JPS63111232A - Inertia supercharging device for internal combustion engine - Google Patents

Inertia supercharging device for internal combustion engine

Info

Publication number
JPS63111232A
JPS63111232A JP25700686A JP25700686A JPS63111232A JP S63111232 A JPS63111232 A JP S63111232A JP 25700686 A JP25700686 A JP 25700686A JP 25700686 A JP25700686 A JP 25700686A JP S63111232 A JPS63111232 A JP S63111232A
Authority
JP
Japan
Prior art keywords
intake
pressure wave
inertial
wave
extraction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25700686A
Other languages
Japanese (ja)
Other versions
JPH0694812B2 (en
Inventor
Nobuji Eguchi
江口 展司
Yoshitomi Morita
森田 良富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP25700686A priority Critical patent/JPH0694812B2/en
Publication of JPS63111232A publication Critical patent/JPS63111232A/en
Publication of JPH0694812B2 publication Critical patent/JPH0694812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To increase the inertia effect of intake air and to improve the volume efficiency of intake air, by a method wherein partition walls by which to partition the interior of a crank case into plural compartments are situated, and after, out of the compartments, the compartments the piston cycles of which are identical to each other are joined together, the joining point is connected to a suction passage through a pressure wave fetching pipe. CONSTITUTION:Partitions 12 are situated in a crank case 11 of a multicylinder diesel engine 1 so that adjoining cylinders are partitioned from each other thereby, and the interior of the crank case 11 is partitioned into plural compartments 131-136. The compartments 131-136 are communicated to their mating suction branch pipes 91-96 of a cylinder through a pressure wave fetching pipe 14 for amplification and a pressure wave fetching pipe 15 for damping. A pressure wave in an iso-phase or a reversed phase, generated by movement of a piston 10, can be introduced in the branch pipes 91-96. A switching valve 17 is situated to the branch part of each of the fetching pipes 14 and 15, and switching control is made so that the pressure wave fetching pipe 14 for amplification and the pressure wave fetching pipe 15 are selectively energized during high load running and during low load running, respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内燃機関の慣性過給装置に関し、更に詳しく
は負荷に応じて吸気の体積効率を変え、出力増大及びボ
ンピングロス低減を図った内燃機関の慣性過給装置に関
する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an inertial supercharging device for an internal combustion engine, and more specifically, the present invention relates to an inertial supercharging device for an internal combustion engine, and more specifically, it changes the volumetric efficiency of intake air according to the load to increase output and reduce pumping loss. The present invention relates to an inertial supercharging device for an internal combustion engine.

(従来の技術) 内燃機関では、吸気弁の開閉により、吸気通・路におい
て吸気が圧力振動である吸気慣性波となって流れている
。この吸気慣性波を利用して吸気の体積効率を増大し、
出力を向上させるものが慣性過給装置である。
(Prior Art) In an internal combustion engine, intake air flows as intake inertia waves, which are pressure vibrations, in intake passages and passages by opening and closing an intake valve. This intake inertial wave is used to increase the volumetric efficiency of intake air,
An inertial supercharging device improves output.

吸気行程におけるピストンの吸入作用により吸気ポート
に発生した負圧は、吸気通路を負圧波となって伝わり、
吸気通路の開放端で反射され正圧波となって吸気ポート
に向けて返り−C<る。これら正負の圧力波の合成によ
り圧力振動が生じる。
The negative pressure generated in the intake port due to the suction action of the piston during the intake stroke is transmitted through the intake passage as a negative pressure wave.
It is reflected at the open end of the intake passage, becomes a positive pressure wave, and returns toward the intake port. Pressure oscillations occur due to the combination of these positive and negative pressure waves.

このように吸気行程において吸気通路に発生した圧力振
動が吸気行程に与える影響には、慣性効果と脈動効果が
ある。慣性効果は、同一の吸気行程に圧力振動が影響を
与える場合をν1う。
The influence of the pressure vibration generated in the intake passage during the intake stroke on the intake stroke includes an inertial effect and a pulsation effect. The inertial effect is ν1 when pressure vibration affects the same intake stroke.

