432A JP S63111432 A JPS63111432 A JP S63111432A JP 25773286 A JP25773286 A JP 25773286A JP 25773286 A JP25773286 A JP 25773286A JP S63111432 A JPS63111432 A JP S63111432A
Authority
JP
Japan
Prior art keywords
voltage
resistance
temperature
output
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25773286A
Other languages
Japanese (ja)
Inventor
Riyuunosuke Sagara
相良 隆ノ介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP25773286A priority Critical patent/JPS63111432A/en
Publication of JPS63111432A publication Critical patent/JPS63111432A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove the influence of thermoelectromotive force and to eliminate the influence of reference power source variation by varying a current which flows to a thermoresistance element corresponding to variation in source voltage and employing a polarity switching system. CONSTITUTION:Constant voltage generating circuits 1 and 2 generate equivalent plus and minus constant voltages VREF, one of which is outputted through a changeover switch 3. This output voltage is converted by a voltage-current converting circuit 4 so as to output a constant current I, which flows through the thermoresistance element with resistance Rt. The element 5 indicates a resistance value proportional to ambient temperature and its terminal voltages V1 and V2 are inputted to a differential amplifier circuit 6. The output VX of the circuit 6 becomes VX=-A(V1-V2)+BVREF=(-ARt/R0+B)VREF by using coefficients A and B and is converted by a signal processing part 7 into a voltage VX/VREF, i.e. a signal regarding only the resistance Rt, thereby finding temperature from a resistance Rt-temperature characteristic.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は温度によって抵抗値が変化する測温抵抗素子を
利用した温度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a temperature measuring device using a temperature measuring resistance element whose resistance value changes depending on temperature.

(従来の技術) 測温抵抗素子を利用した温度測定の方式として・、(1
)標準抵抗と測温抵抗素子を直列に接続して直流電圧を
印加し、標準電圧と測温抵抗素子間の電圧を交互に測定
して抵抗素子の抵抗値、すなわちその温度を決定する方
式(日本工業規格28704)(2)基準電圧の変動に
左右されない交流を用いたトランス型レシオブリッジ方
式が知られている。
(Prior art) As a method of temperature measurement using a resistance thermometer element...
) A method in which a standard resistor and a temperature-measuring resistance element are connected in series, a DC voltage is applied, and the voltage between the standard voltage and the temperature-measuring resistance element is alternately measured to determine the resistance value of the resistance element, that is, its temperature ( Japanese Industrial Standards 28704) (2) A transformer-type ratio bridge system using alternating current that is not affected by fluctuations in reference voltage is known.

(発明が解決しようとする問題点) しかしながら、上記(1)の方式では■熱起電力による
誤差が生じる■自動的に測定ができない■センサ内に水
漏れが生じたとき周囲の金属を含めて電蝕を起こす等の
欠点があり、又上記(2)の方式はケーブルを長く伸ば
したときのインダクタンス、静電容量によりインピーダ
ンスが変わり測定誤差の要因となる。
(Problems to be Solved by the Invention) However, in the method (1) above, ■ an error occurs due to thermal electromotive force; ■ automatic measurement is not possible; ■ when water leaks inside the sensor, It has disadvantages such as causing electrolytic corrosion, and in the method (2) above, the impedance changes depending on the inductance and capacitance when the cable is extended, which causes measurement errors.

本発明は上記に鑑みてなされたもので、極性切換方式を
採用して平均値を取り、熱起電力の影響を排除すると共
にケーブル長による変動及び電蝕を防止する、基準電源
の変動に左右されない温度測定装置を提供するものであ
る。
The present invention has been made in view of the above, and uses a polarity switching method to take the average value, eliminate the influence of thermoelectromotive force, and prevent fluctuations due to cable length and electrolytic corrosion. The present invention provides a temperature measuring device that does not require

