JPS63110623A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPS63110623A
JPS63110623A JP25462786A JP25462786A JPS63110623A JP S63110623 A JPS63110623 A JP S63110623A JP 25462786 A JP25462786 A JP 25462786A JP 25462786 A JP25462786 A JP 25462786A JP S63110623 A JPS63110623 A JP S63110623A
Authority
JP
Japan
Prior art keywords
manganese
chemical conversion
electrolytic capacitor
solid electrolytic
manganese nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25462786A
Other languages
Japanese (ja)
Inventor
剛 森本
優 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP25462786A priority Critical patent/JPS63110623A/en
Publication of JPS63110623A publication Critical patent/JPS63110623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体電解コンデンサの製造方法、詳しくはマン
ガン酸化物層を改良した固体電解コンデンサの製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor with an improved manganese oxide layer.

(従来の技術) 弁作用金属(T a 、 N b 、 A I! 、 
T i 、  Z r 。
(Prior art) Valve metals (T a , N b , AI!,
T i, Z r.

Hfなど)よりなる多孔性焼結体を陽極酸化して化成皮
膜を生成させ、その化成皮膜の表面に固体電解質層を形
成させた固体電解コンデンサにおいては、一般に、硝酸
マンガン水溶液の熱分解反応を利用してマンガン酸化物
、好ましくは二酸化マンガンよりなる固体電解質層を形
成している。すなわち、化成皮膜(誘電体層)を生成し
た多孔性焼結体に硝酸マンガン水溶液を含浸・付着させ
た後、100〜350″Cに加熱して熱分解反応を行わ
せ、二酸化マンガン層を焼結体の多孔性表面から内部ま
で化成皮膜上に均一に形成させる。次に、カーボン層、
銀層を形成し、陰極リード部をハンダにより取付け、樹
脂よりなる外装を施して固体電解コンデンサを作製して
いる。
In solid electrolytic capacitors, a porous sintered body made of Hf, etc.) is anodized to form a chemical conversion film, and a solid electrolyte layer is formed on the surface of the chemical conversion film, a thermal decomposition reaction of an aqueous solution of manganese nitrate is generally used. A solid electrolyte layer made of manganese oxide, preferably manganese dioxide, is formed. That is, after impregnating and adhering a manganese nitrate aqueous solution to a porous sintered body on which a chemical conversion film (dielectric layer) has been formed, the manganese dioxide layer is sintered by heating to 100 to 350"C to cause a thermal decomposition reaction. Form uniformly on the chemical conversion coating from the porous surface to the inside of the aggregate.Next, a carbon layer,
A solid electrolytic capacitor is produced by forming a silver layer, attaching a cathode lead part with solder, and applying a resin exterior.

このような製造方法において、硝酸マンガンの熱分解反
応を150〜200℃で行うことは、β−MnO□ (
パイロルース鉱)の形成に好適とされている。β−M 
n O2は二酸化マンガンの中では最も安定であり、電
気抵抗が最も小さく (比抵抗10− ’〜10Ω(至
)程度)、化成皮膜の修復能力が最も優れ無機系の固体
電解質として最適の性能を有するものである。
In such a production method, carrying out the thermal decomposition reaction of manganese nitrate at 150 to 200°C means that β-MnO□ (
It is said to be suitable for the formation of pyroluthite). β-M
nO2 is the most stable of manganese dioxide, has the lowest electrical resistance (specific resistance 10-' to 10Ω (approximately)), and has the best ability to repair chemical conversion films, providing optimal performance as an inorganic solid electrolyte. It is something that you have.

(発明が解決しようとする問題点) しかしながら、硝酸マンガンの熱分解の際には、必ずし
もβ−MnO□が形成されるものではなく、結晶性の低
い二酸化マンガン、あるいは比抵抗が大きく化成皮膜の
修復能力の点でも劣るMn2O3などの低次酸化物が副
生ずることが少なくない。
(Problem to be solved by the invention) However, when manganese nitrate is thermally decomposed, β-MnO□ is not necessarily formed, but manganese dioxide with low crystallinity or high resistivity and chemical conversion coating. Lower oxides such as Mn2O3, which are inferior in repair ability, are often produced as by-products.

