JP2003064479A - Pre-treatment of electroless plating - Google Patents

Pre-treatment of electroless plating

Info

Publication number
JP2003064479A
JP2003064479A JP2001250962A JP2001250962A JP2003064479A JP 2003064479 A JP2003064479 A JP 2003064479A JP 2001250962 A JP2001250962 A JP 2001250962A JP 2001250962 A JP2001250962 A JP 2001250962A JP 2003064479 A JP2003064479 A JP 2003064479A
Authority
JP
Japan
Prior art keywords
substrate
electroless plating
pretreatment
film
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001250962A
Other languages
Japanese (ja)
Inventor
Hideyoshi Kito
英至 鬼頭
Takeshi Nogami
毅 野上
Mitsuru Taguchi
充 田口
Hisanori Komai
尚紀 駒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001250962A priority Critical patent/JP2003064479A/en
Publication of JP2003064479A publication Critical patent/JP2003064479A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the selectivity of electroless plating by removing negative charge on the surface of an insulating film of a substrate. SOLUTION: A pre-treatment of electroless plating for forming a plating film on the substrate 51 by electroless plating is carried out to remove negative charge on the surface of the substrate 51 by applying AC power from an AC power source 18 on the surface of the substrate 51 opposite from the surface on which the plating film of the substrate 51 is formed by dipping the substrate 51 into an electrolyte 41. As the pre-treatment, the negative charge on the surface of the substrate 51 may be removed by applying DC bias power while applying AC power or may be removed while applying pulse power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、無電解メッキの前
処理方法に関し、詳しくは半導体装置に用いる金属、金
属化合物等の薄膜を形成する無電解メッキの前処理方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment method for electroless plating, and more particularly to a pretreatment method for electroless plating for forming a thin film of a metal or a metal compound used in a semiconductor device.

【0002】[0002]

【従来の技術】銅配線は、アルミニウム配線よりも低抵
抗、低容量、高信頼性を与えることから、配線の寄生抵
抗、寄生容量による回路遅延が支配的になる微細阻止に
おいて、重要性を増してきている。銅配線を形成する最
も一般的な方法として広く受け入れられているのは溝配
線技術(例えばダマシン工程)である。しかし、酸化し
やすい銅表面を被覆するために比誘電率が7と高い窒化
シリコン(SiN)膜をキャップ膜として使用し、その
結果、配線システム全体の寄生容量を増大させるという
弊害がある。
2. Description of the Related Art Copper wiring provides lower resistance, lower capacitance, and higher reliability than aluminum wiring, and therefore becomes more important in fine prevention in which circuit delay due to parasitic resistance and parasitic capacitance of the wiring dominates. Is coming. Grooved wiring technology (eg, damascene process) is widely accepted as the most common method of forming copper wiring. However, a silicon nitride (SiN) film having a high relative permittivity of 7 is used as a cap film in order to cover the copper surface which is easily oxidized, and as a result, there is a disadvantage that the parasitic capacitance of the entire wiring system is increased.

【0003】また、銅はエレクトロマイグレーション耐
性が高いと期待される物性を持っているにも拘わらず、
表面が化学的に不安定なため、銅と窒化シリコンとの界
面が、銅の優先的拡散経路として働き、期待した高いエ
レクトロマイグレーション耐性(信頼性)が得られない
という課題を有している。そのため、前述の課題である
複雑な銅配線工程の簡略化と信頼性、寄生容量の点から
課題の多い窒化シリコン膜の不使用を目的とし、無電解
メッキによるコバルトタングステンリン(CoWP)膜
を用いることが検討されている(S.Lopatin et al., Pr
oc. of Advanced Metallization Conference (1997) p.
437参照)。
Further, although copper has the physical properties expected to have high electromigration resistance,
Since the surface is chemically unstable, the interface between copper and silicon nitride acts as a preferential diffusion path for copper, and there is a problem that the expected high electromigration resistance (reliability) cannot be obtained. Therefore, a cobalt tungsten phosphorus (CoWP) film formed by electroless plating is used for the purpose of simplifying the complicated copper wiring process, which is the above-mentioned problem, and not using the silicon nitride film, which has many problems in terms of reliability and parasitic capacitance. (S. Lopatin et al., Pr
oc. of Advanced Metallization Conference (1997) p.
See 437).

【0004】CoWP膜は無電解メッキにより剥き出し
になった銅の上のみ選択的に成膜する。この成膜選択性
は、CoWP無電解メッキを実施する前に、銅との置換
無電解メッキによって、銅表面をパラジウムにより被覆
することで、CoWPの成膜がこのパラジウムを触媒と
して、パラジウムの上のみに発生することに起因してい
る。いったん、パラジウムの表面はCoWPにより被覆
された後は、CoWP上のCoWPの連続成膜は、Co
WP自信を触媒として自己触媒メッキにより選択的成膜
を保ったまま進行する。
The CoWP film is selectively formed only on copper exposed by electroless plating. This film-forming selectivity is obtained by coating the copper surface with palladium by substitution electroless plating with copper before carrying out CoWP electroless plating, so that CoWP film formation uses palladium as a catalyst over palladium. It is due to occurring only in. Once the palladium surface was coated with CoWP, the continuous deposition of CoWP on CoWP was
Proceeding while maintaining selective film formation by self-catalytic plating using WP confidence as a catalyst.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、パラジ
ウムは、銅から負電荷(自由電子)を得て、銅表面を被
覆する。そのため、高い選択性を維持するためには、絶
縁膜上の負電荷を完全に無くすことが非常に重要であ
る。
However, palladium obtains a negative charge (free electron) from copper and coats the copper surface. Therefore, in order to maintain high selectivity, it is very important to completely eliminate the negative charges on the insulating film.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされた無電解メッキの前処理方法であ
る。
The present invention is a pretreatment method for electroless plating, which has been made to solve the above problems.

