JPS63111179A - Electroless plating method - Google Patents

Electroless plating method

Info

Publication number
JPS63111179A
JPS63111179A JP25570586A JP25570586A JPS63111179A JP S63111179 A JPS63111179 A JP S63111179A JP 25570586 A JP25570586 A JP 25570586A JP 25570586 A JP25570586 A JP 25570586A JP S63111179 A JPS63111179 A JP S63111179A
Authority
JP
Japan
Prior art keywords
potential
plating
base plate
reducing agent
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25570586A
Other languages
Japanese (ja)
Inventor
Akio Honchi
章夫 本地
Toshikatsu Mori
利克 森
Yuichi Kamo
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25570586A priority Critical patent/JPS63111179A/en
Publication of JPS63111179A publication Critical patent/JPS63111179A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To enhance the strength of a plated layer and also to decrease a defect such as a pinhole by deviating the potential of an electrically-conductive base plate immersed into a soln. contg. metallic salt and a reducing agent to the direction nobler than self potential. CONSTITUTION:A lead wire is fitted to the electrically-conductive base plate and this base plate is immersed into the soln. contg. metallic salt and the reducing agent which is incorporated in a plating tank arranged with a counter electrode and a reference electrode and the potential of the base plate is controlled from the outer part with a potentiostat to the direction nobler than self potential by using the potentiostat and the function generator during plating reaction. Further it is desirable that the potential of the base plate is periodically deviated in the noble direction. Nickel salt is used as the above-mentioned metallic salt and furthermore NaH2PO2 is used as the reducing agent and also the above-mentioned base plate is preferably Al (alloy). By this method, a plated layer of Ni or the like which is large in hardness and little in a defect can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無電解メッキ法に係り、特に、高密度磁気記録
媒体の下地層を形成するのに好適な無電解メッキ法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electroless plating method, and particularly to an electroless plating method suitable for forming an underlayer of a high-density magnetic recording medium.

〔従来の技術〕[Conventional technology]

無電解メッキは、自動車産業、電子部品産業等で既に利
用されている。最近では、高密度磁気ディスクの記録媒
体である磁性層及びその下地層を無電解メッキで作製す
ることが行われている。無電解メッキを磁気ディスクに
適用するには、メッキ層の磁気特性2強度、密着性を向
上するとともに欠陥を減少させる必要がある。そのため
、従来はメッキ浴組成の最適化、添加剤の探索、基板前
処理法の改善等がなされてきた。しかし、メッキ反応が
起こって基板上にメッキされる場合の基板の電位を制御
してメッキ層の特性を改善しようとする報告は見当らな
い。
Electroless plating is already used in the automobile industry, electronic parts industry, etc. Recently, electroless plating has been used to fabricate magnetic layers and their underlying layers, which are recording media for high-density magnetic disks. In order to apply electroless plating to magnetic disks, it is necessary to improve the magnetic properties 2 strength and adhesion of the plating layer and to reduce defects. Therefore, efforts have been made to optimize the plating bath composition, search for additives, and improve substrate pretreatment methods. However, no reports have been found that attempt to improve the characteristics of a plating layer by controlling the potential of the substrate when a plating reaction occurs and the substrate is plated.

もちろん、メッキの中でも電気メッキでは、電気エネル
ギを外部から供給することによってメッキ反応を進行さ
せるので、基板の電位や電流密度はメッキ層の品質に重
要な影響を与える。そこで、最適な電流密度の検討がな
されている。また、パルスメッキのように電流をパルス
状にして流す電気メツキ法が知られている(例えば、電
気化学。
Of course, in electroplating, which is a type of plating, the plating reaction progresses by supplying electrical energy from the outside, so the potential and current density of the substrate have important effects on the quality of the plating layer. Therefore, studies are being conducted on the optimum current density. In addition, electroplating methods, such as pulse plating, in which a current is passed in pulsed form are known (for example, electrochemical).