又、脈動効果は、ある吸気行程で発生した圧力振動が次
のサイクルの吸気行程に第3 ’IIを与える場合をい
う。慣性効果及び脈動効果を含む吸気通路における圧力
振動波を、本願では吸気慣性波というものとする。
Furthermore, the pulsation effect refers to a case where pressure vibrations occurring in a certain intake stroke give a 3'II effect to the intake stroke of the next cycle. In this application, pressure vibration waves in the intake passage including inertia effects and pulsation effects are referred to as intake inertia waves.

吸気慣性波の固有振動数は、吸気通路の長さや断面積な
どにより定まる。そこで、吸気慣性波の固有振動数が吸
気弁の開閉タイミングとマツチング(同調)するように
吸気通路の長さ、断面積などを設計し、吸気弁の閉鎖直
前に吸気ポートで吸気慣性波が正圧となるようにして、
吸気の体積効率を向上させたものが慣性過給装置である
The natural frequency of the intake inertial wave is determined by the length and cross-sectional area of the intake passage. Therefore, we designed the length and cross-sectional area of the intake passage so that the natural frequency of the intake inertial wave matches the opening and closing timing of the intake valve, and the intake inertial wave becomes positive at the intake port just before the intake valve closes. so that it becomes a pressure,
An inertial supercharging device improves the volumetric efficiency of intake air.

(発明が解決しようとする問題点) 内燃機関では、次のように、負荷の高低に応じて吸気の
体積効率を変化させることが望ましし1゜ 高負荷時には、吸気の体積効率を大きくし、出力を増大
させることが望ましい。
(Problem to be solved by the invention) In an internal combustion engine, it is desirable to change the volumetric efficiency of intake air according to the level of load as follows. , it is desirable to increase the output.

一方、低負荷時に体積効率が大きいと、圧縮行程での負
担が大さくなり、ポンピングロスが生じる。そのため、
低負荷時には、吸気の体積効率を小さい方が望ましい。
On the other hand, if the volumetric efficiency is high at low loads, the load during the compression stroke will be large, resulting in pumping loss. Therefore,
At low loads, it is desirable to reduce the volumetric efficiency of intake air.

しかし、従来の慣性過給装置では、高負荷時において、
吸気通路の仕様により定まる普通吸気慣性効果以上に体
積効率を向上させることはできなかった。一方、低負荷
時には、慣性過給が行なわれるため体積効率が高くなり
、ポンピングロスが生じる不都合がある。
However, with conventional inertial supercharging devices, at high loads,
It was not possible to improve the volumetric efficiency beyond the normal intake inertia effect determined by the specifications of the intake passage. On the other hand, when the load is low, inertia supercharging is performed, resulting in a high volumetric efficiency and a disadvantage that pumping loss occurs.

本発明の目的は、高負荷時には普通吸気の体積効率を大
きくし出力を増大させ、低負荷時には反対に体積効率を
小さくしてポンピングロスを低減させることができる内
燃機関の慣性過給装置を提供することにある。
An object of the present invention is to provide an inertial supercharging device for an internal combustion engine that can increase the volumetric efficiency of normal intake air to increase output at high loads, and conversely reduce the volumetric efficiency and reduce pumping loss at low loads. It's about doing.

(問題点を解決するための手段) 本発明の特徴は、次の各構成にある。(Means for solving problems) The present invention is characterized by the following configurations.

クランフケ−入内部が、ピストンサイクルの同一のシリ
ング相互に隔壁により仕切られ、設けられた区画室。
A compartment in which the interior of the crankcase is partitioned by a partition wall between the same cylinders of the piston cycle.

区画室と吸気通路とを連通して設けられ、吸気慣性波と
同位相の圧力波を吸気通路に導き、吸気慣性波を増幅さ
せる増幅用圧力波取出管。
An amplification pressure wave extraction pipe that is provided to communicate a compartment and an intake passage, guides a pressure wave in the same phase as an intake inertial wave to the intake passage, and amplifies the intake inertial wave.