【0007】本発明の第1の無電解メッキの前処理方法
は、無電解メッキにより基板にメッキ膜を形成する無電
解メッキの前処理方法であって、前記基板を電解液に浸
漬して前記基板の前記メッキ膜が成膜される側とは反対
側に交流電力を印加しながら前記基板表面の負電荷を除
去する前処理を行う。
The first pretreatment method for electroless plating according to the present invention is a pretreatment method for electroless plating in which a plating film is formed on a substrate by electroless plating. A pretreatment for removing negative charges on the surface of the substrate is performed while applying AC power to the side of the substrate opposite to the side where the plating film is formed.

【0008】上記第1の無電解メッキの前処理方法で
は、メッキ液とは異なる電解液中に基板を浸漬し、基板
のメッキ膜が成膜される側とは反対側(基板裏面)に交
流を印加する。これにより基板のメッキ膜が成膜される
側(基板表面)が負に帯電するため、基板表面に付着残
留している負イオン等の負電荷が除去される。基板裏面
に交流電圧を印加する理由は、直流と異なり、電圧の正
負が切り替わるため、基板のチャージアップを防止する
ことができる。そのため、デバイスへの影響を十分に抑
制することが可能となる。また、基板表面の負電荷を除
去した後、基板を無電解メッキ液に浸漬し、CoWPも
しくはNiWPを成膜する。また、交流の周波数とし
て、電解液中のイオンが十分に追従できる周波数を選択
すればよい。
In the first electroless plating pretreatment method, the substrate is immersed in an electrolytic solution different from the plating solution, and an alternating current is applied to the side of the substrate opposite to the side where the plating film is formed (the back surface of the substrate). Is applied. As a result, the side of the substrate on which the plated film is formed (the substrate surface) is negatively charged, so that negative charges such as negative ions remaining on the substrate surface are removed. The reason why an AC voltage is applied to the back surface of the substrate is that, unlike DC, the polarity of the voltage is switched, so that charge-up of the substrate can be prevented. Therefore, it is possible to sufficiently suppress the influence on the device. Further, after removing the negative charges on the surface of the substrate, the substrate is immersed in an electroless plating solution to form CoWP or NiWP. In addition, a frequency at which ions in the electrolytic solution can sufficiently follow may be selected as the alternating current frequency.

【0009】本発明の第2の無電解メッキの前処理方法
は、無電解メッキにより基板にメッキ膜を形成する無電
解メッキの前処理方法であって、前記基板を電解液に浸
漬して前記基板の前記メッキ膜が成膜される側とは反対
側に直流バイアス電力を印加するとともに交流電力を印
加しながら前記基板表面の負電荷を除去する前処理を行
う。
A second pretreatment method for electroless plating according to the present invention is a pretreatment method for electroless plating in which a plating film is formed on a substrate by electroless plating, wherein the substrate is immersed in an electrolytic solution and A pretreatment is performed to apply a DC bias power to the side of the substrate opposite to the side where the plating film is formed and to remove the negative charges on the surface of the substrate while applying an AC power.

【0010】上記第2の無電解メッキの前処理方法で
は、メッキ液とは異なる電解液中に基板を浸漬し、基板
のメッキ膜が成膜される側とは反対側に直流バイアス電
力を印加するとともに交流電力を印加しながら基板表面
の負電荷を除去する前処理を行うことから、基板を常に
負バイアスとすることが可能になる。このように、直流
電圧と交流電圧とを組み合わせて印加することで、基板
を常に負バイアスとし、効率的に負電荷を除去すること
も可能となる。これにより基板のメッキ膜が成膜される
側(基板表面)が負に帯電するため、基板表面に付着残
留している負イオン等の負電荷が除去される。また、基
板表面の負電荷を除去した後、基板を無電解メッキ液に
浸漬し、CoWPもしくはNiWPを成膜する。また、
交流の周波数として、電解液中のイオンが十分に追従で
きる周波数を選択すればよい。また、基板に印加する交
流の周波数として、メッキの成膜種となるイオンが十分
に追従できる周波数を選択すればよい。
In the second pretreatment method for electroless plating, the substrate is immersed in an electrolytic solution different from the plating solution, and DC bias power is applied to the side of the substrate opposite to the side where the plating film is formed. In addition, since the pretreatment for removing the negative charges on the surface of the substrate is performed while applying the AC power, the substrate can be always negatively biased. As described above, by applying the DC voltage and the AC voltage in combination, it is possible to always apply the negative bias to the substrate and efficiently remove the negative charges. As a result, the side of the substrate on which the plated film is formed (the substrate surface) is negatively charged, so that negative charges such as negative ions remaining on the substrate surface are removed. Further, after removing the negative charges on the surface of the substrate, the substrate is immersed in an electroless plating solution to form CoWP or NiWP. Also,
As the frequency of the alternating current, a frequency with which the ions in the electrolytic solution can sufficiently follow may be selected. Further, as the frequency of the alternating current applied to the substrate, it is sufficient to select a frequency at which the ions serving as the film-forming species for plating can sufficiently follow.

【0011】本発明の第3の無電解メッキの前処理方法
は、無電解メッキにより基板にメッキ膜を形成する無電
解メッキの前処理方法であって、前記基板を電解液に浸
漬して前記基板の前記メッキ膜が成膜される側とは反対
側にパルス電力を印加しながら前記基板表面の負電荷を
除去する前処理を行う。
A third electroless plating pretreatment method of the present invention is an electroless plating pretreatment method of forming a plating film on a substrate by electroless plating, wherein the substrate is immersed in an electrolytic solution to form Pretreatment is performed to remove negative charges on the surface of the substrate while applying pulsed power to the side of the substrate opposite to the side where the plated film is formed.