1且、 195 (1978) 、これらの場合、電流
値の変化に伴い、基板の電位が変化している。しかし、
本発明は無電解メッキについてのものであり、メッキ反
応は外部から電気エネルギを供給しなくとも進行し、こ
の進行を遅らせたり、析出したメッキ層を溶解させるた
めに、基板の電位を貴の方向にずらすものである。また
、特開昭57−145969号公報では、メッキ析出速
度を増すために微弱電流を付加する方法が示されている
が、この場合は、電位を卑にすることで一部電気エネル
ギによってメッキ反応を進行させようとするものである
1 and 195 (1978), in these cases, the potential of the substrate changes as the current value changes. but,
The present invention relates to electroless plating, in which the plating reaction proceeds without the need for external electrical energy to be supplied, and in order to slow this progress or dissolve the deposited plating layer, the potential of the substrate is changed in a positive direction. It is to be shifted to Furthermore, JP-A-57-145969 discloses a method of adding a weak current to increase the plating deposition rate, but in this case, by making the potential base, the plating reaction is partially caused by electrical energy. The aim is to advance the process.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、無電解メッキ法で高密度磁気ディスクの下地膜を
作製する場合、メッキ層の品質を向上するために、メッ
キ浴組成の最適化、添加剤の探索。
Conventionally, when creating a base film for high-density magnetic disks using electroless plating, it is necessary to optimize the plating bath composition and search for additives to improve the quality of the plating layer.

基板前処理の改善等がなされてきた。しかし、メッキ層
の強度が十分ではなく、また、ピンホールのような欠陥
が生じるという問題があった。
Improvements have been made in substrate pretreatment. However, there were problems in that the strength of the plating layer was not sufficient and defects such as pinholes occurred.

本発明の目的は、メッキ層の強度を向上するとともに、
ピンホールのような欠陥を低減することにある。
The purpose of the present invention is to improve the strength of the plating layer, and
The goal is to reduce defects such as pinholes.

〔問題点を解決するための手段〕[Means for solving problems]

無電解メッキは、金属イオンと還元剤と同一溶液中に溶
解し、この溶液中に基板を浸漬することにより、基板上
で金属イオンが還元剤により還元されて金属として析出
するものである。例として、アルミニウム基板上へのニ
ッケルメッキを上げると、例えば、硫酸ニッメル(Ni
SO4)と次亜リン酸ナトリウム(NaHzPOz )
を含む溶液中に、アルミニウム基板を浸漬すると酸性領
域では下記のような反応が生じることにより、ニッケル
がメッキされる0次亜リン酸ナトリウムが還元剤である
In electroless plating, metal ions and a reducing agent are dissolved in the same solution and the substrate is immersed in this solution, whereby the metal ions are reduced by the reducing agent and deposited as metal on the substrate. As an example, taking nickel plating on an aluminum substrate, for example, Nimel sulfate (Ni
SO4) and sodium hypophosphite (NaHzPOz)
When an aluminum substrate is immersed in a solution containing nickel, the following reaction occurs in an acidic region, and the reducing agent is sodium hypophosphite, which is plated with nickel.

N  i”+  +  2  e−−+N  i   
              −(1)(計) Ni”
+ +H2POz−+HzO→N i + HzPOa
−+ 2 H+ −(3)(1)式及び(2)式で示し
た反応がアルミニウム基板上で同時に起こり、全体とし
て(3)式に示す反応が進行する。(1)式及び(2)
式はいずれも電子の移動を伴う電気化学的な反応である
N i"+ + 2 e--+N i
-(1) (total) Ni”
+ +H2POz-+HzO→N i + HzPOa
-+ 2 H+ - (3) The reactions shown in equations (1) and (2) occur simultaneously on the aluminum substrate, and the reaction shown in equation (3) proceeds as a whole. (1) and (2)
Both formulas are electrochemical reactions that involve the movement of electrons.

