JPS63111106A - Production of magnetic alloy powder - Google Patents

Production of magnetic alloy powder

Info

Publication number
JPS63111106A
JPS63111106A JP61257281A JP25728186A JPS63111106A JP S63111106 A JPS63111106 A JP S63111106A JP 61257281 A JP61257281 A JP 61257281A JP 25728186 A JP25728186 A JP 25728186A JP S63111106 A JPS63111106 A JP S63111106A
Authority
JP
Japan
Prior art keywords
powder
nitride
molten metal
magnetic alloy
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61257281A
Other languages
Japanese (ja)
Inventor
Masakazu Ito
正和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61257281A priority Critical patent/JPS63111106A/en
Publication of JPS63111106A publication Critical patent/JPS63111106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce magnetic alloy powder having excellent resistance to oxidation, wear and corrosion at a low cost by subjecting a molten metal made of a specific compsn. formed by adding a nitride forming element such as Ti to an iron-based magnetic material contg. C and Cr to atomizing with gaseous N2. CONSTITUTION:The molten metal is obtd. by adding >=1 kinds among 0.5-15.0wt% Ti, 0.5-15.0% Zr, 0.5-15.0% Hf, 0.5-10.0% Nb, 0.5-15.0% V, 0.5-15.0% Ta, and 0.5-15.0% Al as the nitride forming elements to the iron- based magnetic material contg. over 0.18 and <=1.0% C, and 12.5-20.0% Cr and melting the mixture. After the molten metal is kept at a prescribed temp., the molten metal is subjected to atomizing by the prescribed gaseous N2 pressure. The above-mentioned material is thereby pulverized and the nitride film of the nitride forming elements is formed on the surface of the powder particles, by which the magnetic alloy powder is obtd. The powder is subjected to a nitriding treatment at need to increase the thickness of the nitride film or the hardness thereof is adjustable by subjecting the powder to a heat treatment at about 900-1,000 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐食性・耐摩耗性・耐酸化性に優れた磁性粉
末の製造方法に関するものであり、磁性粉末を伝動部材
間の空隙内に装填し、この磁性粉末を磁化させることに
よって磁性粉末粒子同志および磁性粉末と伝動部材間に
生ずる磁気的吸引力を利用して伝動部材間(駆動部材と
被駆動部材)に回転力の伝達または制動力を付与するよ
うにしたパウダークラッチやブレーキ用磁性粉末の製造
方法として最適なものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing magnetic powder with excellent corrosion resistance, wear resistance, and oxidation resistance. By loading the magnetic powder and magnetizing the magnetic powder, the magnetic attraction force generated between the magnetic powder particles and between the magnetic powder and the transmission member is used to transmit or control rotational force between the transmission members (driving member and driven member). This is the most suitable method for producing magnetic powder for powder clutches and brakes that apply power.

〔従来の技術〕[Conventional technology]

磁性粉末を機械的構造体の要素として使用する場合、装
置としての信頼性の点から長期間にわたって性能変化や
劣化が少ないことが必須である。
When using magnetic powder as an element of a mechanical structure, it is essential that there is little change in performance or deterioration over a long period of time in terms of reliability as a device.

特に粉末が駆動体に使用される場合は、粉末の特性劣化
が装置の性能に与える影響は大きい。粉末の磁気特性は
合金成分によって決定されるが、使用中に酸化、腐食、
摩耗により劣化する。粉末の磁気特性や粉末の特性の劣
化を極力少なくすることが装置を製造する上で最も重要
な問題である。
Particularly when powder is used for the driving body, deterioration of the characteristics of the powder has a large effect on the performance of the device. The magnetic properties of powders are determined by their alloying composition, but during use they are subject to oxidation, corrosion,
Deteriorates due to wear. The most important issue in manufacturing the device is to minimize the deterioration of the magnetic properties of the powder and the properties of the powder.

例えば電磁クラッチにおいては、磁気特性上。For example, in electromagnetic clutches, due to magnetic properties.