特に、焼結体の外側付近や小型品において結晶性の低い
二酸化マンガンや低次酸化物が副生じ易く、固体電解コ
ンデンサの損失(tan δ)が大きくなるという問題
点があった。
In particular, manganese dioxide and low-order oxides with low crystallinity are likely to be produced as side effects near the outside of the sintered body and in small products, resulting in a problem that the loss (tan δ) of the solid electrolytic capacitor becomes large.

本発明は前記の問題点を解決して結晶性の低い二酸化マ
ンガンや低次酸化物の副生を効果的に抑制して損失(t
an δ)を向上させた固体電解コンデンサを提供する
ことを目的とするものである。
The present invention solves the above-mentioned problems and effectively suppresses by-products of low-crystalline manganese dioxide and lower oxides, resulting in loss (t).
An object of the present invention is to provide a solid electrolytic capacitor with improved an δ).

(問題点を解決するための手段) 前記の問題点を解決するため本発明は、弁作用金属より
なる多孔性焼結体の表面に化成皮膜を生成させ、この化
成皮膜上にマンガン酸化物層を形成させた固体電解コン
デンサの製造方法において、前記化成皮膜を生成させた
多孔性焼結体に塩素酸塩または過塩素酸塩を含有させた
硝酸マンガン水溶液を含浸・付着させて焼成することを
特徴とする固体電解コンデンサの製造方法を提供するも
のである。
(Means for Solving the Problems) In order to solve the above problems, the present invention generates a chemical conversion film on the surface of a porous sintered body made of a valve metal, and forms a manganese oxide layer on the chemical conversion film. A method for producing a solid electrolytic capacitor in which a chemical conversion film is formed includes impregnating and adhering a manganese nitrate aqueous solution containing a chlorate or a perchlorate to the porous sintered body in which the chemical conversion film is formed, and then firing the porous sintered body. The present invention provides a method for manufacturing a solid electrolytic capacitor with characteristics.

本発明の方法において用いる多孔性焼結体は、好ましく
はタンタル、ニオブ、アルミニウム、チタン、ジルコニ
ウム、ハフニウムなどの弁作用金属よりなる多孔性焼結
体である。
The porous sintered body used in the method of the present invention is preferably a porous sintered body made of a valve metal such as tantalum, niobium, aluminum, titanium, zirconium, or hafnium.

この焼結体の表面に硝酸、燐酸などを用いた陽極酸化な
どの方法によって化成皮膜(誘電体層)を生成させ、こ
の化成皮膜上に半導体層としてマンガン酸化物よりなる
層を形成する。マンガン酸化物層を形成するには前記の
焼結体に、塩素酸塩または過塩素酸塩を含有させた硝酸
マンガン水溶液を含浸・付着させて焼成する工程を数回
ないし士数回繰り返す。
A chemical conversion film (dielectric layer) is formed on the surface of this sintered body by a method such as anodic oxidation using nitric acid, phosphoric acid, etc., and a layer made of manganese oxide is formed as a semiconductor layer on this chemical conversion film. To form the manganese oxide layer, the steps of impregnating and adhering the sintered body with a manganese nitrate aqueous solution containing chlorate or perchlorate and firing are repeated several to several times.

本発明で用いる硝酸マンガン水溶液の濃度は特に限定さ
れないが、通常10〜80重量%の濃度のものが用いら
れる。
Although the concentration of the manganese nitrate aqueous solution used in the present invention is not particularly limited, a concentration of 10 to 80% by weight is usually used.

本発明において硝酸マンガン水溶液中に含有させる塩素
酸塩および過塩素酸塩としては、その陽イオン成分が、
リチウム、カリウム、ナトリウムなどのアルカリ金属、
マグネシウムなどのアルカリ土類金属、またはアンモニ
ウムである塩が好適に用いられる。
In the present invention, the cationic components of the chlorate and perchlorate contained in the manganese nitrate aqueous solution are
Alkali metals such as lithium, potassium, and sodium;
Salts of alkaline earth metals such as magnesium or ammonium are preferably used.