【0012】上記第3の無電解メッキの前処理方法で
は、メッキ液とは異なる電解液中に基板を浸漬し、基板
のメッキ膜が成膜される側とは反対側にパルス電力を印
加しながら基板表面の負電荷を除去する前処理を行うこ
とから、第1の無電解メッキの前処理方法と同様に、基
板に形成されている絶縁膜(図示せず)の帯電が防止さ
れ、デバイスの信頼性に影響を与えずに基板面内の膜厚
分布均一性が向上される。
In the third pretreatment method for electroless plating, the substrate is immersed in an electrolytic solution different from the plating solution, and pulsed power is applied to the side of the substrate opposite to the side where the plated film is formed. While performing the pretreatment for removing the negative charges on the substrate surface, the insulating film (not shown) formed on the substrate is prevented from being charged, as in the first electroless plating pretreatment method. The uniformity of the film thickness distribution in the surface of the substrate is improved without affecting the reliability of.

【0013】[0013]

【発明の実施の形態】まず、本発明の第1の無電解メッ
キの前処理方法で用いる前処理装置の一例を、図1の概
略構成断面図によって説明する。
BEST MODE FOR CARRYING OUT THE INVENTION First, an example of a pretreatment apparatus used in the first pretreatment method for electroless plating of the present invention will be described with reference to the schematic sectional view of FIG.

【0014】図1に示すように、第1の前処理装置1
は、電解液槽11を備えている。電解液槽11の例えば
底部には電極12が設置されている。この電極12には
直流電源13が接続されている。
As shown in FIG. 1, a first pretreatment device 1
Is provided with an electrolytic solution tank 11. An electrode 12 is installed, for example, at the bottom of the electrolytic solution tank 11. A DC power supply 13 is connected to this electrode 12.

【0015】また、電解液槽11には、上記電極12に
対向する位置に、基板51を保持する基板保持部14が
設けられている。この基板保持部14には、この基板保
持部14の上記電極12側に保持された基板51表面に
形成された導電性膜52に電力を供給する電極15が設
けられている。この電極15は例えば接地されている。
Further, the electrolytic solution tank 11 is provided with a substrate holding portion 14 for holding the substrate 51 at a position facing the electrode 12. The substrate holding portion 14 is provided with an electrode 15 for supplying electric power to the conductive film 52 formed on the surface of the substrate 51 held on the electrode 12 side of the substrate holding portion 14. This electrode 15 is grounded, for example.

【0016】さらに、上記電極15とは絶縁材16によ
って絶縁された状態に交流印加電極17が基板保持部1
4に保持された基板51の裏面側に接続するように設け
られている。この交流印加電極17には交流電源18が
接続されている。この交流電源18は、例えば10Hz
〜1kHz程度の周波数の交流を発振するものからな
る。
Further, the AC applying electrode 17 is insulated from the electrode 15 by an insulating material 16, and the AC applying electrode 17 is attached to the substrate holding portion 1.
It is provided so as to be connected to the back surface side of the substrate 51 held by No. 4. An AC power supply 18 is connected to the AC applying electrode 17. This AC power source 18 is, for example, 10 Hz
It consists of a device that oscillates an alternating current having a frequency of about 1 kHz.

【0017】また、上記電解液槽11には電解液41が
満たされている。この電解液41には、例えば、イオン
水、アンモニア水、水酸化カリウム水溶液等を用いるこ
とができる。
The electrolytic solution tank 11 is filled with an electrolytic solution 41. As the electrolytic solution 41, for example, ionic water, ammonia water, an aqueous potassium hydroxide solution, or the like can be used.

【0018】上記第1の前処理装置1では、基板51の
メッキ膜が成膜される側とは反対側(裏面側)に交流印
加電極17を接続し、この交流印加電極17に交流電力
を印加する交流電源18を備えたことから、基板51の
前処理を行う場合、直流電源13より電極12に直流を
印加するとともに基板51に交流電源を印加することが
できる。そのため、基板51裏面に交流電圧を印加する
場合には直流と異なり、電圧の正負が切り替わる。
In the first pretreatment apparatus 1, the AC applying electrode 17 is connected to the side (rear side) of the substrate 51 opposite to the side where the plating film is formed, and AC power is applied to the AC applying electrode 17. Since the AC power supply 18 for applying the voltage is provided, when performing the pretreatment of the substrate 51, it is possible to apply the DC power from the DC power supply 13 to the electrode 12 and the AC power supply to the substrate 51. Therefore, when an AC voltage is applied to the back surface of the substrate 51, the voltage is switched between positive and negative, unlike DC.

【0019】基板51に印加する交流の周波数として、
前処理種となるイオンが十分に追従できる周波数を選択
すればよい。
As the frequency of the alternating current applied to the substrate 51,
It suffices to select a frequency at which the ions to be the pretreatment species can sufficiently follow.

【0020】次に、本発明の第1の無電解メッキの前処
理方法に係わる実施の形態を、前記図1の概略構成図に
よって説明する。
Next, an embodiment of the first pretreatment method for electroless plating according to the present invention will be described with reference to the schematic diagram of FIG.