センダストの使用が考えられるが、耐酸化性が磁性ステ
ンレスより劣るため使用されていない。使用条件の過酷
化にともない、さらに耐酸化性、耐摩耗性の優れた粉末
が要求されている。
Sendust could be used, but it is not used because its oxidation resistance is inferior to magnetic stainless steel. As usage conditions become more severe, powders with even better oxidation resistance and wear resistance are required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来より粉末の耐食性・耐摩耗性・耐酸化性を向上させ
るために、粉末の表面を保護被膜で覆うことが行なわれ
ている。すなわち、粉末表面をMoS2でコーティング
する方法、あるいはC01Ni等の無電解メッキを施す
等の方法である。しかしながら、MoS2では全粉末粒
子表面を均一に被覆することは困難であり、かつ被膜が
使用中に剥離し、被覆効果がなくなる。
Conventionally, in order to improve the corrosion resistance, abrasion resistance, and oxidation resistance of powder, the surface of powder has been covered with a protective film. That is, there are methods such as coating the powder surface with MoS2 or electroless plating with C01Ni or the like. However, with MoS2, it is difficult to uniformly coat all powder particle surfaces, and the coating peels off during use, resulting in no coating effect.

また、無電解メッキ法ではメッキできる金属が限定され
、必ずしも耐食性・耐摩耗性・耐酸化性の向上にはなら
ない。さらにメッキ液は高価であること、および工程が
複雑化しコストが高くなる。
Furthermore, the electroless plating method limits the metals that can be plated, and does not necessarily improve corrosion resistance, wear resistance, and oxidation resistance. Furthermore, the plating solution is expensive, and the process becomes complicated, increasing costs.

耐摩耗性、耐食性のある被膜として、TiCやTiNの
ような炭化物や窒化物の被膜を種々の金属材料にコーテ
ィングする手法がある。しかし、これらの手法はPVD
(物理蒸着)やCVD(化学蒸着)と呼ばれるものであ
るが、コスト的に粉末を処理するには高価であり、工業
的手法としては成立し難い。
As a wear-resistant and corrosion-resistant film, there is a method of coating various metal materials with a film of carbide or nitride such as TiC or TiN. However, these methods
These methods are called physical vapor deposition (physical vapor deposition) or chemical vapor deposition (CVD), but they are expensive to process powder and are difficult to implement as an industrial method.

本発明は以上のような問題点を解決し、安価で耐酸化性
、耐摩耗性、耐食性に優れたパウダークラッチやブレー
キ用に最適な磁性合金粉末の提供を目的とするものであ
る。
The object of the present invention is to solve the above-mentioned problems and to provide a magnetic alloy powder that is inexpensive, has excellent oxidation resistance, wear resistance, and corrosion resistance, and is optimal for powder clutches and brakes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は1重量%でCO,1%を越え1.0%以下。 In the present invention, 1% by weight of CO is more than 1% and less than 1.0%.

Cr12.5〜20.0%を含有する鉄基磁性材料に窒
化物形成元素として、Ti 0.5〜15,0%、Zr
 0.5〜15,0%、Hf 0.5〜15,0%、N
b 0.5〜10,0%、V 0.5〜15,0%。
Ti 0.5-15.0%, Zr
0.5-15.0%, Hf 0.5-15.0%, N
b 0.5-10,0%, V 0.5-15,0%.

Ta 0.5〜15,0%、 A10.5〜15.0%
の1種または2種以上を添加せしめて、これらの溶湯を
得、該溶湯をN2ガスアトマイズすることにより粉末化
と同時に粉末粒子表面に、前記窒化物形成元素により構
成される窒化物被膜を形成させることを特徴とする磁性
合金粉末の製造方法である。
Ta 0.5-15.0%, A10.5-15.0%
One or more of the following are added to obtain a molten metal, and the molten metal is atomized with N2 gas to form a nitride film composed of the nitride-forming elements on the surface of the powder particles at the same time as powdering. This is a method for producing magnetic alloy powder characterized by the following.

なお、本発明では窒化物被膜厚さを増加させるために、
前記ガスアトマイズ後の粉末を窒化処理してもよい。ま
た、950〜1000℃の温度範囲で熱処理を行なって
硬さを調節し、所望の硬度を得ることができる。
In addition, in the present invention, in order to increase the nitride film thickness,
The powder after the gas atomization may be subjected to a nitriding treatment. Further, the hardness can be adjusted by heat treatment in a temperature range of 950 to 1000°C to obtain a desired hardness.

〔作用〕[Effect]

本発明において用いる鉄基磁性合金としてCを0.1%
を越え1.0%以以下下限定するのは、Cが0.1%以
下では粒子の硬さが低く、使用中に窒化物層が剥離する
。また、160%を越えると磁気特性が著しく劣化する
ために0.1〜1.0%とした。
0.1% C as the iron-based magnetic alloy used in the present invention
The reason why C is limited to less than 1.0% is because if C is less than 0.1%, the hardness of the particles will be low and the nitride layer will peel off during use. Moreover, since the magnetic properties deteriorate significantly when the content exceeds 160%, the content is set at 0.1 to 1.0%.