これらの塩の硝酸マンガン水溶液中の含有量は、0.0
1〜10重量%、好ましくは0.1〜5重量%とするこ
とが、結晶性の劣る二酸化マンガンや低次酸化物の副生
を効果的に抑制して、結晶性の優れた緻密な二酸化マン
ガン層を得る上で望ましい。
The content of these salts in the manganese nitrate aqueous solution is 0.0
Setting the amount to 1 to 10% by weight, preferably 0.1 to 5% by weight effectively suppresses by-products of manganese dioxide and lower oxides with poor crystallinity, and produces dense dioxide with excellent crystallinity. Desirable for obtaining a manganese layer.

焼成は、通常の焼成条件、たとえば空気雰囲気中、また
はスチーム雰囲気中において100〜350℃程度の温
度で5〜30分の条件で行う。
Firing is performed under normal firing conditions, for example, in an air atmosphere or a steam atmosphere at a temperature of about 100 to 350°C for 5 to 30 minutes.

なお、必要に応じて硝酸などの適当な添加剤を併用する
こともできる。
In addition, suitable additives such as nitric acid can also be used together as necessary.

(作用) 本発明において、硝酸マンガン水溶液中に含有させる塩
素酸塩または過塩素酸塩の作用機構は明確ではないが、
結晶性の優れた二酸化マンガン層が形成される理由は次
のように考えられる。
(Function) In the present invention, although the mechanism of action of the chlorate or perchlorate contained in the manganese nitrate aqueous solution is not clear,
The reason why a manganese dioxide layer with excellent crystallinity is formed is considered to be as follows.

硝酸マンガンの焼成時に生起する熱分解反応は下記のよ
うに(1)脱水、(2)オキシ硝酸マンガンの形成、(
3)二酸化マンガンの形成、および(4)低次酸化物の
生成よりなる。
The thermal decomposition reactions that occur during calcination of manganese nitrate are as follows: (1) dehydration, (2) formation of manganese oxynitrate, (
3) formation of manganese dioxide, and (4) formation of lower oxides.

Mn (Not)z  ・nl(z O−M n (N
 03)Z + n H2O(11M n  (N O
2) t −M n ON O3+ N Oz    
(21MnONOz −MnOt+NOt      
  (31M n O2=Mnt Ox +1 / 2
0z       (41この中で硝酸マンガンから二
酸化マンガンへの反応には硝酸基などの強力な酸化力が
必要とされている。一般に、硝酸マンガンの熱分解に伴
って水蒸気、過酸化窒素などのガスが発生するため、所
定の厚みを備えたピンホールのない二酸化マンガン層を
形成するには含浸と焼成の工程を数回ないし、士数回繰
り返す必要がある。
Mn (Not)z ・nl(z O−M n (N
03) Z + n H2O (11M n (N O
2) t −M n ON O3+ N Oz
(21MnONOz −MnOt+NOt
(31M n O2=Mnt Ox +1/2
0z (41 Among these, the reaction from manganese nitrate to manganese dioxide requires a strong oxidizing power such as a nitric acid group. Generally, gases such as water vapor and nitrogen peroxide are released as a result of thermal decomposition of manganese nitrate. Therefore, in order to form a pinhole-free manganese dioxide layer with a predetermined thickness, it is necessary to repeat the impregnation and firing process several to several times.

結晶性の優れたβ−MnO2を生成させるには150〜
200℃で硝酸マンガンの熱分解を行うことが好ましい
が、実用上は反応時間を短縮する必要から比較的高い温
度、たとえば200〜350℃で焼成が行われる。
150~ to generate β-MnO2 with excellent crystallinity
Although it is preferable to carry out thermal decomposition of manganese nitrate at 200°C, in practice, calcination is carried out at a relatively high temperature, for example, 200 to 350°C, because it is necessary to shorten the reaction time.