電気化学的な反応では、電位が非常に重要な働きをする
ことはよく知られている。無電解メッキでは、メッキ液
に浸漬された基板の電位が(1)式及び(2)式のいず
れの反応も進行する値に保持されており、この電位は、
はとんどメッキ液の組成によって決まる。
It is well known that electric potential plays a very important role in electrochemical reactions. In electroless plating, the potential of the substrate immersed in the plating solution is maintained at a value at which both the reactions of equations (1) and (2) proceed, and this potential is
is determined mostly by the composition of the plating solution.

そこで、無電解メッキでも、基板の電位を制御すること
によって、メッキ反応を制御し、メッキ層の品質を向上
することが可能である。
Therefore, even in electroless plating, by controlling the potential of the substrate, it is possible to control the plating reaction and improve the quality of the plating layer.

〔作用〕[Effect]

無電解メッキではメッキ反応は、まず基板上の活性点が
核となって始まり、メッキ層が粒子状に成長する。この
粒子が成長することによって、基板に垂直な方向へ膜が
成長してゆく、すなわち。
In electroless plating, the plating reaction begins with active sites on the substrate serving as nuclei, and the plating layer grows in the form of particles. As these particles grow, the film grows in a direction perpendicular to the substrate.

メッキ層は成長した粒子が基板上に配列した構造を持つ
ようになる。この粒子の配列状態がメッキ層の強度に影
響すると考えられることから1強度を向上させるために
は、粒子を基板に対して垂直方向だけでなく水平方向へ
も成長させて、水平方向に対する粒子間の相互作用を強
める必要があると考えられた。
The plating layer has a structure in which grown particles are arranged on the substrate. It is thought that the arrangement of these particles affects the strength of the plating layer, so in order to improve the strength, it is necessary to grow the particles not only perpendicularly to the substrate but also horizontally, and between the particles in the horizontal direction. It was considered necessary to strengthen the interaction between

そこで、前に述べたように、無電解メッキ時の基板の電
位を外部から制御することにした。基板にリード線を取
り付け、対極及び参照電極を配置したメッキ槽中に基板
を浸漬し、外部からポテンシオスタット及び関数発生器
で基板の電位を制御できるようにした。そして、メッキ
反応中にボテンシオシスタットと関数発生器を用いて、
基板の電位を周期的に貴の方向にずらした結果、従来の
電位を制御しない方法で得られたメッキ層に較べて、強
度が高く、かつ、ピンホールの少ない膜を得ることがで
きた。その理由には、次のようなことが考えられる。メ
ッキ反応が進行して、粒子が成長するにつれて、粒子間
の間隙が次第に狭められる。この間隙が小さくなると、
溶液中の金属イオン及び還元剤が間隙中に移動しにくく
なり、反応によって消費された金属イオン及び還元剤を
供給することが誰しくなる。そのため、間隙内でのメッ
キ反応が遅くなり、間隙がなかなか埋まらなくなる。−
時的に電位を責にずらすと、メッキ反応が遅くなり、金
属イオン及び還元剤の消費量が減る。この間に間隙へ金
肩イオン及び還元剤が供給され、間隙中の金属イオン及
び還元剤の濃度が高くなる。従って、再び自然電位に復
帰した時には1間隙内でもメッキ反応が進行し、粒子間
の間隙が埋まって粒子同士の密着性が高まり、強度が高
く、かつ、ピンホールの少ないメッキ層が得られたと考
えられる。電位をずらして、−時的にメッキ層が溶解す
る場合も、溶解量が十分少ない場合には上述と同様の効
果があると考えられる。
Therefore, as mentioned earlier, we decided to externally control the potential of the substrate during electroless plating. A lead wire was attached to the substrate, and the substrate was immersed in a plating bath in which a counter electrode and a reference electrode were arranged, so that the potential of the substrate could be controlled from the outside with a potentiostat and a function generator. Then, using a botensiocystat and a function generator during the plating reaction,
As a result of periodically shifting the potential of the substrate in the positive direction, it was possible to obtain a film with higher strength and fewer pinholes than a plating layer obtained using a conventional method that does not control the potential. Possible reasons for this are as follows. As the plating reaction progresses and the particles grow, the gaps between the particles gradually narrow. When this gap becomes smaller,
The metal ions and reducing agent in the solution become difficult to move into the gap, and it becomes difficult to supply the metal ions and reducing agent consumed by the reaction. Therefore, the plating reaction within the gap becomes slow, making it difficult to fill the gap. −
Shifting the potential in time slows down the plating reaction and reduces consumption of metal ions and reducing agent. During this time, metal ions and reducing agent are supplied to the gap, and the concentration of metal ions and reducing agent in the gap increases. Therefore, when the natural potential is restored again, the plating reaction progresses even within one gap, the gaps between the particles are filled, the adhesion between the particles increases, and a plated layer with high strength and fewer pinholes is obtained. Conceivable. Even when the plating layer is temporarily dissolved by shifting the potential, it is thought that the same effect as described above can be obtained if the amount of dissolution is sufficiently small.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