またCrは、γループを狭くシ、フェライトを安定化す
る元素である。しかし、12.5%未満ではその効果が
なく、20.0%を越えて添加してもその効果が添加量
に見合わない。したがって、その範囲を12.5〜20
.0%とした。なお、脱酸剤としてSi、Mnをそれぞ
れ0.60%以下、、O,SO%以下含有してもよい。
Further, Cr is an element that narrows the γ loop and stabilizes ferrite. However, if it is less than 12.5%, there is no effect, and if it is added in excess of 20.0%, the effect is not commensurate with the amount added. Therefore, the range is 12.5 to 20
.. It was set to 0%. Note that Si and Mn may be contained as deoxidizing agents in amounts of 0.60% or less, O, and SO%, respectively.

次に窒化物形成元素であるTi、 Al、Nb、 Ta
Next, the nitride-forming elements Ti, Al, Nb, Ta
.

V、Zr、Hfについて説明する。V, Zr, and Hf will be explained.

窒化物を生成する元素は多く存在するが、Cr窒化物は
、約850℃以上でマトリックスと反応して分解される
。パウダークラッチやブレーキの使用時における温度は
約500°C程度以上であるため、本条件下で耐酸化性
、耐食性、および耐摩耗性を保つためには、Cr窒化物
よりも安定なものでなければならない。さらに、フェラ
イト形成元素であることが磁気特性上好ましい。これら
の点を考慮し、種々の元素について検討した結果、添加
すべき元素として、Ti、Zr、Hf、Nb−V、Ta
、A1が望ましいことを究明した。本発明磁性合金粉末
は、以上の組成を有する母合金、またはこの合金組成と
なるように配合した材料を溶解、N2ガスアトマイズに
より製造されるものであるが、Ti、A1.Nb、Ta
、V、Zr、Hfの添加の下限値は、アトマイズによっ
て形成される窒化物被膜厚さによって決めた。すなわち
、0.5%未満では、窒化物被膜厚みが500〜600
人とうすく、被膜効果が少ない。また、添加の上限値は
磁気特性の劣化によってそれぞれ決定された。すなわち
、Ti0.5〜15,0%、Zr 0.5(5,0%、
Hf 0.5〜15,0%、Nb0.5〜10,0%、
 V 0.5〜15,0%、Ta 0.5〜15.0%
、 A10.5〜15.0%とした。
Although there are many elements that form nitrides, Cr nitride reacts with the matrix and decomposes at about 850° C. or higher. Since the temperature during use of powder clutches and brakes is approximately 500°C or higher, it must be more stable than Cr nitride in order to maintain oxidation resistance, corrosion resistance, and wear resistance under these conditions. Must be. Further, from the viewpoint of magnetic properties, it is preferable that the element be a ferrite-forming element. Taking these points into consideration, we investigated various elements and found that Ti, Zr, Hf, Nb-V, and Ta should be added.
, A1 was found to be desirable. The magnetic alloy powder of the present invention is produced by melting a master alloy having the above composition or a material blended to have this alloy composition and atomizing with N2 gas. Nb, Ta
, V, Zr, and Hf were determined depending on the thickness of the nitride film formed by atomization. That is, if it is less than 0.5%, the nitride film thickness will be 500 to 600%.
It is thin and has little film effect. Further, the upper limit of addition was determined depending on the deterioration of magnetic properties. That is, Ti 0.5-15.0%, Zr 0.5 (5.0%,
Hf 0.5-15.0%, Nb 0.5-10.0%,
V 0.5-15.0%, Ta 0.5-15.0%
, A10.5-15.0%.

上記組成を有する合金又はこの合金組成となるように配
合した材料を溶解する。溶解法としては、大気または真
空溶解を適宜使い分けることができる。所定の温度に到
達後、所定の窒素ガス圧力によってアトマイズを行なう
。さらにアトマイズされた粉末を窒素ガス中で窒化物被
膜厚さを増加させることができる。
An alloy having the above composition or a material blended to have this alloy composition is melted. As the melting method, atmospheric melting or vacuum melting can be used as appropriate. After reaching a predetermined temperature, atomization is performed using a predetermined nitrogen gas pressure. Additionally, the atomized powder can be placed in nitrogen gas to increase the nitride coating thickness.