高温で急速に熱分解を行う場合には、硝酸マンガンの硝
酸基の少なくない部分が脱離して反応系外に放出される
と考えられ、生成する二酸化マンガンの結晶性は悪くな
ることが多いほか、低次酸化物の副生も多くなる。
When thermal decomposition is carried out rapidly at high temperatures, it is thought that a considerable portion of the nitric acid groups in manganese nitrate are eliminated and released outside the reaction system, and the crystallinity of the manganese dioxide produced often deteriorates. , the amount of by-products of lower oxides increases.

本発明の方法においては、強い酸化力を有する塩素酸塩
または過塩素酸塩を硝酸マンガン水溶液に含有させたこ
とにより、Mn20.などの低次酸化物の生成を抑制し
て、β−M n O2の生成を促進することが効果的に
行われると考えられる。
In the method of the present invention, Mn20. It is considered that the production of β-M n O2 is effectively promoted by suppressing the production of lower oxides such as .

塩素酸塩または過塩素酸塩の濃度は扁い程、酸化能力は
太き(なるが、ある限度以上になると、塩素イオンの量
や塩化水素ガスの発生量が多くなって、化成皮膜を劣化
させる原因となったり、陽イオン成分が二酸化マンガン
の結晶構造中に取り込まれたりする可能性がある。
The lower the concentration of chlorate or perchlorate, the greater the oxidizing ability (However, if it exceeds a certain limit, the amount of chlorine ions and hydrogen chloride gas generated will increase, degrading the chemical conversion coating. or cation components may be incorporated into the crystal structure of manganese dioxide.

(実施例) 以下、本発明を実施例および比較例に基づいて具体的に
説明する。
(Example) Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.

実施例1 40CFV/Pのタンタルよりなるペレットを作成し、
0.01重世%のリン酸化成液中において、常温で18
0■化成を行った。なお、所定電圧到達後、2時間熟成
化成を行った。化成終了後、90℃の純水中で洗浄した
Example 1 Pellets made of tantalum of 40CFV/P were made,
18 at room temperature in a 0.01% phosphoric acid solution
0 ■ Chemical conversion was performed. In addition, after reaching a predetermined voltage, aging and chemical conversion was performed for 2 hours. After the chemical formation was completed, it was washed in pure water at 90°C.

次に、過塩素酸アンモニウムを2重量%含有する14重
四%の硝酸マンガン水溶液中に30秒間浸漬した後、3
50℃で5分間焼成する。この工程を2回繰り返した後
、過塩素酸アンモニウムを2重量%含有する28重量%
の硝酸マンガン溶液中に30秒間浸漬し前記と同じ条件
で焼成する。この工程をさらに2回繰り返す。次いで、
2重量%の過塩素酸アンモニウムを含有する60重量%
の硝酸マンガン溶液中に30秒間浸漬して、前記と同じ
条件で焼成する工程を5回繰り返す。この間、焼成が終
わる度に常温の0.001重量%のリン酸液中で60V
印加して再化成により化成皮膜の欠損部を修復する。
Next, after immersing for 30 seconds in a 14x4% manganese nitrate aqueous solution containing 2% by weight of ammonium perchlorate,
Bake at 50°C for 5 minutes. After repeating this process twice, 28% by weight containing 2% ammonium perchlorate
The sample was immersed in a manganese nitrate solution for 30 seconds and fired under the same conditions as above. Repeat this process two more times. Then,
60% by weight containing 2% ammonium perchlorate
The process of immersing the sample in a manganese nitrate solution for 30 seconds and firing under the same conditions as above was repeated five times. During this period, each time the firing was completed, the voltage was set at 60V in a 0.001% by weight phosphoric acid solution at room temperature.
The defective part of the chemical conversion film is repaired by applying it again.

次に、陰極形成を行う。すなわち、4重量%のグラファ
イト溶液中に浸漬し、150℃で10分間乾燥した後、
銀塗料を集電体として塗布し、150°Cで30分間硬
化させてコンデンサ素子とする。この素子に電極リード
を取付け、エポキン樹脂による外装を施して、エージン
グを行った後、コンデンサとしての特性評価およびマン
ガン酸化物の構造解析を行って結果を第1表に示した。
Next, cathode formation is performed. That is, after immersing it in a 4% by weight graphite solution and drying it at 150°C for 10 minutes,
Silver paint is applied as a current collector and cured at 150°C for 30 minutes to form a capacitor element. Electrode leads were attached to this element, it was covered with Epoquine resin, and after aging, the characteristics as a capacitor were evaluated and the structure of the manganese oxide was analyzed, and the results are shown in Table 1.