区画室と吸気通路とを連通して設けられ、吸気慣性波と
逆位相の圧力波を吸気通路に導き、吸気慣性波を減衰さ
せる減衰用圧力波取出管。
A damping pressure wave extraction pipe is provided to communicate a compartment and an intake passage, and guides a pressure wave having a phase opposite to the intake inertia wave to the intake passage, thereby attenuating the intake inertia wave.

高負荷時には増幅用圧力波取出管を選択導通し、低負荷
時には減衰用圧力波取出管を導通させるように切換元る
圧力波取出管の可変機構。
A variable mechanism for the pressure wave extraction pipe that selectively conducts the amplification pressure wave extraction pipe at high loads and conducts the attenuation pressure wave extraction pipe at low loads.

(実施例) 第1図ないしt56図を参照しで、本発明の一実施例を
説明する。
(Embodiment) An embodiment of the present invention will be described with reference to FIGS. 1 to 56.

内燃機rgJ1として、多気筒のディーゼル機関(以下
、機関と略称する)を示す。機関1は、吸気通路2、吸
気ポート3、吸気弁4及びシリング5などから成る吸気
系統を有している。
A multi-cylinder diesel engine (hereinafter abbreviated as engine) is shown as the internal combustion engine rgJ1. The engine 1 has an intake system including an intake passage 2, an intake port 3, an intake valve 4, a sill 5, and the like.

吸気通路2は、吸気本管6、ブランチ部7、マニホール
ド8、分岐W9などから次のように構成されている。
The intake passage 2 is composed of an intake main pipe 6, a branch portion 7, a manifold 8, a branch W9, etc. as follows.

分岐f91ないし96は、シリング51ないし5、にそ
れぞれ接続されている。シリング5.と56の組、52
と55の組、53と54の組は、ピストン10のサイク
ルが同一である。シリング5=、52.5:lは互いに
ピストンサイクルが異なり、これをIiのシリング群A
とする。又、シリング54.57.56は互いにピスト
ンサイクルが異なり、これを第2のシリング群Bとする
Branches f91-96 are connected to shillings 51-5, respectively. Shilling 5. and 56 pairs, 52
and 55, and the set 53 and 54 have the same piston 10 cycle. Schilling 5=, 52.5: l have different piston cycles, and this is the Schilling group A of Ii.
shall be. Furthermore, shillings 54, 57, and 56 have different piston cycles, and are referred to as a second shilling group B.

前記第1のシリング群Aに対応する分岐管9、ないし9
3の上流は、第1のマニホールド8aに集合されている
。又、12のシリング群Bに対応する分岐t9.ないし
96の上流は、第2のマニホールド8bに集合されてい
る。
branch pipes 9 to 9 corresponding to the first shilling group A;
The upstream side of 3 is assembled into the first manifold 8a. Also, the branch t9. corresponding to the 12 Schilling group B. The upstream portions of 96 are collected in the second manifold 8b.

第1のマニホールF8aと第2のマニホールド8bの上
流は、−本の吸気本管6に集合されている。吸気本管6
の上流は、図示しないエアクリーナに接続されている。
The upstream sides of the first manifold F8a and the second manifold 8b are combined into one main intake pipe 6. Intake main pipe 6
The upstream side of is connected to an air cleaner (not shown).

吸気通路2には吸気慣性波が流れるが、この吸気慣性波
の固有振動数は、吸気通路2の長さや断面積などにより
定まる。吸気慣性波の固有振動数がある機関の回転数(
同調機関回転数)における吸気弁の開閉タイミングとマ
ツチング(同調)させ、吸気弁の閉鎖直前に吸気ポート
での吸気慣性波が正圧となるようにしたのが慣性過給装
置である。
An intake inertial wave flows through the intake passage 2, and the natural frequency of this intake inertial wave is determined by the length, cross-sectional area, etc. of the intake passage 2. The engine rotational speed with the natural frequency of the intake inertial wave (
An inertial supercharging device matches the opening/closing timing of the intake valve at a synchronized engine speed) so that the intake inertia wave at the intake port becomes a positive pressure immediately before the intake valve closes.