〈実施例 1〉 アルミニウム基板上にニッケルを無電解メッキした。メ
ッキ浴の成分は、硫酸ニッケル(0,10mol/12
)、次亜リン酸ナトリウム(0,15+++ol/a 
)、クエン酸ジナトリウム(0,20mol/Ω )及
び硫酸アンモニウム(0,50+ol/Q)である。
<Example 1> Nickel was electrolessly plated onto an aluminum substrate. The components of the plating bath are nickel sulfate (0.10 mol/12
), sodium hypophosphite (0,15+++ol/a
), disodium citrate (0.20 mol/Ω) and ammonium sulfate (0.50+ol/Q).

メッキ浴のpHは約6.0であった。アルミニウム基板
は、アルミニウム線を取り付けた10m++X40I、
厚さ2nn+の大きさのものを用い、前処理は、エメリ
ーペーパー(# 500 、 #1000) テ粗研磨
した後にアルミナ懸濁液(アルミナ粒子径0.1μ)で
仕上研磨し、その後、室温において、濃硝酸中に二分間
浸漬した。水洗後、90℃のメッキ浴中に工時間浸漬す
ることでニッケルメッキした。
The pH of the plating bath was approximately 6.0. The aluminum board is 10m++X40I with aluminum wire attached,
A material with a thickness of 2 nn+ was used, and the pretreatment was rough polishing with emery paper (#500, #1000), followed by final polishing with an alumina suspension (alumina particle size 0.1μ), and then at room temperature. , immersed in concentrated nitric acid for 2 minutes. After washing with water, nickel plating was performed by immersing it in a 90°C plating bath for a working time.

メッキ浴中には、アルミニウム基板の電位測定及び電位
制御のために参照電極(SCE)と対極(アルミニウム
板)を取り付けた。参照電極は、メッキ浴と同溶液の中
間液を介し、塩橋で液絡を取った。電位の測定及び制御
は、アルミニウム基板に取付けたアルミニウム線を通し
て、ポテンシオスタット、関数発生器で行い、電位の経
時変化を記録計に記録した。電位パターンを図に示す。
A reference electrode (SCE) and a counter electrode (aluminum plate) were installed in the plating bath to measure and control the potential of the aluminum substrate. The reference electrode was connected to a salt bridge via an intermediate solution of the same solution as the plating bath. The potential was measured and controlled using a potentiostat and a function generator through an aluminum wire attached to an aluminum substrate, and changes in potential over time were recorded on a recorder. The potential pattern is shown in the figure.