(問題点を解決するための手段) 本発明に係る温度測定装置は、 両極性の電圧を発生する定電圧源と、 上記定電圧源の電圧に比例する電流を変換形成する定電
流発生手段と、 上記定電圧源と定電流発生手段との間に介在され、定電
圧の極性を切換える切換手段と、上記定電流が流れる測
温抵抗素子と、 該測温抵抗素子両端間に発生する電圧と上記定電圧とか
ら該定電圧に比例した出力を送出するようになされた差
動増幅回路と、 該差動増幅回路出力と上記定電圧とから、差動増幅回路
出力/定電圧に相当する信号を出力する信号処理部と、 測温抵抗素子の抵抗値と温度との関係が予め書込まれ、
上記信号処理部の出力を温度データに換する変換手段と
から成る。
(Means for Solving the Problems) A temperature measuring device according to the present invention includes: a constant voltage source that generates a bipolar voltage; and a constant current generating means that converts and forms a current proportional to the voltage of the constant voltage source. , a switching means interposed between the constant voltage source and the constant current generating means for switching the polarity of the constant voltage, a temperature measuring resistance element through which the constant current flows, and a voltage generated across the temperature measuring resistance element. a differential amplifier circuit configured to send out an output proportional to the constant voltage from the constant voltage; and a signal corresponding to the differential amplifier circuit output/constant voltage from the differential amplifier circuit output and the constant voltage. The relationship between the resistance value of the resistance temperature measuring element and the temperature is written in advance, and
and converting means for converting the output of the signal processing section into temperature data.

(作 用) 第1図は本発明の基本構成を示すブロック図で、定電圧
発生回路1.2で等値且つ+、−の定電圧V REFが
発生され、切換スイッチ3によりその一方の電圧が出力
される。この出力電圧は電圧電流変換回路4で定電流I
を出力するように変換され、該定電流Iが測温抵抗素子
5に流れる。
(Function) FIG. 1 is a block diagram showing the basic configuration of the present invention, in which a constant voltage generation circuit 1.2 generates constant voltages VREF of equal value + and -, and a changeover switch 3 selects one of the voltages. is output. This output voltage is converted to a constant current I by the voltage-current conversion circuit 4.
The constant current I flows through the temperature measuring resistance element 5.

測温抵抗素子5は周囲温度に比例した抵抗値を示し、そ
の両端電位Vl、V2は差動増幅回路6に導かれる。こ
の差動増幅回路6は例えばインスツルメンテーションア
ンプ(計測用増幅器)が好適で、第2図−点鎖線で示す
構成が一般的である。
The temperature-measuring resistance element 5 exhibits a resistance value proportional to the ambient temperature, and potentials Vl and V2 at both ends thereof are guided to a differential amplifier circuit 6. This differential amplifier circuit 6 is preferably, for example, an instrumentation amplifier (measurement amplifier), and generally has the configuration shown by the dotted chain line in FIG. 2.

同構成において、出力■8は vx=−A (V、−V2)+BV、、。In the same configuration, output ■8 is vx=-A (V,-V2)+BV, .

=RtI (Rt−は素子5の抵抗値)と表わせる。従
って、 VX =−A’Rt I +BV*tr但し、RoはU
4の反転端子に接続された抵抗。
=RtI (Rt- is the resistance value of the element 5). Therefore, VX = -A'Rt I +BV*tr However, Ro is U
Resistor connected to the inverting terminal of 4.

該出力■8は信号処理部7でVx/VREr、すなわち
Rtにのみ関係する信号に変換処理され、更にRt−温
度の特性から温度が換算して求められる。
The output (2) 8 is converted into Vx/VREr, that is, a signal related only to Rt, in the signal processing section 7, and the temperature is further calculated from the Rt-temperature characteristic.

制御部8は各回路のタイミング信号を送出したり、又上
記R1−温度の関係から換算を行う。
The control unit 8 sends out timing signals for each circuit, and also performs conversion based on the relationship between R1 and temperature.

(実施例) 第2図は、本発明の一実施例を示す回路図である。(Example) FIG. 2 is a circuit diagram showing one embodiment of the present invention.