ここまでは従来の慣性過給装置と同じである。Everything up to this point is the same as the conventional inertial supercharging device.

しかし、従来の慣性過給装置では吸気通路の仕様により
定まる吸気慣性効果以上に体積効率を向上させることは
不可能であり、又低負荷時には体積効率が高いためかえ
ってボンピングロスが生じる不都合があった。
However, with conventional inertial supercharging devices, it is impossible to improve the volumetric efficiency beyond the intake inertia effect determined by the specifications of the intake passage, and because the volumetric efficiency is high at low loads, there is an inconvenience that pumping loss occurs instead. .

この点の不都合を解消するため、本実施例では次の機構
が設けられている。
In order to solve this problem, the following mechanism is provided in this embodiment.

機関1のクランクケース11内は、隣接するピストンサ
イクルの異なるシリング5ごとに隔壁12により仕切ら
れ、区画室13が設けられている。
The inside of the crankcase 11 of the engine 1 is partitioned by partition walls 12 into adjacent cylinders 5 having different piston cycles, and compartments 13 are provided.

区画室13には、ピストン10の往復運動により圧力波
が生じている。この圧力波を分岐管9に導く増幅用圧力
波取出管14と減衰用圧力波取出管15が、各区画室1
1と分岐管9とを連通して設けられている。
Pressure waves are generated in the compartment 13 by the reciprocating movement of the piston 10. An amplification pressure wave extraction pipe 14 and an attenuation pressure wave extraction pipe 15 that guide this pressure wave to the branch pipe 9 are provided in each compartment 1.
1 and the branch pipe 9 are connected to each other.

区画室13から両圧力波取出管の共通管16が突出して
設けられており、これから増幅用圧力波取出管14と減
衰用圧力波取出管15が分岐している。増幅用圧力取出
管14と減衰用圧力波取出管15は、共に区画室13の
圧力波を、分岐管9の吸気慣性波に重畳させるものであ
る。
A common pipe 16 for both pressure wave extraction pipes is provided protruding from the compartment 13, and an amplification pressure wave extraction pipe 14 and an attenuation pressure wave extraction pipe 15 are branched from the common pipe 16. Both the amplifying pressure take-off pipe 14 and the damping pressure wave take-off pipe 15 superimpose the pressure wave in the compartment 13 on the intake inertial wave in the branch pipe 9.

増幅用圧力波取出管14は、圧力波を吸気慣性波に重畳
して増幅させるものである。一方、減衰用圧力波取出管
15は、吸気慣性波を減衰させるものである。両圧力波
取出管14.15は、増幅又は減衰に適した周波数、位
相の圧力波とする管の長さ、断面積に設計される。
The pressure wave extraction pipe 14 for amplification superimposes pressure waves on intake inertial waves and amplifies them. On the other hand, the damping pressure wave extraction pipe 15 damps intake inertial waves. Both pressure wave extraction pipes 14 and 15 are designed to have a length and a cross-sectional area that produce pressure waves with a frequency and phase suitable for amplification or attenuation.

圧力波取出管の構造として他に次のようにしてもよい。The pressure wave extraction pipe may have another structure as follows.

例えば区画室13+と136のように、ピストンサイク
ルの同一のシリング5に対応する区画室からそれぞれ取
出した圧力波どうしを、合流、増幅してから吸気通路に
導入するようにしてもよい。この場合には、圧力波が増
幅されるので、吸気慣性波を増幅・減衰する効果が大と
なる。
For example, pressure waves taken out from compartments corresponding to the same shilling 5 of the piston cycle, such as compartments 13+ and 136, may be combined and amplified before being introduced into the intake passage. In this case, since the pressure waves are amplified, the effect of amplifying and attenuating the intake inertial waves becomes greater.