【0021】一例として、図1に示す交流電源18に
は、例えば350Hzの周波数の交流電力を発生するも
のを用い、基板51に350Hzの交流電力を印加して
前処理を行う場合を説明する。この前処理条件の一例と
しては、電解液41にイオン水を用い、電解液温度を1
8℃、直流電源13より電極12に印加する直流の前処
理電圧を1.3V、交流電源18より交流印加電極17
に印加する交流電力(低周波交流電力として例えば35
0Hz)を30Wに設定し、1分間の前処理を行った。
As an example, a case will be described in which the AC power supply 18 shown in FIG. 1 is one that generates AC power having a frequency of 350 Hz, and the pretreatment is performed by applying AC power of 350 Hz to the substrate 51. As an example of this pretreatment condition, ion water is used as the electrolytic solution 41 and the electrolytic solution temperature is set to 1
At 8 ° C., the DC pretreatment voltage applied to the electrode 12 from the DC power supply 13 is 1.3 V, and the AC application electrode 17 is applied from the AC power supply
AC power to be applied to the
0 Hz) was set to 30 W and pretreatment was performed for 1 minute.

【0022】その後、無電解メッキによりCoWPの成
膜を行った。その結果、選択性が破れることなく、銅上
のみにCoWP膜を成膜することができた。
After that, a CoWP film was formed by electroless plating. As a result, the CoWP film could be formed only on copper without breaking the selectivity.

【0023】上記第1の無電解メッキの前処理方法で
は、直流電源13より電極12に直流を印加するととも
に、基板51のメッキ膜が成膜される側とは反対側に交
流電力を印加しながら該基板51にメッキ膜を形成する
ことから、基板51裏面に交流電圧を印加する場合には
直流と異なり、電圧の正負が切り替わる。
In the first electroless plating pretreatment method, direct current is applied to the electrode 12 from the direct current power source 13 and alternating current power is applied to the side of the substrate 51 opposite to the side on which the plating film is formed. However, since a plating film is formed on the substrate 51, when an AC voltage is applied to the back surface of the substrate 51, the positive / negative of the voltage is switched unlike the direct current.

【0024】基板51に印加する交流の周波数として、
メッキの成膜種となるイオンが十分に追従できる周波数
を選択すればよく、例えば成膜種が銅の場合には、10
Hz〜1kHz程度を選択することが好ましい。もし1
0Hz未満の周波数を有する交流を印加した場合には、
前処理表面の面内均一性が悪化しやすくなり、交流の周
波数が1kHzを超える場合には成膜種のイオンの追従
性が悪化する。
As the frequency of the alternating current applied to the substrate 51,
It suffices to select a frequency at which the ions forming the plating film formation species can sufficiently follow. For example, when the film formation species is copper, 10
It is preferable to select about Hz to 1 kHz. If 1
When an alternating current having a frequency of less than 0 Hz is applied,
The in-plane uniformity of the pretreatment surface is likely to deteriorate, and when the frequency of the alternating current exceeds 1 kHz, the trackability of ions of the film-forming species deteriorates.

【0025】このように、10Hz〜1kHzの交流を
基板51に印加することで、基板51に形成されている
絶縁膜(図示せず)の帯電が防止され、デバイスの信頼
性に影響を与えず、基板51に形成された絶縁膜(図示
せず)表面の負電荷を除去することが可能になる。
As described above, by applying an alternating current of 10 Hz to 1 kHz to the substrate 51, the insulating film (not shown) formed on the substrate 51 is prevented from being charged, and the reliability of the device is not affected. The negative charges on the surface of the insulating film (not shown) formed on the substrate 51 can be removed.

【0026】次に、本発明の第2の無電解メッキの前処
理方法に用いる第2の前処理装置の一例を、図2の概略
構成図によって説明する。
Next, an example of the second pretreatment apparatus used in the second pretreatment method for electroless plating of the present invention will be described with reference to the schematic diagram of FIG.

【0027】図2に示すように、第2の前処理装置2
は、電解液槽11を備えている。電解液槽11の例えば
底部には電極12が設置されている。この電極12には
直流電源13が接続されている。
As shown in FIG. 2, the second pretreatment device 2
Is provided with an electrolytic solution tank 11. An electrode 12 is installed, for example, at the bottom of the electrolytic solution tank 11. A DC power supply 13 is connected to this electrode 12.

【0028】また、電解液槽11には上記電極12に対
向する位置に基板51を保持する基板保持部14が設け
られている。この基板保持部14には、この基板保持部
14の上記電極12側に保持された基板51表面に形成
された導電性膜52に電力を供給する電極15が設けら
れている。この電極15は例えば接地されている。
Further, the electrolytic solution tank 11 is provided with a substrate holding portion 14 for holding the substrate 51 at a position facing the electrode 12. The substrate holding portion 14 is provided with an electrode 15 for supplying electric power to the conductive film 52 formed on the surface of the substrate 51 held on the electrode 12 side of the substrate holding portion 14. This electrode 15 is grounded, for example.

【0029】さらに、上記電極15とは絶縁材16によ
って絶縁された状態にバイアス印加電極27が基板保持
部14に保持された基板51の裏面側に接続するように
設けられている。このバイアス印加電極27には直流電
源28の負側が接続され、さらに直流電源28の正側に
は交流電源18が接続されている。すなわち、バイアス
印加電極27、直流電源28、交流電源18が直列に接
続されている。この交流電源18は、例えば10Hz〜
1kHz程度の周波数の交流を発振するものからなる。
Further, the bias applying electrode 27 is provided so as to be connected to the back side of the substrate 51 held by the substrate holding portion 14 while being insulated from the electrode 15 by the insulating material 16. A negative side of a DC power supply 28 is connected to the bias applying electrode 27, and an AC power supply 18 is connected to the positive side of the DC power supply 28. That is, the bias applying electrode 27, the DC power supply 28, and the AC power supply 18 are connected in series. The AC power source 18 is, for example, 10 Hz-
It consists of a device that oscillates an alternating current with a frequency of about 1 kHz.

【0030】また、上記電解液槽11には電解液41が
満たされている。この電解液41には、例えば、イオン
水、アンモニア水、水酸化カリウム水溶液等を用いるこ
とができる。
The electrolytic solution tank 11 is filled with an electrolytic solution 41. As the electrolytic solution 41, for example, ionic water, ammonia water, an aqueous potassium hydroxide solution, or the like can be used.