同図において、Zhは所定の定電圧を作るツェナーダイ
オード、Ulは負荷のインピーダンス変化に対してレベ
ルが変化しない、所謂理想定電圧源に近づけるためのオ
ペアンプ、U2は逆極性の定電圧源を形成するオペアン
プである。
In the figure, Zh is a Zener diode that generates a predetermined constant voltage, Ul is an operational amplifier that does not change in level with respect to changes in load impedance, making it close to the so-called ideal constant voltage source, and U2 forms a constant voltage source with the opposite polarity. It is an operational amplifier.

3は制御部8からの制御パルス(例えば信号a、第3図
参照)により、交互に切換えられるスイッチである。
Reference numeral 3 denotes a switch which is alternately switched by a control pulse (for example, signal a, see FIG. 3) from the control section 8.

4は電圧電流変換回路で、オペアンプU3、U4、トラ
ンジスタQl、Q2及び抵抗Ro等から構成される。オ
ペアンプU3はアナログのスイッチ3による出力インピ
ーダンスを極めて小さくする、インピーダンス変換のた
めのボルテージフォロアとして機能し、負荷のインピー
ダンスの変化にも拘らず出力として常にVREF  (
又は−VREI”)を送出する。このオペアンプU3の
出力はオペアンプU4の非反転端子(+側)に送入され
る。オペアンプは理想的には反転端子(−)と非反転端
子(+)とか同一電位となる。従って、スイッチ3で十
VREF’が出力されるときは上記両端子は共に+V 
REFとなる。すなわち、オペアンプU4の反転端子に
接続された抵抗R0には電流1=VRεr / Raが
流れる。そして、測温抵抗素子5の抵抗値Rtが変化し
ても同一電流値が維持されるようにオペアンプU4はそ
の出力を変化させる。トランジスタQ1.Q2は電流増
幅用として用いられる。
Reference numeral 4 denotes a voltage-current conversion circuit, which includes operational amplifiers U3 and U4, transistors Ql and Q2, a resistor Ro, and the like. The operational amplifier U3 functions as a voltage follower for impedance conversion, which minimizes the output impedance caused by the analog switch 3, and the output is always VREF (
or -VREI'').The output of this operational amplifier U3 is sent to the non-inverting terminal (+ side) of operational amplifier U4.The operational amplifier ideally has an inverting terminal (-) and a non-inverting terminal (+). Therefore, when switch 3 outputs 10 VREF', both terminals are at +V.
It becomes REF. That is, a current 1=VRεr/Ra flows through the resistor R0 connected to the inverting terminal of the operational amplifier U4. The operational amplifier U4 changes its output so that the same current value is maintained even if the resistance value Rt of the temperature measuring resistance element 5 changes. Transistor Q1. Q2 is used for current amplification.

このようにして、測温抵抗素子5には常に一定電流■が
流れ、その両端間の電圧(前述したvl、V2)が差動
増幅回路6のオペアンプU;、、U6の非反転端子に各
々印加され、出力vXとして前記(1)式の電圧信号が
オペアンプU7から出力される。オベアゾプUs、Us
として高入力インピーダンスのものを選択すると、測温
抵抗素子5の接続ケーブルのインピーダンスは無視でき
る。
In this way, a constant current ■ always flows through the temperature sensing resistance element 5, and the voltages (vl, V2 mentioned above) between its ends are applied to the non-inverting terminals of the operational amplifiers U;, , U6 of the differential amplifier circuit 6, respectively. The operational amplifier U7 outputs the voltage signal of formula (1) as the output vX. Obeazop Us, Us
If one with a high input impedance is selected as the resistance temperature sensing element 5, the impedance of the connection cable of the resistance temperature measuring element 5 can be ignored.