増幅用圧力波取出管と減衰用圧力波取出管を負荷に応じ
て選択導通させる可変機構が、次のように設けられてい
る。
A variable mechanism for selectively conducting the amplification pressure wave extraction pipe and the attenuation pressure wave extraction pipe according to the load is provided as follows.

増幅用圧力波取出’1llr14と減衰用圧力波取出管
15の分岐部分に、切換弁17が設けられる。
A switching valve 17 is provided at the branching portion of the amplification pressure wave extraction '1llr14 and the damping pressure wave extraction pipe 15.

各切換弁17は切換軸18に連結され、切換軸18が回
転されて、圧力波取出管が切換えられる。切換軸18は
、エアシリング19によって口伝される。20は、エア
シリングを作動させる圧縮エアを溜めておくエアタンク
である。
Each switching valve 17 is connected to a switching shaft 18, and when the switching shaft 18 is rotated, the pressure wave extraction pipe is switched. The switching shaft 18 is transmitted by air cylinder 19. 20 is an air tank that stores compressed air for operating the air cylinder.

一方、8!関lの負荷を検知する負荷検知手段21と、
負荷検知手段21がらの信号を処理するコントローラ2
2が設けられている。又、コントローラ22からの信号
により作動する電磁弁23が設けられ、この電磁弁23
によりエアシリング19が制御され、切換軸18の動き
を介して切換弁17が切換えられる。つまり、切換弁1
7は、コントローラ22の制御により、高負荷の場合に
は増幅用圧力波取出管14を導通し、低負荷の場合には
減衰用圧力波取出管15を導通する。
On the other hand, 8! load detection means 21 for detecting the load of the connection;
A controller 2 that processes signals from the load detection means 21
2 is provided. Further, a solenoid valve 23 that is operated by a signal from the controller 22 is provided, and this solenoid valve 23
The air cylinder 19 is controlled, and the switching valve 17 is switched through the movement of the switching shaft 18. In other words, switching valve 1
Under the control of the controller 22, 7 conducts the amplifying pressure wave extraction pipe 14 in the case of a high load, and conducts the attenuation pressure wave extraction pipe 15 in the case of a low load.

上述のように構成された本実施例は、次のように作用す
る。
This embodiment configured as described above operates as follows.

第6図には、機関1の回転数Nと吸気の体積効率Tic
の関係を示す特性曲線が表わされてい、る。特性曲線2
4oは、普通の慣性過給装置における特性曲線であり、
同調回転数Sにおいて体積効率ηCがピークとなる。又
、この吸気慣性波の位相が第5図(イ)に示されている
FIG. 6 shows the rotational speed N of the engine 1 and the volumetric efficiency Tic of the intake air.
A characteristic curve showing the relationship is shown. Characteristic curve 2
4o is a characteristic curve in a normal inertial supercharger,
At the tuned rotation speed S, the volumetric efficiency ηC reaches its peak. Further, the phase of this intake inertial wave is shown in FIG. 5(a).

負荷検知手段21が機関1の負荷状態を検知し、負荷状
態に応じてコントローラ22により圧力波取出管の切換
弁17が次のように切換えられる。
The load detection means 21 detects the load state of the engine 1, and the controller 22 switches the switching valve 17 of the pressure wave extraction pipe as follows according to the load state.

高負荷の場合には、増幅用圧力波取出管14が導通され
、m5図(イ)の吸気慣性波25にそれと同位相のm5
図(ロ)の圧力波26が、重畳され、吸′:A慣性波2
5を増幅する。重畳吸気慣性波27は、第5図()1)
に示すように振幅の大きいものとなる。高負荷の場合の
体積効率の特性曲線は、第6図の2411に示すように
、特性面#X24 oに比較し上にシフトするものとな
る。
In the case of high load, the pressure wave extraction pipe 14 for amplification is conducted, and the intake inertial wave 25 in the m5 diagram (a) is connected to the m5 having the same phase.
The pressure wave 26 in figure (b) is superimposed, and the suction: A inertial wave 2
Amplify 5. The superimposed intake inertial wave 27 is shown in Fig. 5()1)
The amplitude is large as shown in . The characteristic curve of volumetric efficiency under high load is shifted upward compared to characteristic surface #X24o, as shown at 2411 in FIG.