Aは電位制御をしない場合であり、安定した電位(−0
,55V vs NHE)を示す、Bは自然電位(0,
55V vs NHE)と−〇、45VvsNHEの間
の電位で2mV/Sの速度で電位走査を繰り返す三角波
の場合を、Cは18秒間自然電位(0,55V vsN
HE)に保持した後に2秒間−〇、45 V vsNH
Eに保持する短形波の場合を示す、−0,45V vs
 NHEの電位はニッケルの溶解が生じない電位として
任意に選んだ値である。なお、いずれの場合もアルミニ
ウム基板と対極との間に電流はほとんど流れなかった。
A is the case where the potential is not controlled, and the potential is stable (-0
, 55V vs NHE), and B is the natural potential (0, 55V vs NHE).
In the case of a triangular wave that repeats potential scanning at a speed of 2 mV/S at a potential between
HE) for 2 seconds after holding -〇, 45 V vs NH
Showing the case of a rectangular wave held at E, -0,45V vs.
The NHE potential is a value arbitrarily selected as a potential at which nickel does not dissolve. In addition, in either case, almost no current flowed between the aluminum substrate and the counter electrode.

このようにして、ニッケルを工時間メッキしたのちに、
300℃で熱処理し、メッキ層の強度を測定した。その
結果を第1表(次頁)に示す。電位を制御することで硬
度が向上することがわかる6第  1  表 また、メッキ面の欠陥を顕′I!1鏡で調べた結果、電
位を制御した場合に欠陥の数が減少していることがわか
った。
After time-plating nickel in this way,
A heat treatment was performed at 300°C, and the strength of the plating layer was measured. The results are shown in Table 1 (next page). Table 6 shows that hardness can be improved by controlling the potential. Also, defects on the plated surface can be seen! As a result of examining one mirror, it was found that the number of defects decreased when the potential was controlled.

〈実施例 2〉 実施例1と同じ方法で、電位を制御してニッケルメッキ
した。実施例1では、自然電位から−0,45V vs
 NHEの範囲で電位を制御したが1本実施例では、一
部ニッケルが溶解する電位である一〇、40  V v
s NHEまで電位幅を広げた。電位パターンは実施例
1と同じである。
<Example 2> Nickel plating was performed in the same manner as in Example 1 while controlling the potential. In Example 1, -0.45V vs. natural potential
The potential was controlled within the range of NHE, but in this example, it was set at 10.40 V v, which is the potential at which some of the nickel dissolves.
The potential range was widened to sNHE. The potential pattern is the same as in Example 1.

メッキ後に300℃で熱処理した後の強度を第2表(次
頁)に示す。電位を制御することで、メッキ層の硬度が
向上しており、特に、短形波の場合に著しい硬度の増大
が認められた。
Table 2 (next page) shows the strength after heat treatment at 300° C. after plating. By controlling the potential, the hardness of the plating layer was improved, and in particular, a significant increase in hardness was observed in the case of rectangular waves.

第2表 〔発明の効果〕 本発明によれば、硬度が大きく、かつ、欠陥の少ないニ
ッケルメッキ層が得られるので、磁気ディスクの記録媒
体の下地層として用いた場合に。
Table 2 [Effects of the Invention] According to the present invention, a nickel plating layer with high hardness and few defects can be obtained, so when it is used as an underlayer of a recording medium of a magnetic disk.

ディスク強度が増大する。Disk strength increases.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の電位パターンを示す。 A・・・自然電位、B・・・三角波、C・・・短形波。 The figure shows a potential pattern of an embodiment of the present invention. A... Natural potential, B... Triangular wave, C... Rectangular wave.

Claims (1)