信号処理部7は前述のV x / V REFを求める
ためのもので、A−D変換して単に除算する方式でも可
能であるし、本実施例の如く積分回路71とカウンタ7
2とから構成されるものも考えられる。この積分回路7
1にはオペアンプUl、U7からそれぞれvX 、V 
RErが入力されており、入力端子に比例したランプ出
力を発生する。従って、Vxが入力されたときはその値
に応じて勾配が異なるが、■□8.に対しては常に一定
の勾配を有するようになされており、このような回路は
新しいものではなく数年来よく使われているものである
The signal processing section 7 is for obtaining the above-mentioned V x /V REF, and it is possible to perform A-D conversion and simply divide, or as in this embodiment, it is possible to use an integration circuit 71 and a counter 7.
A configuration consisting of 2 is also conceivable. This integrating circuit 7
1 has operational amplifiers Ul, VX and V from U7, respectively.
REr is input, and a lamp output proportional to the input terminal is generated. Therefore, when Vx is input, the slope differs depending on its value, but ■□8. The circuit is designed to always have a constant slope, and this type of circuit is not new and has been in common use for several years.

積分は制御回路8からのパルスa(第3図参照)により
電圧■×が印加されて第1の積分が、パルスb(第3図
)により電圧V REFが印加されて第2の積分が行わ
れる(第3図、C)。
The first integration is performed by applying the voltage ■× by the pulse a (see Figure 3) from the control circuit 8, and the second integration is performed by applying the voltage VREF by the pulse b (see Figure 3) from the control circuit 8. (Figure 3, C).

スイッチ3は制御回路8からの信号によりパルスaと同
時又はその直前に切換えられ、VX(又は−VX)が積
分開始時点から安定的に印加されるようになされている
The switch 3 is switched by a signal from the control circuit 8 at the same time as the pulse a or just before the pulse a, so that VX (or -VX) is stably applied from the start of integration.

上記第1の積分の期間(t2−t+ )は予め設定され
た時間である。
The first integration period (t2-t+) is a preset time.

今、t1=0とおくと、 第1の積分波形eは e=kVx t  ・・・・・・・・・・・・・・・・
・・ (2)kは比例定数 と表わせ、時間t2において e=kVxt2  ・・・・・・・・・・・・・・・ 
(2)′となる。
Now, if we set t1=0, the first integral waveform e is e=kVx t ・・・・・・・・・・・・・・・・・・
... (2) k is expressed as a proportionality constant, and at time t2, e=kVxt2 ......
(2)′.

第2図の積分はV IIEFが逆極性で印加され、時刻
t2から出力がOVになる時刻t3まで行われる。
The integration in FIG. 2 is performed from time t2 to time t3 when the output becomes OV with VIIEF applied with opposite polarity.

この間の積分波形eは e =   k Vpcr(t −t2)  + ex
  ”””  (3)と表わせる。
The integral waveform e during this period is e = k Vpcr (t - t2) + ex
It can be expressed as “”” (3).

そして、時刻t3においては 0 ”−k VnEr(t3− t、)+ ax−’、
ex = k VRtr(ts −t2)  ・”= 
 (3)′ここで、(2)′を(3)′に代入すると、
の如く、t3の関数として表わされる(t2は一定)。
Then, at time t3, 0''-k VnEr(t3-t,)+ax-',
ex = k VRtr (ts - t2) ・”=
(3)'Here, substituting (2)' into (3)', we get
It is expressed as a function of t3 (t2 is constant) as follows.

すなわち、この (4)  式より、t、〜t。That is, from this formula (4), t, ~t.

の時間を測ればV X / V REFが逆算しえるこ
ととなる。
By measuring the time, V X / V REF can be calculated backwards.

なお、次の周期ではスイッチ3が切換えられ、逆極性の
ランプ出力を発生させて熱起電力による影響を排除する
ようにしている。周期Tは数百ミリ秒程度より計測可能
である。
Note that in the next cycle, the switch 3 is switched to generate a lamp output of opposite polarity to eliminate the influence of thermoelectromotive force. The period T can be measured from about several hundred milliseconds.