つまり、高負荷時には吸気の体積効率11cが大きくな
り出力が増大する。
In other words, when the load is high, the volumetric efficiency 11c of intake air increases and the output increases.

一方、低負荷の場合には、減衰用圧力波取出管15が導
通され、第5図(イ)の吸気慣性波25にそれと逆位相
である第5図(ニ)に示す圧力波26′が、重畳され、
吸気慣性波25を減Rする。重畳吸気慣性波27′は、
15図(ホ)に示すように振幅の小さいものとなる。低
負荷の場合の特性曲線は、第4図の241に示すように
、特性曲線24oに比較し下にシフトするものとなる。
On the other hand, in the case of low load, the damping pressure wave extraction pipe 15 is conducted, and the pressure wave 26' shown in FIG. 5(d), which is in opposite phase to the intake inertial wave 25 in FIG. 5(a), is generated. , superimposed,
The intake inertia wave 25 is reduced. The superimposed intake inertial wave 27' is
As shown in Fig. 15 (e), the amplitude is small. The characteristic curve in the case of low load is shifted downward compared to the characteristic curve 24o, as shown at 241 in FIG.

つまり、低負荷時には吸気の体積効率ηCが小さくなる
ので、圧縮行程の負担が小さくなりボンピングロスが低
減される。
In other words, when the load is low, the volumetric efficiency ηC of intake air becomes small, so the load on the compression stroke becomes small and the pumping loss is reduced.

尚、上記実施例に本発明が限定されることはない。例え
ば、圧力波を導入するのは分岐管に限らず、吸気通路な
らよい。
Note that the present invention is not limited to the above embodiments. For example, the pressure wave can be introduced not only through the branch pipe but also through the intake passage.

(発明の効果) 本発明は、高負荷の場合には、増幅用圧力波取出管が選
択導通され、吸気慣性波の振幅を大きくする。一方、低
負荷の場合には、減衰用圧力波取出管が選択導通され、
吸気慣性波を減衰する。
(Effects of the Invention) According to the present invention, when the load is high, the pressure wave extraction pipe for amplification is selectively conducted, thereby increasing the amplitude of the intake inertial wave. On the other hand, in the case of low load, the damping pressure wave extraction pipe is selectively conducted,
Attenuates inspiratory inertia waves.

従って、本発明によると、高負荷の場合には、吸気の体
積効率を大きくし出力を増大するが1、低負荷の場合に
は、体積効率を小さくしてボンピングロスを低減する。
Therefore, according to the present invention, when the load is high, the volumetric efficiency of intake air is increased to increase the output, but when the load is low, the volumetric efficiency is decreased to reduce the pumping loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の正面図である。 12図は、f51図の一部拡大図である。 第3図は、第1図の側面図である。 14図は、第1図の吸気系統を示す略図である。 fjS5図(イ)ないしくホ)は、第1図実施例の作用
を示す波形図である。 fjS6図は、第1図実施例の回転数一体積効率の特性
曲線図である。
FIG. 1 is a front view of one embodiment of the present invention. Figure 12 is a partially enlarged view of Figure f51. FIG. 3 is a side view of FIG. 1. FIG. 14 is a schematic diagram showing the intake system of FIG. 1. fjS5 (A) to (E) are waveform diagrams showing the operation of the embodiment of FIG. Fig. fjS6 is a characteristic curve diagram of rotation speed vs. volumetric efficiency of the embodiment in Fig. 1.