【0031】上記第2の電解メッキ装置2では、基板5
1のメッキ膜が成膜される側とは反対側にバイアス印加
電極27を接続し、このバイアス印加電極27に直流電
力を印加するもので該基板51に負極を接続した直流電
源28と、基板51に交流電力を印加するもので直流電
源28の正極に接続された交流電源18とを備えたこと
から、基板51を前処理する場合、直流電源13より電
極12に直流を印加するとともに,基板51裏面側に直
流電圧と交流電圧とを組み合わせて印加することが可能
になり、それによって基板51を常に負バイアスとする
ことが可能になる。
In the second electrolytic plating apparatus 2, the substrate 5
The bias applying electrode 27 is connected to the side opposite to the side where the plating film of No. 1 is formed, and the DC power is applied to the bias applying electrode 27. In order to pretreat the substrate 51, the direct current power supply 13 applies a direct current to the electrode 12 and the substrate 12 It is possible to apply a combination of a DC voltage and an AC voltage to the back surface of the substrate 51, which allows the substrate 51 to be always negatively biased.

【0032】また、基板51に印加する交流の周波数と
して、前処理種となるイオンが十分に追従できる周波数
を選択すればよい。
Further, as the frequency of the alternating current applied to the substrate 51, it is sufficient to select a frequency at which the ions to be the pretreatment species can sufficiently follow.

【0033】次に、本発明の第2の無電解メッキの前処
理方法に係わる実施の形態を、前記図2の概略構成図に
よって説明する。
Next, an embodiment of the second pretreatment method for electroless plating according to the present invention will be described with reference to the schematic diagram of FIG.

【0034】一例として、図1に示す交流電源18に
は、100Hzの周波数の交流電力を発生するものを用
い、基板51に100Hzの交流電力を印加するととも
に、直流電源28によって負バイアスを印加して、前処
理を行う場合を説明する。この前処理条件の一例として
は、電解液41にアンモニア水を用い、電解液温度を1
8℃、直流電源13より電極12に印加する直流の前処
理電圧を1.3V、交流電源18よりバイアス印加電極
27に印加する直流電圧を2V、交流電力(低周波交流
電力として例えば100Hz)を30Wに設定し、30
秒間の前処理を行った。
As an example, the AC power supply 18 shown in FIG. 1 is one that generates AC power having a frequency of 100 Hz, and the AC power of 100 Hz is applied to the substrate 51 and a negative bias is applied by the DC power supply 28. Then, the case where pre-processing is performed will be described. As an example of this pretreatment condition, ammonia water is used as the electrolytic solution 41 and the electrolytic solution temperature is set to 1
At 8 ° C., a DC pretreatment voltage applied from the DC power supply 13 to the electrode 12 is 1.3 V, a DC voltage applied from the AC power supply 18 to the bias applying electrode 27 is 2 V, and AC power (for example, 100 Hz as low frequency AC power) is applied. Set to 30W, 30
Pretreatment for 2 seconds was performed.

【0035】その後、無電解メッキによりCoWPの成
膜を行った。その結果、選択性が破れることなく、銅上
のみにCoWP膜を成膜することができた。
After that, a CoWP film was formed by electroless plating. As a result, the CoWP film could be formed only on copper without breaking the selectivity.

【0036】上記第2の無電解メッキの前処理方法で
は、直流電源13より電極12に直流を印加するととも
に、基板51のメッキ膜が成膜される側とは反対側に少
なくとも直流バイアス電力を印加しながら該基板51に
前処理を行うことから、基板51を常に負バイアスとす
ることが可能になる。
In the second pretreatment method for electroless plating, direct current is applied to the electrode 12 from the direct current power source 13 and at least direct current bias power is applied to the side of the substrate 51 opposite to the side on which the plating film is formed. Since the substrate 51 is pre-processed while being applied, the substrate 51 can always be negatively biased.

【0037】また、基板51に印加する交流の周波数と
して、前処理種となるイオンが十分に追従できる周波数
を選択すればよい。例えば、10Hz〜1kHz程度を
選択することが好ましい。もし10Hz未満の周波数を
有する交流を印加した場合には、前処理表面の面内均一
性が悪化しやすくなり、交流の周波数が1kHzを超え
る場合には前処理種のイオンの追従性が悪化する。
Further, as the frequency of the alternating current applied to the substrate 51, it is sufficient to select a frequency at which the ions as the pretreatment species can sufficiently follow. For example, it is preferable to select about 10 Hz to 1 kHz. If an alternating current having a frequency of less than 10 Hz is applied, the in-plane uniformity of the pretreated surface tends to deteriorate, and if the alternating current frequency exceeds 1 kHz, the followability of the ions of the pretreated species deteriorates. .

【0038】このようにして、基板51中心に負バイア
スを印加することができるので、基板51に形成されて
いる絶縁膜(図示せず)の帯電が防止され、デバイスの
信頼性に影響を与えず、基板51に形成された絶縁膜
(図示せず)表面の負電荷を除去することが可能にな
る。
As described above, since the negative bias can be applied to the center of the substrate 51, the insulating film (not shown) formed on the substrate 51 is prevented from being charged, and the reliability of the device is affected. First, it becomes possible to remove the negative charges on the surface of the insulating film (not shown) formed on the substrate 51.

【0039】次に、本発明の第3の無電解メッキの前処
理方法に用いる第3の前処理装置の一例を、図3の概略
構成図によって説明する。
Next, an example of a third pretreatment apparatus used in the third pretreatment method for electroless plating of the present invention will be described with reference to the schematic configuration diagram of FIG.