積分回路71はゼロクロス検出回路(図示せず)も有し
ており、時刻1..13のタイミングを検出する。この
検出信号は次段カウンタ72に導かれ、その間時間パル
スd(第3図)を計数して時間に相当する信号を形成す
る。
The integrating circuit 71 also has a zero-cross detection circuit (not shown), and detects time 1. .. 13 timing is detected. This detection signal is led to the next stage counter 72, during which time pulses d (FIG. 3) are counted to form a signal corresponding to time.

制御回路8は前記 (1)式の計算式又は変換テーブル
及び抵抗Rtと周期温度との換算式又は換算テーブルを
備えており、上記時間信号から周囲温度を求める。極性
の異なる状態における2種類の温度データは更に平均化
されて出力、表示されても良い。
The control circuit 8 is equipped with a calculation formula or conversion table of the above-mentioned formula (1) and a conversion formula or conversion table between the resistance Rt and the periodic temperature, and calculates the ambient temperature from the above-mentioned time signal. The two types of temperature data in states with different polarities may be further averaged and output and displayed.

なお、本実施例では積分回路71へのV R1F’人力
をオペアンプU1からとしているが、十−をスイッチ3
と連動して、すなわち、オペアンプU。
In this embodiment, the V R1F' input to the integrating circuit 71 is from the operational amplifier U1;
In conjunction with, ie, operational amplifier U.

とU2とが切換わるようにしておけば+−の電圧VR1
は必らずしも同値である必要はない。
If it is set so that and U2 are switched, the +- voltage VR1
do not necessarily have to be equivalent.

(発明の効果) 以上説明したように、本発明によれば、オペアンプU、
 、U、の出力V Ill:FがツェナーダイオードZ
hの経年変化その他により多少変動しても、その変動に
連動して測温抵抗素子5を流れる電流Iも変化し、又オ
ペアンプL+7%積分回路71への入力端子もV RE
F自体であるため、前記(1)及び(4)式に何等の影
響はなく、常に正確な測温が可能である。
(Effects of the Invention) As explained above, according to the present invention, the operational amplifier U,
, U, output V Ill:F is Zener diode Z
Even if h fluctuates somewhat due to aging or other factors, the current I flowing through the resistance temperature sensing element 5 changes in conjunction with the fluctuation, and the input terminal to the operational amplifier L+7% integration circuit 71 also changes to V RE
Since it is F itself, it has no effect on the above equations (1) and (4), and accurate temperature measurement is always possible.

また、インピーダンス変化を施しているため、測温抵抗
素子5の接続扮−ブルのインピーダンス分を効果的に無
視しえるので高精度の測温が期待できる。
Further, since the impedance is changed, the impedance of the connection of the resistance temperature measuring element 5 can be effectively ignored, so that highly accurate temperature measurement can be expected.

更に、スイッチ3を自動釣に切換えるため迅速な測温が
できると共に+、−の電流を用いるため熱起電力による
誤差及び電蝕の問題も解消される。
Further, since the switch 3 is switched to automatic mode, rapid temperature measurement is possible, and since + and - currents are used, errors caused by thermoelectromotive force and problems of electrolytic corrosion are eliminated.

又、積分回路を用いるためノイズ等に影響されにくい。Also, since it uses an integrating circuit, it is less susceptible to noise and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成を示すブロク図である。 第2図は本発明の一実施例を示す回路図である。 第3図は波形図である。 FIG. 1 is a block diagram showing the basic configuration of the present invention. FIG. 2 is a circuit diagram showing one embodiment of the present invention. FIG. 3 is a waveform diagram.