実施例2〜4 硝酸マンガン水溶液中に過塩素酸塩を1重量%含有させ
、過塩素酸塩の陽イオン成分がカリウム、ナトリウム、
およびマグネシウムである場合を、それぞれ第2、第3
および第4実施例とし、実施例1と同様にしてコンデン
サを作製し、特性評価を行って結果を第1表に示した。
Examples 2 to 4 1% by weight of perchlorate was contained in an aqueous solution of manganese nitrate, and the cation components of the perchlorate were potassium, sodium,
and magnesium, respectively, the second and third
As a fourth example, a capacitor was manufactured in the same manner as in Example 1, and the characteristics were evaluated. The results are shown in Table 1.

実施例5 硝酸マンガン水溶液中に塩素酸アンモニウムを2重量%
含有させた以外は、実施例1と同様にしてコンデンサを
作製し、特性評価を行って結果を第1表に示した。
Example 5 2% by weight of ammonium chlorate in manganese nitrate aqueous solution
A capacitor was produced in the same manner as in Example 1, except that it was added, and the characteristics were evaluated. The results are shown in Table 1.

実施例6〜8 塩素酸塩を1重量%含有させ、塩素酸塩の陽イオン成分
がカリウム、ナトリウムおよびマグネシウムである場合
を、それぞれ第6、第7および第8実施例とし、その他
の条件は第1実施例と同様にしてコンデンサを作製し、
特性評価を行って結果を第1表に示した。
Examples 6 to 8 Examples 6, 7, and 8 are cases in which 1% by weight of chlorate is contained and the cationic components of the chlorate are potassium, sodium, and magnesium, and the other conditions are as follows. A capacitor was produced in the same manner as in the first example,
Characteristics were evaluated and the results are shown in Table 1.

実施例9 Mn’ イオンに対して5重量%の硝酸を添加した硝酸
マンガン水溶液に2重量%の過塩素酸アンモニウムを含
有させた以外は、実施例1と同様にして、コンデンサを
作製し、特性評価を行って結果を第1表に示した。
Example 9 A capacitor was produced in the same manner as in Example 1, except that 2% by weight of ammonium perchlorate was added to an aqueous manganese nitrate solution containing 5% by weight of nitric acid based on Mn' ions, and the characteristics were determined. The evaluation was carried out and the results are shown in Table 1.

実施例10 200CFV/Pのペレットを用いた以外は、実施例1
と同様にしてコンデンサを試作し、特性評価を行って結
果を第1表に示した。
Example 10 Example 1 except that 200CFV/P pellets were used.
A prototype capacitor was manufactured in the same manner as above, and the characteristics were evaluated. The results are shown in Table 1.

実施例11 80CFV/Pのベレットを用い、化成電圧を80V、
再化成電圧を35Vとした以外は実施例1と同様にして
コンデンサを作製し、特性評価を行って結果を第1表に
示した。
Example 11 Using a pellet of 80CFV/P, the formation voltage was 80V,
A capacitor was produced in the same manner as in Example 1 except that the reconstitution voltage was 35 V, and the characteristics were evaluated. The results are shown in Table 1.

(木頁、以下余白) 比較例1 硝酸マンガン水溶液に他の成分を含有させない以外は実
施例1と同様にしてコンデンサを作製し、特性評価を行
って結果を第2表に示した。
(Wood page, blank space below) Comparative Example 1 A capacitor was produced in the same manner as in Example 1 except that the manganese nitrate aqueous solution did not contain any other components, and the characteristics were evaluated and the results are shown in Table 2.

比較例2 硝酸マンガン水溶液に他の成分を含有させない以外は実
施例10と同様にしてコンデンサを作製し、特性評価を
行って結果を第2表に示した。
Comparative Example 2 A capacitor was produced in the same manner as in Example 10 except that the manganese nitrate aqueous solution did not contain any other components, and the characteristics were evaluated and the results are shown in Table 2.