【特許請求の範囲】 1、少なくとも金属塩及び還元剤を含む溶液中に導電性
基体を浸漬することにより、前記導電性基板上に前記金
属塩中の金属を析出させる無電解メッキ法において、 前記溶液中に浸漬された前記導電性基板の電位を自然電
位よりも貴の方向にずらすことを特徴とする無電解メッ
キ法。 2、特許請求の範囲第1項において、 前記導電性基板の電位を自然電位よりも貴の方向に周期
的にずらすことを特徴とする無電解メッキ法。 3、特許請求の範囲第1項または第2項において、前記
金属塩がニッケル塩であることを特徴とする無電解メッ
キ法。 4、特許請求の範囲第1項または第2項において、前記
還元剤が次亜リン酸ナトリウムであることを特徴とする
無電解メッキ法。 5、特許請求の範囲第1項または第2項において、前記
導電性基板がアルミニウムあるいはアルミニウム合金で
あることを特徴とする無電解メッキ法。
[Scope of Claims] 1. An electroless plating method in which the metal in the metal salt is deposited on the conductive substrate by immersing the conductive substrate in a solution containing at least a metal salt and a reducing agent, comprising: An electroless plating method characterized by shifting the potential of the conductive substrate immersed in a solution in a direction higher than the natural potential. 2. The electroless plating method according to claim 1, characterized in that the potential of the conductive substrate is periodically shifted in a direction higher than the natural potential. 3. The electroless plating method according to claim 1 or 2, wherein the metal salt is a nickel salt. 4. The electroless plating method according to claim 1 or 2, wherein the reducing agent is sodium hypophosphite. 5. The electroless plating method according to claim 1 or 2, wherein the conductive substrate is aluminum or an aluminum alloy.
JP25570586A 1986-10-29 1986-10-29 Electroless plating method Pending JPS63111179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25570586A JPS63111179A (en) 1986-10-29 1986-10-29 Electroless plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25570586A JPS63111179A (en) 1986-10-29 1986-10-29 Electroless plating method

Publications (1)

Publication Number Publication Date
JPS63111179A true JPS63111179A (en) 1988-05-16

Family

ID=17282488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25570586A Pending JPS63111179A (en) 1986-10-29 1986-10-29 Electroless plating method

Country Status (1)

Country Link
JP (1) JPS63111179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064479A (en) * 2001-08-22 2003-03-05 Sony Corp Pre-treatment of electroless plating
JP2012219274A (en) * 2011-04-04 2012-11-12 Nitto Denko Corp Electroless plating apparatus, method for electroless plating, and method for manufacturing printed circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064479A (en) * 2001-08-22 2003-03-05 Sony Corp Pre-treatment of electroless plating
JP2012219274A (en) * 2011-04-04 2012-11-12 Nitto Denko Corp Electroless plating apparatus, method for electroless plating, and method for manufacturing printed circuit board
US8893648B2 (en) 2011-04-04 2014-11-25 Nitto Denko Corporation Electroless plating apparatus, method of electroless plating, and manufacturing method of printed circuit board

Similar Documents

Publication Publication Date Title
Brenner et al. Deposition of nickel and cobalt by chemical reduction
Schlesinger Electroless deposition of nickel
US4652348A (en) Method for the production of alloys possessing high elastic modulus and improved magnetic properties by electrodeposition
US2644787A (en) Electrodeposition of a magnetic coating
Donten et al. Pulse electroplating of rich-in-tungsten thin layers of amorphous Co-W alloys
US20040027715A1 (en) Method for producing multiple magnetic layers of materials with known thickness and composition using a one-step electrodeposition process
JPH0196385A (en) Control of electroless plating
JPH0463159B2 (en)
US5932082A (en) Electroplating bath for nickel-iron alloys and method
Takata et al. Electrodeposition of magnetic CoPd thin films: Influence of plating condition
US3264199A (en) Electroless plating of metals
Moradi et al. Electroless plating of Sn/Cu/Zn triple layer on AA6082 aluminum alloy
JPH0643980B2 (en) Method to judge the suitability of chemical metal plating bath
Horkans et al. Alloying of a less noble metal in electrodeposited Cu through underpotential deposition
JPS63111179A (en) Electroless plating method
JPS61238994A (en) Method for precipitating palladium-nickel alloy
US3489660A (en) Electroplating bath and method
JP2522246B2 (en) Method of manufacturing thin film magnetic recording medium
JP3533880B2 (en) Electroless nickel plating solution and electroless nickel plating method
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
US3039942A (en) Electrodeposition of metals using pyrophosphates
US3039943A (en) Methods for the electrodeposition of metals
JP2757673B2 (en) Continuous plating method of electroless Ni-P-Mo
JPS6220152A (en) Stamper for molding optical disk and its manufacture
JPH0573837B2 (en)