【0040】図3に示すように、図3に示すように、第
3の前処理装置3は、電解液槽11を備えている。電解
液槽11の例えば底部には電極12が設置されている。
この電極12には直流電源13が接続されている。
As shown in FIG. 3, as shown in FIG. 3, the third pretreatment apparatus 3 includes an electrolytic solution tank 11. An electrode 12 is installed, for example, at the bottom of the electrolytic solution tank 11.
A DC power supply 13 is connected to this electrode 12.

【0041】また、電解液槽11には上記電極12に対
向する位置に基板51を保持する基板保持部14が設け
られている。この基板保持部14には、この基板保持部
14の上記電極12側に保持された基板51表面に形成
された導電性膜52に電力を供給する電極15が設けら
れている。この電極15は例えば接地されている。
Further, the electrolytic solution tank 11 is provided with a substrate holding portion 14 for holding the substrate 51 at a position facing the electrode 12. The substrate holding portion 14 is provided with an electrode 15 for supplying electric power to the conductive film 52 formed on the surface of the substrate 51 held on the electrode 12 side of the substrate holding portion 14. This electrode 15 is grounded, for example.

【0042】さらに、上記電極15とは絶縁材16によ
って絶縁された状態にパルス波印加電極37が基板保持
部14に保持された基板51の裏面側に接続するように
設けられている。このパルス波印加電極37にはパルス
波発生電源38が接続されている。
Further, the pulse wave applying electrode 37 is provided so as to be connected to the back surface side of the substrate 51 held by the substrate holding portion 14 while being insulated from the electrode 15 by the insulating material 16. A pulse wave generating power source 38 is connected to the pulse wave applying electrode 37.

【0043】また、上記電解液槽11には電解液41が
満たされている。この電解液41には、例えば、イオン
水、アンモニア水、水酸化カリウム水溶液等を用いるこ
とができる。
The electrolytic solution tank 11 is filled with the electrolytic solution 41. As the electrolytic solution 41, for example, ionic water, ammonia water, an aqueous potassium hydroxide solution, or the like can be used.

【0044】上記第3の前処理装置3では、基板51の
メッキ膜が成膜される側とは反対側にパルス波印加電極
37を接続し、このパルス波印加電極37にパルス電力
を印加するパルス波印加電源38を備えたことから、前
記第1の前処理装置1と同様に、基板51に形成されて
いる絶縁膜(図示せず)の帯電が防止されて、デバイス
の信頼性に影響を与えず、基板51の絶縁膜表面の負電
荷を除去することができる。
In the third pretreatment apparatus 3, the pulse wave applying electrode 37 is connected to the side of the substrate 51 opposite to the side where the plating film is formed, and pulse power is applied to the pulse wave applying electrode 37. Since the pulse wave applying power source 38 is provided, the insulating film (not shown) formed on the substrate 51 is prevented from being charged, as in the case of the first pretreatment apparatus 1, thus affecting the reliability of the device. It is possible to remove the negative charges on the surface of the insulating film of the substrate 51 without applying the charge.

【0045】次に、本発明の第3の無電解メッキの前処
理方法に係わる実施の形態を、図3の概略構成図によっ
て説明する。
Next, an embodiment relating to the third pretreatment method for electroless plating of the present invention will be described with reference to the schematic configuration diagram of FIG.

【0046】一例として、図3に示すパルス波発生電源
38によって、基板51に裏面にパルス波電力を印加し
て無電解メッキの前処理を行う場合を説明する。この前
処理条件の一例としては、電解液41に水酸化カリウム
水溶液を用い、電解液温度を18℃、直流電源13より
電極12に印加する直流の前処理電圧を1.3V、パル
ス波印加電源38よりパルス印加電極37に印加するパ
ルス波電圧を−2V(パルス周期:3ms、パルス幅3
0μs)に設定し、1分30秒間メッキを行った。
As an example, a case will be described in which the pulse wave power source 38 shown in FIG. 3 applies pulse wave power to the back surface of the substrate 51 to perform pretreatment for electroless plating. As an example of this pretreatment condition, an aqueous solution of potassium hydroxide is used as the electrolyte 41, the temperature of the electrolyte is 18 ° C., the DC pretreatment voltage applied from the DC power supply 13 to the electrode 12 is 1.3 V, and the pulse wave application power supply is used. The pulse wave voltage applied from 38 to the pulse application electrode 37 is -2 V (pulse cycle: 3 ms, pulse width 3
0 μs) and plating was performed for 1 minute and 30 seconds.

【0047】その後、無電解メッキによりCoWPの成
膜を行った。その結果、選択性が破れることなく、銅上
のみにCoWP膜を成膜することができた。
After that, a CoWP film was formed by electroless plating. As a result, the CoWP film could be formed only on copper without breaking the selectivity.

【0048】上記第3の無電解メッキの前処理方法で
は、直流電源13より電極12に直流を印加するととも
に、基板51のメッキ膜が成膜される側とは反対側にパ
ルス電力を印加しながら該基板51に前処理を行うこと
から、前記第1の無電解メッキの前処理方法と同様に、
基板51に形成されている絶縁膜(図示せず)の帯電が
防止されて、デバイスの信頼性に影響を与えず、基板5
1の絶縁膜(図示せず)表面の負電荷を除去することが
可能になる。
In the third pretreatment method for electroless plating, direct current is applied to the electrode 12 from the direct current power source 13 and pulse power is applied to the side of the substrate 51 opposite to the side where the plated film is formed. However, since the substrate 51 is subjected to the pretreatment, as in the first electroless plating pretreatment method,
The insulating film (not shown) formed on the substrate 51 is prevented from being charged, and the reliability of the device is not affected.
It becomes possible to remove the negative charges on the surface of the first insulating film (not shown).