比較例3 硝酸マンガン水溶液に他の成分を含有させない以外は実
施例11と同様にしてコンデンサを作製し、特性評価を
行って結果を第2表に示した。
Comparative Example 3 A capacitor was produced in the same manner as in Example 11 except that the manganese nitrate aqueous solution did not contain any other components, and the characteristics were evaluated. The results are shown in Table 2.

第  2  表 (発明の効果) 以上説明したように本発明によれば、結晶性の低い二酸
化マンガンや低次酸化物の生成を効果的に抑制して、損
失(tan δ)を向上させた固体電解コンデンサを得
ることができる。
Table 2 (Effects of the Invention) As explained above, according to the present invention, the production of solid manganese dioxide and lower oxides with low crystallinity is effectively suppressed, and the loss (tan δ) is improved. You can get an electrolytic capacitor.

Claims (2)

【特許請求の範囲】[Claims] (1)弁作用金属よりなる多孔性焼結体の表面に化成皮
膜を生成させ、この化成皮膜上にマンガン酸化物層を形
成させた固体電解コンデンサの製造方法において、前記
化成皮膜を生成させた多孔性焼結体に塩素酸塩または過
塩素酸塩を含有させた硝酸マンガン水溶液を含浸・付着
させて焼成することを特徴とする固体電解コンデンサの
製造方法。
(1) A method for manufacturing a solid electrolytic capacitor in which a chemical conversion film is formed on the surface of a porous sintered body made of a valve metal, and a manganese oxide layer is formed on the chemical conversion film, in which the chemical conversion film is formed. A method for manufacturing a solid electrolytic capacitor, which comprises impregnating and adhering a manganese nitrate aqueous solution containing chlorate or perchlorate to a porous sintered body and firing the resultant.
(2)前記塩素酸塩または過塩素酸塩の硝酸マンガン水
溶液中の濃度が0.01〜10重量%である特許請求の
範囲第1項記載の固体電解コンデンサの製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the concentration of the chlorate or perchlorate in the manganese nitrate aqueous solution is 0.01 to 10% by weight.
JP25462786A 1986-10-28 1986-10-28 Manufacture of solid electrolytic capacitor Pending JPS63110623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25462786A JPS63110623A (en) 1986-10-28 1986-10-28 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25462786A JPS63110623A (en) 1986-10-28 1986-10-28 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63110623A true JPS63110623A (en) 1988-05-16

Family

ID=17267650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25462786A Pending JPS63110623A (en) 1986-10-28 1986-10-28 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63110623A (en)

Similar Documents

Publication Publication Date Title
US6850406B2 (en) Nb solid electrolytic capacitor and method for preparing the same
EP0213631B1 (en) Solid electrolytic capacitor and process for preparation thereof
US6377443B1 (en) Thermal treatment process for valve metal nitride electrolytic capacitors having manganese oxide cathodes
JPS63110623A (en) Manufacture of solid electrolytic capacitor
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
US3217381A (en) Method of capacitor manufacture
JP3157719B2 (en) Method for manufacturing solid electrolytic capacitor
US3467895A (en) Manganous nitrate-catalytic agent solution for solid electrolyte capacitor
JP2637207B2 (en) Solid electrolytic capacitors
US3553087A (en) Method of manufacturing solid electrolytic capacitors
JP2964090B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6331106A (en) Manufacture of solid electrolytic capacitor
JP2946591B2 (en) Method for manufacturing solid electrolytic capacitor
JP3546661B2 (en) Capacitor and manufacturing method thereof
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JP3163825B2 (en) Method for manufacturing solid electrolytic capacitor
KR970001382B1 (en) Impregnating solution for solid tantalium electrolytic capacitor
JP2773499B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPS6257249B2 (en)
JPH0770438B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0719729B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JPS6331105A (en) Manufacture of solid electrolytic capacitor
JPH05205980A (en) Manufacture of solid electrolytic capacitor
JPS6052010A (en) Solid electrolytic condenser