Claims (1)

【特許請求の範囲】 +、−V_R_E_Fなる電圧を発生する定電圧源と、
測温抵抗素子と 上記定電圧源の電圧に比例し、測温抵抗素子に定電流を
供給する定電流発生手段と、 上記定電圧源と定電流発生手段との間に介在され、定電
圧源からの出力電圧の極性を切換えるスイッチと、 測温抵抗素子両端間の電圧と定電圧V_R_E_Fとか
ら該V_R_E_F、に比例する電圧V_Xを出力する
増幅回路と、 V_X/V_R_E_Fに相当する信号を出力する信号
処理手段と、 測温抵抗素子の抵抗値と温度との関係が予め書込まれ、
上記信号処理手段の出力を温度データに換算する換算手
段とから成る温度測定装置。
[Claims] A constant voltage source that generates voltages + and -V_R_E_F;
a constant current generating means that is proportional to the voltage of the resistance temperature measuring element and the constant voltage source and supplies a constant current to the resistance temperature measuring element; and a constant voltage source interposed between the constant voltage source and the constant current generating means. an amplifier circuit that outputs a voltage V_X proportional to V_R_E_F from the voltage across the temperature-measuring resistance element and a constant voltage V_R_E_F; and an amplifier circuit that outputs a signal corresponding to V_X/V_R_E_F. The relationship between the resistance value and temperature of the signal processing means and the resistance temperature measuring element is written in advance,
and converting means for converting the output of the signal processing means into temperature data.
JP25773286A 1986-10-28 1986-10-28 Temperature measuring instrument Pending JPS63111432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25773286A JPS63111432A (en) 1986-10-28 1986-10-28 Temperature measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25773286A JPS63111432A (en) 1986-10-28 1986-10-28 Temperature measuring instrument

Publications (1)

Publication Number Publication Date
JPS63111432A true JPS63111432A (en) 1988-05-16

Family

ID=17310325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25773286A Pending JPS63111432A (en) 1986-10-28 1986-10-28 Temperature measuring instrument

Country Status (1)

Country Link
JP (1) JPS63111432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078823A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Analog-to-digital conversion device and analog-to-digital conversion method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503660A (en) * 1973-05-14 1975-01-16
JPS5525284B2 (en) * 1977-07-29 1980-07-04
JPS56120929A (en) * 1980-02-28 1981-09-22 Nagano Keiki Seisakusho:Kk Measuring device for temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503660A (en) * 1973-05-14 1975-01-16
JPS5525284B2 (en) * 1977-07-29 1980-07-04
JPS56120929A (en) * 1980-02-28 1981-09-22 Nagano Keiki Seisakusho:Kk Measuring device for temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078823A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Analog-to-digital conversion device and analog-to-digital conversion method
JP6338802B1 (en) * 2016-10-28 2018-06-06 三菱電機株式会社 Analog-digital conversion apparatus and analog-digital conversion method
US10608657B2 (en) 2016-10-28 2020-03-31 Mitsubishi Electric Corporation Analog-to-digital conversion apparatus and analog-to-digital conversion method

Similar Documents

Publication Publication Date Title
JPS63111432A (en) Temperature measuring instrument
US6909275B2 (en) Electrical circuit for driving a load
JP4809837B2 (en) How to operate a heat loss pressure sensor with resistance
KR880002631Y1 (en) Apparatus for measuring the voltage
US5745062A (en) Pulse width modulation analog to digital converter
JPS6347999Y2 (en)
JPH0442770Y2 (en)
JPS6221958Y2 (en)
SU1001285A1 (en) Device for heat protection of installation
JP2595858B2 (en) Temperature measurement circuit
KR19980076201A (en) Temperature measuring device using RTD
JPH11304877A (en) Voltage applying current measuring circuit
SU1661588A1 (en) Apparatus to measure temperature difference
KR890008409Y1 (en) A checking circuit of thermometer
KR930000081Y1 (en) Measuring circuit of the amount of heat and flowing
JPH0525036Y2 (en)
KR950004643Y1 (en) Current type transforming circuit for measurementof temperature
JPH0642223Y2 (en) Magnetic detection circuit
SU1278726A1 (en) Indicator of velocity of gas flow
SU1185252A1 (en) Apparatus for measuring the incriment of resistance
JPS5947356B2 (en) Logarithmic conversion circuit for resistance change sensor
KR790001827Y1 (en) Temperature measurement device
JPS6117300B2 (en)
JPH0424440Y2 (en)
SU1744520A1 (en) Temperature difference/voltage converter