【0049】上記各実施の形態では、CoWP膜を無電
解メッキにより成膜する前処理について説明したが、本
発明の無電解メッキの前処理方法は、他の材料を無電解
メッキする際に行う前処理にも適用することができる。
例えば、パラジウム触媒の無電解銅メッキにおけるニッ
ケルタングステンリン(NiWp)膜を成膜する前処理
にも適用することができる。
In each of the above-mentioned embodiments, the pretreatment for forming the CoWP film by electroless plating has been described. However, the pretreatment method for electroless plating of the present invention is performed when electrolessly plating another material. It can also be applied to pretreatment.
For example, it can be applied to a pretreatment for forming a nickel tungsten phosphorus (NiWp) film in electroless copper plating with a palladium catalyst.

【0050】[0050]

【発明の効果】以上、説明したように本発明の第1の無
電解メッキの前処理方法によれば、基板のメッキ膜が成
膜される側とは反対側に交流電力を印加しながら該基板
の前処理を行うので、基板に形成されている絶縁膜の帯
電を防止することができ、デバイスの信頼性に影響を与
えず、基板表面の負電荷を除去することができる。
As described above, according to the first pretreatment method for electroless plating of the present invention, the AC power is applied to the side of the substrate opposite to the side where the plated film is formed. Since the pretreatment of the substrate is performed, the insulating film formed on the substrate can be prevented from being charged, and the negative charge on the substrate surface can be removed without affecting the reliability of the device.

【0051】本発明の第2の無電解メッキの前処理方法
によれば、基板のメッキ膜が成膜される側とは反対側に
少なくとも直流バイアス電力を印加しながら該基板の前
処理を行うので、基板を常に負バイアスとすることがで
きる。そのため、基板に形成されている絶縁膜の帯電を
防止することができ、デバイスの信頼性に影響を与え
ず、基板表面の負電荷を除去することができる。
According to the second pretreatment method for electroless plating of the present invention, the pretreatment of the substrate is performed while applying at least DC bias power to the side of the substrate opposite to the side where the plated film is formed. Therefore, the substrate can always be negatively biased. Therefore, the insulating film formed on the substrate can be prevented from being charged, the reliability of the device is not affected, and the negative charge on the substrate surface can be removed.

【0052】本発明の第3の無電解メッキの前処理方法
によれば、基板のメッキ膜が成膜される側とは反対側に
パルス電力を印加しながら該基板の前処理を行うので、
基板に形成されている絶縁膜の帯電を防止することがで
き、デバイスの信頼性に影響を与えず、基板の絶縁膜表
面の負電荷を除去することができる。
According to the third pretreatment method for electroless plating of the present invention, the pretreatment of the substrate is performed while applying the pulse power to the side of the substrate opposite to the side where the plated film is formed.
The insulating film formed on the substrate can be prevented from being charged, and the negative charge on the surface of the insulating film on the substrate can be removed without affecting the reliability of the device.

【0053】よって、いずれの前処理方法によっても、
例えば基板に形成された絶縁膜表面に付着した負電荷を
除去することができる。そのため、例えば、金属である
銅表面以外はパラジウムへ自由電子を供給することがで
きなくなる。このため、高い選択性を維持してCoW
P、NiWP等の膜の無電解メッキによる選択成膜が可
能になる。また、表面処理においても交流を用いるた
め、デバイスの信頼性に影響を与えることなく、無電解
メッキの選択性の向上が図れる。
Therefore, by any of the pretreatment methods,
For example, the negative charges attached to the surface of the insulating film formed on the substrate can be removed. Therefore, for example, it becomes impossible to supply free electrons to palladium except for the surface of copper, which is a metal. For this reason, CoW is maintained with high selectivity.
It is possible to selectively form a film of P, NiWP or the like by electroless plating. Further, since AC is used also in the surface treatment, the selectivity of electroless plating can be improved without affecting the reliability of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の無電解メッキの前処理方法に係
わる実施の形態を示す概略構成断面図である。
FIG. 1 is a schematic configuration sectional view showing an embodiment of a first pretreatment method for electroless plating according to the present invention.

【図2】本発明の第2の無電解メッキの前処理方法に係
わる実施の形態を示す概略構成断面図である。
FIG. 2 is a schematic cross-sectional view showing an embodiment of a second pretreatment method for electroless plating according to the present invention.

【図3】本発明の第3の無電解メッキの前処理方法に係
わる実施の形態を示す概略構成断面図である。
FIG. 3 is a schematic cross-sectional view showing an embodiment of a third pretreatment method for electroless plating of the present invention.

【符号の説明】[Explanation of symbols]