本発明によれば、PVD、CVD等の高コストの手法を
用いることなく、粒子−つ一つの表面に窒化物被筒を安
価かつ大量に施すことができ、粉末の耐食性、耐摩耗性
、耐酸化性を向上させることができる。
According to the present invention, a nitride coating can be applied inexpensively and in large quantities to the surface of each particle without using high-cost methods such as PVD or CVD, thereby improving the corrosion resistance, abrasion resistance, and acid resistance of the powder. It is possible to improve the chemical properties.

〔実施例〕〔Example〕

実施例1 以下の第1表に示す4種の合金(■〜■)を用い、窒化
物形成元素としてTiを第2表に示す重量%を添加した
Example 1 Four types of alloys (■ to ■) shown in Table 1 below were used, and Ti was added as a nitride-forming element in the weight percent shown in Table 2.

第  1  表 これらを、高周波溶解炉で溶解、次いでN2ガス圧力8
0kgf/dでアトマイズを行ない、粉末を製造した。
Table 1 These were melted in a high frequency melting furnace, then N2 gas pressure 8
Atomization was performed at 0 kgf/d to produce powder.

TiN被膜厚みは、オージェ分析により測定した。粉末
特性と磁気特性を第2表にまとめる。
The TiN film thickness was measured by Auger analysis. The powder properties and magnetic properties are summarized in Table 2.

次に、これら粉末を980℃×15分保持後空冷する熱
処理を施した。この際の粉末特性と磁気特性を第3表に
まとめる。
Next, these powders were subjected to heat treatment in which they were held at 980° C. for 15 minutes and then air cooled. The powder properties and magnetic properties at this time are summarized in Table 3.

これらの粉末を用いて応用の一例である電磁パウダーク
ラッチ用粉末として使用した結果を第4表にまとめる。
Table 4 summarizes the results of using these powders as powder for an electromagnetic powder clutch, which is an example of an application.

本用途の粉末特性としては、耐摩耗性、耐酸化性に優れ
ることが要求される。評価は、第1図に示す装置を用い
、モーターの回転数150Orpm、トルク10 kg
 mで30分間行なった。
The powder properties for this purpose require excellent wear resistance and oxidation resistance. The evaluation was performed using the equipment shown in Figure 1, with a motor rotation speed of 150 rpm and a torque of 10 kg.
The test was carried out at m for 30 minutes.

第  4  表 耐酸化性は〔○〕量の増加で評価し、耐摩耗性は粉末の
平均粒径の変化として評価した。
Table 4 Oxidation resistance was evaluated as an increase in the amount of [○], and wear resistance was evaluated as a change in the average particle size of the powder.

実施例2 実施例1で用いた。■〜■のベースの合金系にAl、Z
r、Hf、■それぞれを0.5%、7.0%、15.0
%添加した組成をもつマスター合金を溶解し、N7ガス
圧力80kgf/a&でアトマイズした。またNb、T
aについては、■〜■のベースの合金への添加量をそれ
ぞれ0.5%、5.0%、 10.0%とした。アトマ
イズ条件は、N2ガス圧力80kgf/cJとした。粒
子表面に生成したそれぞれの窒化物被膜厚みを第5表に
まとめる。Heは1.6〜5.0程度であった。
Example 2 Used in Example 1. ■~■ base alloy system includes Al, Z
r, Hf, ■0.5%, 7.0%, 15.0 respectively
A master alloy having a composition in which % was added was melted and atomized at a N7 gas pressure of 80 kgf/a&. Also, Nb, T
Regarding a, the amounts added to the base alloys of ■ to ■ were 0.5%, 5.0%, and 10.0%, respectively. The atomization conditions were a N2 gas pressure of 80 kgf/cJ. Table 5 summarizes the thickness of each nitride film formed on the particle surface. He was about 1.6 to 5.0.

第5表 窒化処理は、 1100℃XIHr、PN、=0.6a
tmで行なった。被膜の厚みは、4000〜8000人
程度になっていた。これらの窒化物被膜は、TiNと同
じ効果をもつことは窒化物の安定性から明らかである。
Table 5 Nitriding treatment: 1100℃XIHr, PN, = 0.6a
It was done at tm. The thickness of the film was about 4,000 to 8,000 people. It is clear from the stability of nitride that these nitride films have the same effect as TiN.