Claims (1)

【特許請求の範囲】 吸気弁の閉鎖直前に吸気ポートでの吸気慣性波が正圧と
なるようにして、吸気の体積効率を向上させる内燃機関
の慣性過給装置において、クランクケース内部が、隣接
するピストンサイクルの同一のシリンダ相互に隔壁によ
り仕切られて設けられた区画室と、 該区画室と吸気通路とを連通して設けられ、吸気慣性波
と同位相の圧力波を吸気通路に導き、吸気慣性波を増幅
させる増幅用圧力波取出管と、前記区画室と吸気通路と
を連通して設けられ、吸気慣性波と逆位相の圧力波を吸
気通路に導き、吸気慣性波を減衰させる減衰用圧力波取
出管と、高負荷時には前記増幅用圧力波取出管を選択導
通し、低負荷時には減衰用圧力波取出管を選択導通させ
るように切換える圧力波取出管の可変機構を備えて成る
ことを特徴とする内燃機関の慣性過給装置。
[Claims] In an inertia supercharging device for an internal combustion engine that improves the volumetric efficiency of intake air by making the intake inertia wave at the intake port become a positive pressure immediately before the intake valve closes, A compartment chamber is provided in which the same cylinder of the piston cycle is partitioned from each other by a partition wall, and the compartment chamber and the intake passage are provided in communication with each other, and a pressure wave having the same phase as the intake inertial wave is guided to the intake passage, An amplification pressure wave extraction pipe that amplifies the intake inertial wave is provided in communication with the compartment and the intake passage, and a damping device that guides the pressure wave having the opposite phase to the intake passage into the intake passage and attenuates the intake inertial wave. and a variable mechanism for the pressure wave extraction pipe that switches to selectively conduct the amplification pressure wave extraction pipe when the load is high and to selectively conduct the attenuation pressure wave extraction pipe when the load is low. An inertial supercharging device for an internal combustion engine characterized by:
JP25700686A 1986-10-30 1986-10-30 Inertial supercharger for internal combustion engine Expired - Lifetime JPH0694812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25700686A JPH0694812B2 (en) 1986-10-30 1986-10-30 Inertial supercharger for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25700686A JPH0694812B2 (en) 1986-10-30 1986-10-30 Inertial supercharger for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63111232A true JPS63111232A (en) 1988-05-16
JPH0694812B2 JPH0694812B2 (en) 1994-11-24

Family

ID=17300410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25700686A Expired - Lifetime JPH0694812B2 (en) 1986-10-30 1986-10-30 Inertial supercharger for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0694812B2 (en)

Also Published As

Publication number Publication date
JPH0694812B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US4829941A (en) Intake system for multiple-cylinder engine
JPS6014169B2 (en) Intake system for multi-cylinder engines
US5080051A (en) Intake system for engine
JPS63111232A (en) Inertia supercharging device for internal combustion engine
JPH02233824A (en) Intake system for engine
JPS6256325B2 (en)
JP3101020B2 (en) Multi-cylinder engine intake system
JPH03168325A (en) Suction device of multiple cylinder engine
JPS63111229A (en) Intake air inertia increasing device for internal combustion engine
JPS63111228A (en) Suction air inertia increasing device for internal combustion engine
JPS6241922A (en) Intake-air device for v-type engine
JPS60222524A (en) Suction device of engine
JPH072980Y2 (en) Intake device for V-type 8-cylinder engine
JPH0380967B2 (en)
JPH01237318A (en) Air intake device for engine with supercharger
JPH0730911Y2 (en) Intake device for V-type internal combustion engine
JP2750122B2 (en) Engine intake system
JPH0726542B2 (en) Multi-cylinder engine intake system
JP2552478B2 (en) V-type engine exhaust system
JPS63111230A (en) Suction air inertia increasing device for internal combustion engine
JPS609375Y2 (en) Inertial supercharging intake system for multi-cylinder engines
JPH0740662Y2 (en) Engine intake system
JPH06173691A (en) Controller for engine with supercharger
JPS63111231A (en) Suction air inertia increasing device for internal combustion engine
JPS61116019A (en) Engine intake-air device