1…前処理装置、17…交流印加電極、18…交流電
源、51…基板
DESCRIPTION OF SYMBOLS 1 ... Pretreatment apparatus, 17 ... AC application electrode, 18 ... AC power supply, 51 ... Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 充 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 駒井 尚紀 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 4K022 AA02 AA05 AA41 BA06 BA14 BA16 BA24 BA32 CA16 CA29 DA01 4M104 BB04 BB05 BB18 BB36 DD21 DD47 DD53 FF16 5F033 HH07 HH11 HH15 HH19 MM01 MM05 MM13 PP28 QQ00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mitsuru Taguchi             6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Soni             -Inside the corporation (72) Inventor Naoki Komai             6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Soni             -Inside the corporation F-term (reference) 4K022 AA02 AA05 AA41 BA06 BA14                       BA16 BA24 BA32 CA16 CA29                       DA01                 4M104 BB04 BB05 BB18 BB36 DD21                       DD47 DD53 FF16                 5F033 HH07 HH11 HH15 HH19 MM01                       MM05 MM13 PP28 QQ00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 無電解メッキにより基板にメッキ膜を形
成する無電解メッキの前処理方法であって、 前記基板を電解液に浸漬して前記基板の前記メッキ膜が
成膜される側とは反対側に交流電力を印加しながら前記
基板表面の負電荷を除去する前処理を行うことを特徴と
する無電解メッキの前処理方法。
1. A pretreatment method of electroless plating for forming a plating film on a substrate by electroless plating, wherein the side of the substrate on which the plating film is formed by immersing the substrate in an electrolytic solution. A pretreatment method for electroless plating, which comprises performing a pretreatment for removing negative charges on the surface of the substrate while applying AC power to the opposite side.
【請求項2】 無電解メッキにより基板にメッキ膜を形
成する無電解メッキの前処理方法であって、 前記基板を電解液に浸漬して前記基板の前記メッキ膜が
成膜される側とは反対側に直流バイアス電力を印加する
とともに交流電力を印加しながら前記基板表面の負電荷
を除去する前処理を行うことを特徴とする無電解メッキ
の前処理方法。
2. A pretreatment method of electroless plating for forming a plating film on a substrate by electroless plating, wherein the side of the substrate on which the plating film is formed by immersing the substrate in an electrolytic solution. A pretreatment method for electroless plating, characterized in that a pretreatment for removing negative charges on the surface of the substrate is performed while applying DC bias power to the opposite side and applying AC power.
【請求項3】 無電解メッキにより基板にメッキ膜を形
成する無電解メッキの前処理方法であって、 前記基板を電解液に浸漬して前記基板の前記メッキ膜が
成膜される側とは反対側にパルス電力を印加しながら前
記基板表面の負電荷を除去する前処理を行うことを特徴
とする無電解メッキの前処理方法。
3. A pretreatment method of electroless plating for forming a plating film on a substrate by electroless plating, wherein the side of the substrate on which the plating film is formed by immersing the substrate in an electrolytic solution. A pretreatment method for electroless plating, which comprises performing a pretreatment for removing negative charges on the surface of the substrate while applying pulsed power to the opposite side.
JP2001250962A 2001-08-22 2001-08-22 Pre-treatment of electroless plating Pending JP2003064479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001250962A JP2003064479A (en) 2001-08-22 2001-08-22 Pre-treatment of electroless plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001250962A JP2003064479A (en) 2001-08-22 2001-08-22 Pre-treatment of electroless plating

Publications (1)

Publication Number Publication Date
JP2003064479A true JP2003064479A (en) 2003-03-05

Family

ID=19079686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001250962A Pending JP2003064479A (en) 2001-08-22 2001-08-22 Pre-treatment of electroless plating

Country Status (1)

Country Link
JP (1) JP2003064479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372314A (en) * 2013-08-12 2015-02-25 国家电网公司 Condenser brass tube chemical nickel plating method
US11109493B2 (en) 2018-03-01 2021-08-31 Hutchinson Technology Incorporated Electroless plating activation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111179A (en) * 1986-10-29 1988-05-16 Hitachi Ltd Electroless plating method
JPH07180080A (en) * 1993-03-23 1995-07-18 Chiyoda Kiki Hanbai Kk Method for plating aluminum and aluminum alloy and electrolyte
JP2000096252A (en) * 1998-09-18 2000-04-04 C Uyemura & Co Ltd Method for plating to hard disk substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111179A (en) * 1986-10-29 1988-05-16 Hitachi Ltd Electroless plating method
JPH07180080A (en) * 1993-03-23 1995-07-18 Chiyoda Kiki Hanbai Kk Method for plating aluminum and aluminum alloy and electrolyte
JP2000096252A (en) * 1998-09-18 2000-04-04 C Uyemura & Co Ltd Method for plating to hard disk substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372314A (en) * 2013-08-12 2015-02-25 国家电网公司 Condenser brass tube chemical nickel plating method
US11109493B2 (en) 2018-03-01 2021-08-31 Hutchinson Technology Incorporated Electroless plating activation

Similar Documents

Publication Publication Date Title
US7135404B2 (en) Method for applying metal features onto barrier layers using electrochemical deposition
TW543171B (en) Method of forming copper interconnects
US6197181B1 (en) Apparatus and method for electrolytically depositing a metal on a microelectronic workpiece
US6946065B1 (en) Process for electroplating metal into microscopic recessed features
US5256274A (en) Selective metal electrodeposition process
US20070062818A1 (en) Electroplating composition intended for coating a surface of a substrate with a metal
US6562204B1 (en) Apparatus for potential controlled electroplating of fine patterns on semiconductor wafers
US6811675B2 (en) Apparatus and method for electrolytically depositing copper on a semiconductor workpiece
CN101512048B (en) Method and compositions for direct copper plating and filling to form interconnects in the fabrication of semiconductor devices
US8574418B2 (en) Electroplating method for coating a substrate surface with a metal
TW201538806A (en) Electrochemical plating methods
KR20040019366A (en) Dynamic pulse plating for high aspect ratio features
US8277619B2 (en) Apparatus for electrochemical plating semiconductor wafers
JP2003064479A (en) Pre-treatment of electroless plating
KR100363847B1 (en) Method of forming a metal wiring in a semiconductor device
KR20230085131A (en) Electrolysis and Deposition of Copper Barrier Layers in Damascene Processes
EP1215305B1 (en) Method for preparing an electroplating bath and related copper plating process
EP0547815B1 (en) Pseudo-electroless, followed by electroless, metallization of nickel on metallic wires, as for semiconductor chip-to-chip interconnections
TW202104673A (en) Improved processing equipment component plating
JPH03262124A (en) Metallic wiring formation process of semiconductor device
KR20030073874A (en) A METHOD FOR Cu ELECTROPLATING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011