〔発明の効果〕〔Effect of the invention〕

以上説明のように、本発明によれば耐食性、耐摩耗性、
耐酸化性に優れた磁性合金粉末を大量にかつ安価に得る
ことが可能で工業上非常に有益である。
As explained above, according to the present invention, corrosion resistance, wear resistance,
It is possible to obtain magnetic alloy powder with excellent oxidation resistance in large quantities and at low cost, which is very useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 重量%でC0.1%を越え1.0%以下、Cr12.5
〜20.0%を含有する鉄基磁性材料に窒化物形成元素
として、Ti0.5〜15.0%、Zr0.5〜15.
0%、Hf0.5〜15.0%、Nb0.5〜10.0
%、V0.5〜15.0%、Ta0.5〜15.0%、
Al0.5〜15.0%の1種または2種以上を添加せ
しめて、これらの溶湯を得、該溶湯をN_2ガスアトマ
イズすることにより粉末化と同時に粉末粒子表面に、前
記窒化物形成元素により構成される窒化物被膜を形成さ
せることを特徴とする磁性合金粉末の製造方法。
Weight%: C over 0.1% and 1.0% or less, Cr12.5
The iron-based magnetic material containing 0.5-15.0% of Ti and 0.5-15.0% of Zr as nitride-forming elements in the iron-based magnetic material containing 0.5-15.0% of Ti and 0.5-15.0% of Zr.
0%, Hf0.5-15.0%, Nb0.5-10.0
%, V0.5-15.0%, Ta0.5-15.0%,
One or more types of Al 0.5 to 15.0% are added to obtain a molten metal, and the molten metal is atomized with N_2 gas to form a powder, and at the same time, the surface of the powder particles is made of the nitride-forming elements. 1. A method for producing magnetic alloy powder, which comprises forming a nitride film.
JP61257281A 1986-10-29 1986-10-29 Production of magnetic alloy powder Pending JPS63111106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61257281A JPS63111106A (en) 1986-10-29 1986-10-29 Production of magnetic alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61257281A JPS63111106A (en) 1986-10-29 1986-10-29 Production of magnetic alloy powder

Publications (1)

Publication Number Publication Date
JPS63111106A true JPS63111106A (en) 1988-05-16

Family

ID=17304194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61257281A Pending JPS63111106A (en) 1986-10-29 1986-10-29 Production of magnetic alloy powder

Country Status (1)

Country Link
JP (1) JPS63111106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227703A (en) * 1987-03-16 1988-09-22 Takeshi Masumoto Production of alloy powder containing nitrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227703A (en) * 1987-03-16 1988-09-22 Takeshi Masumoto Production of alloy powder containing nitrogen

Similar Documents

Publication Publication Date Title
US4873150A (en) High water-resistant member, and valve gear using the same for use in internal combustion engine
JP6813443B2 (en) Rare earth magnet manufacturing method
TW201418001A (en) Consumer electronics machined housing using coating that exhibit metamorphic transformation
US5073409A (en) Environmentally stable metal powders
US5980659A (en) Surface-treated metallic part and processing method thereof
JPS63100108A (en) Production of magnetic alloy powder
JP3400027B2 (en) Method for producing iron-based soft magnetic sintered body and iron-based soft magnetic sintered body obtained by the method
CN105463444A (en) Preparation method for corrosion-resistant anti-abrasion composite coating
JPH02153063A (en) Making of nitriding-alloy
JPS63111106A (en) Production of magnetic alloy powder
US5096508A (en) Surface modified copper alloys
US8864917B2 (en) Group 5 metal source carbide coated steel article and method for making same
JPS63111103A (en) Magnetic alloy powder
JPS63100105A (en) Magnetic alloy powder
CN1087683A (en) High-temperature wearable Ni 3Al base alloy
US11828342B2 (en) Devitrified metallic alloy coating for rotors
JP3262365B2 (en) Manufacturing method of brake disc
JPH11293420A (en) Ferrous soft magnetic sintered body and its production
RU2025540C1 (en) Composition of lute for cementation and nitrooxidation of parts of alloyed steels and titanium alloys
JPS6263663A (en) Thermally sprayed film
JP2969292B2 (en) Manufacturing method of wear-resistant members
JPH0521989B2 (en)
US5209787A (en) Surface modification of copper alloys
JPH0483820A (en) Production of mechanism element
JPH02221373A (en) Coated cemented carbide for wear resistant tool and production thereof